Cambridge Pure Mathematics Part IV Course Proposal Decision Methods over Real and Algebraically Closed Fields

Grant Olney Passmore, Postdoctoral Associate, Clare Hall gp351@cam.ac.uk

June 1, 2011

Overview An axiomatic theory T is called *decidable* if there exists an algorithm which, for any conjecture φ in the language of T, can determine in finitely many steps whether or not φ is a theorem of T. Many core axiomatic theories, including the elementary arithmetical theories of \mathbb{Z} and \mathbb{Q} , are not decidable. Amazingly, the elementary theories of algebra and geometry over \mathbb{R} and \mathbb{C} are decidable. This ten lecture course will study decision methods for elementary algebra and geometry over \mathbb{R} and \mathbb{C} . We will examine methods based on Gröbner bases (\mathbb{C}), Muchnik sign matrices (\mathbb{C} and \mathbb{R}), cylindrical algebraic decomposition (\mathbb{R}) and Stengle's Weak Positivstellensatz (\mathbb{R}). The course will presume only a basic grounding in commutative algebra, first-order logic and general topology. The machinery developed should be of interest to logicians, algebraists and algebraic geometers.

Lecture Roadmap

- 1. Introduction to logical decision problems and quantifier elimination; Introduction to the elementary theories of Algebraically Closed Fields of characteristic zero (ACF₀) and Real Closed Fields (RCF)
- 2. Hilbert's Weak Nullstellensatz (HWN); Gröbner bases Part I
- 3. Gröbner bases Part II; \exists fragment of ACF₀ decidable via Gröbner bases and HWN
- 4. ACF_0 admits quantifier elimination (via Muchnik) Part I
- 5. ACF_0 admits quantifier elimination (via Muchnik) Part II
- 6. RCF admits quantifier elimination (via Muchnik)
- 7. Cylindrical algebraic decomposition Part I
- 8. Cylindrical algebraic decomposition Part II
- 9. Cylindrical algebraic decomposition Part III
- 10. \exists fragment of RCF decidable via Stengle's Weak Positivstellensatz