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Abstract. John organized a state lottery and his wife won the main prize. You may

feel that the event of her winning wasn’t particularly random, but how would you argue

that in a fair court of law? Traditional probability theory does not even have the notion of

random events. Algorithmic information theory does, but it is not applicable to real-world

scenarios like the lottery one. We attempt to rectify that.
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Prologue. Leo Esakia and his Georgia, by Yuri Gurevich1

In July 1972, my family and I moved to Tbilisi, mainly to seek permission
to emigrate from the USSR to Israel; Georgia was a safer place to do that.
Surprisingly the plan worked, and we left the USSR in early October 1973.
It is during my time in Georgia that I struck up a life-long friendship with
Leo Esakia, “Gulik” to his friends. We also discovered how tolerant and
hospitable Georgia was. Here is a short story of our Georgian period. It
is ostensibly about us but really about Gulik and his Georgia, through our
eyes. Our life had other aspects, like learning and teaching Hebrew (which
was definitely not encouraged by the Soviet authorities) and even a hunger
strike, but that is a different story.

Georgian logic has a long tradition. “This is probably accounted for by
the fact that Georgian culture was a peculiar offshoot of its Greek-Byzantine
counterpart, logic always forming an indisputable element of Greek-Byzan-
tine education” [4, p. 19]. But mathematical logic was young in Georgia.
In a sense it was young in the whole USSR in spite of the presence of great
logicians like Andrey N. Kolmogorov, Pyotr S. Novikov and Anatoly I. Malt-
sev. They all stopped publishing logic papers in 1930s and resumed logic
activities only twenty or so years later. For a while it wasn’t safe to do
mathematical logic in the USSR. Why? This is a long and interesting story
that cannot be properly addressed here. See article [2] in this connection.

1Many thanks to Guram Bezhanishvili and Alexei Muravitsky for their helpful com-
ments related to the Prologue.
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So it is not surprising that Gulik was a self-taught logician (as was I);
he was educated as a physicist. To a great extent, he is the founder of
mathematical logic in Georgia. I knew his name when we decided to move
to Tbilisi. He and his students met us cordially and helped us throughout
our stint in Tbilisi. Besides him and his students, there were a few other
graduate students interested in mathematical logic. Some of them worked
with outside advisers, and one of them, Tristan Turashvili, had been working
with me for a couple of years albeit informally and sporadically.

Gulik was an erudite intellectual, soft-spoken and shy. There was some-
thing intrinsically noble about him. We spoke endlessly, mostly about logic
but also about literature, arts (his father was a film director quite famous
in Georgia, and his mother was an actress) and of course about politics. He
lived, with his wife and two children, rather modestly; an honest salaried
family in a corrupt environment. And Georgia was corrupt. People even
joked about a curse “I wish you to live on your salary”. But the corruption
should be put in perspective. Central planning is too rigid, and underground
businesses brought a level of prosperity to Georgia comparative to the other
Soviet republics.

Gulik was my first exposure to the esteemed Georgian intelligentsia.
Thanks to him, I met a number of Georgian intellectuals. Zurab Mikeladze,
a philosophical logician and dissident, spent time in a Soviet concentration
camp. He was quite an expert on Georgian history. Once I asked him why
Georgia was so tolerant and hospitable. He said this, among other things.
Georgia used to be large and powerful on the scale of Caucasus. But then
it was devastated by various invaders. To preserve the territory, Georgians
welcomed every community willing to accept the supremacy of the Georgian
state. The communities were free to speak their languages and to pray to
their gods.

My KGB file followed me to Tbilisi. I had suspected that such a file
existed but only in Tbilisi was that confirmed. All that (and a bit more)
I learned via friends of Gulik’s friends. Nevertheless I applied to various
academic institutions for a job but none of them wanted or dared to hire
me. One official mimed to me, by pointing his finger up and squeezing his
mouth, that they cannot hire me because of an order from above and that
he couldn’t talk about it. The miming amused me; I could not imagine such
friendly behavior in Russia.

To provide for the family, I gave private lessons in mathematics. To
provide for the soul, I initiated a logic seminar at the Computing Center
of Georgian Academy of Sciences where Tristan Turashvili worked. In a
few months, David Kveselava, the director of the Center, appointed me
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to a halftime research position. Of course I was pleased. But I also was
surprised by his courage and was worried about him. “That’s all right”, he
said, “you help our young, and we have not been good hosts to you”.

In order to apply for permission to emigrate we needed a document from
an Israeli citizen sworn to materially support us if needed. A number of such
affidavits had been sent to us. In May 1973, one of them finally reached us.
That very day I also learned that David Kveselava appointed me to a full-
time research position. With some trepidation I told him that I just got an
affidavit from Israel and that I would be applying for a permission to emi-
grate. A period of silence followed. I did not know what to expect. It surely
wasn’t easy for him — and he might have taken risks — to arrange a full-
time position for me. I was afraid of recriminations, but none followed. “We
haven’t treated you well”, he said and went on to propose me to become his
scientific deputy in conjunction with some additional perks. I was touched,
deeply touched. That was a far cry from how my fellow emigration-seekers
were treated in Moscow or Leningrad or Sverdlovsk. I told him how grateful
I was to him and to Georgia. I said that we fell in love with Georgia but our
destiny was different.

Everybody, including us, believed that we would become “refuseniks”
for years to come. But, unexpectedly, in the end of August 1973 we were
permitted to leave the USSR. Each one of my colleagues in the Computing
Center came to congratulate me with getting the permission to leave and to
wish me a good life in Israel. I went to Kveselava to resign. “Why?”, he
said, “you are working here until you cross the Soviet border”.

In the end of September Gulik saw us off. Our apartment was supposed
to be returned to the local authorities. “Don’t worry about that”, said
Gulik, “I’ll take the key and I’ll keep it until I know that you reached your
destination”. Things might have gone wrong before we left the USSR, and
they nearly did (when we were in Moscow on our way out, and the Yom
Kippur War started). Only in Georgia could an emigrant keep his job and
his apartment until he leaves the Soviet Union.

The next time I saw Gulik at a logic workshop in Luminy, France, near
Marseille, in 1988. Soviet authorities allowed him to attend the workshop
but sent along a companion who was not a logician. Gulik and I discussed
logic but not literature, not arts and certainly not politics. Throughout the
following years, our communication was primarily by means of letters and
later the internet. There we endlessly discussed logic, literature, arts and of
course politics. I am going to miss my friend Gulik.
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1. Introduction

To motivate our study, we begin with four examples. In each of the four
cases, a probabilistic trial produces a suspicious outcome, and the question
arises whether the outcome is the result of pure chance. The first case is
a thought experiment inspired by a remark of Leonid Levin in article [35].
The second and third cases are also thought experiments, arguably more
realistic. The fourth case is real.

1.1. A Lottery Case

John and Donna live in Georgia, a state of about 10,000,000 inhabitants.
John is Donna’s husband and the president of the Georgia State Lottery.
Anybody may enter into the lottery by buying as many tickets as (s)he
wishes. Every ticket is uniquely numbered. A winner is chosen at random
by the selection of a ticket number. This year Donna happens to win. Over
10,000,000 tickets were purchased in total, spread among about 4,000,000
people. Donna purchased three. John bought none.

Soon after this win is announced, the local media begins to echo claims of
corruption against John. How could it be that of all of the about 4,000,000
participants, the president’s wife won? Surely something must be amiss.
John, faced with allegations of unfairness, argues as follows:

Someone had to win the lottery. The process of choosing the winner
was fair. Almost every ticket owner (the only exception being a
handful of people who bought many tickets) had a small chance of
winning. If a stranger to me who also bought a small number of
tickets had won, no one would be crying foul. But, such a stranger
would have roughly the same small probability of winning as Donna
did. Given that someone had to win, nothing strange has happened.
In particular, there are no grounds to claim the lottery was rigged.

Would you believe him?

1.2. A Jury Case

Thomas seemed to be a common criminal but there was something uncom-
mon about his case. At least the prosecutor thought so. As prospective
jurors were questioned, she realized that some of them were unusually in-
formed. She investigated. It turned out that seven out of 50 prospective
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jurors belonged to a Facebook group of about 100 people that discussed
Thomas’s case. This was the only Facebook group that discussed the case.

Prospective jurors had been chosen at random from a population of about
one million adults available for the purpose. Can it be mere chance that so
many prospective jurors belong to the one and relatively small Facebook
group that have discussed the case?

1.3. A Stalking Case

Alice and Bob are a couple living in New York City. They don’t have a
real kitchen and usually dine out. Chris is Alice’s unstable ex-boyfriend,
and Alice believes that Chris is stalking her. Too often she has seen him
at restaurants. Alice has wanted to obtain a restraining order but Bob has
argued that they didn’t have enough evidence to convince the authorities.
After all, Chris and Alice used to live together and may naturally frequent
the same restaurants. So Bob suggested an experiment: “There are at least
100 reasonable restaurants within walking distance from our place. For the
next ten nights, let’s pick a restaurant at random except that it should be a
new restaurant each time”. They performed the proposed experiment. In 5
out of the 10 cases, Chris showed up. Is this evidence sufficient for Alice to
obtain a restraining order?

1.4. The Case of the Man with the Golden Arm

The story appeared in New York Times on July 23, 1985, on page B1. We
learned of it from the book [20].

TRENTON, July 22 — The New Jersey Supreme Court today caught
up with the “man with the golden arm,” Nicholas Caputo, the Es-
sex County Clerk and a Democrat who has conducted drawings for
decades that have given Democrats the top ballot line in the county
40 times out of 41 times.

The court felt that something was wrong.

The court suggested — but did not order — changes in the way
Mr. Caputo conducts the drawings to stem “further loss of public
confidence in the integrity of the electoral process.”

Caputo wasn’t punished. A question arises whether the circumstantial evi-
dence was sufficient to justify punishing him.
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1.5. Overview

The four cases above have something in common. In each case, there is a
strong suspicion that a presumably random event is not random at all. But
how can one justify the suspicion?

The purpose of this paper is to build a practical framework in which
the desired chance-elimination arguments can be formalized and defended.
We start, in §2, with a classical principle, often called Cournot’s principle,
according to which it is a practical certainty that an event with very small
probability will not happen. We expound Cournot’s principle. In particu-
lar, we make explicit that the event of interest is supposed to be specified
in advance. Then we generalize Cournot’s principle to a more liberal princi-
ple, called the bridge principle, that requires only that the event of interest
be specified independently from the execution of the probabilistic trial in
question. At the end of §2, we address the question how an after-the-fact
specification can be independent. The inspiration comes from algorithmic
information theory, and the intuitive idea is this: some specifications are
so succinct that they could have been naturally written ahead of time (and
maybe have been written in similar cases in the past).

§3 is auxiliary. First we recall some basic notions of algorithmic infor-
mation theory, in particular the notion of Kolmogorov complexity (or infor-
mation complexity) of events. In algorithmic information theory, events are
represented by binary strings. The Kolmogorov complexity of an event is the
length of a shortest program for a fixed universal Turing machine that out-
puts the string presentation of the event. This approach does not work for
our purposes. In each probabilistic case in question, we need specifications
formulated in terms pertinent to the case and abstracted from irrelevant
information. To this end we use logic, and the rest of the section is devoted
to logic. We recall and illustrate logic structures and the notion of logical
definability. Then we introduce and discuss the notion of the description
complexity of events.

In §4, we explain how we intend to impugn randomness. In §5 we illus-
trate our approach on the cases described above. There are many discus-
sions with our old friend Quisani throughout the article. The final discussion
is in §7.

2. Bridging Probabilities and the Physical World

We explicate and broaden the well known principle according to which it is a
practical certainty that an event with very small probability will not happen.
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2.1. Cournot’s Principle

Probability theory is applied widely and successfully. But what makes this
mathematical theory relevant to the physical world? In The Art of Conjec-
turing, published posthumously in 1713 [3], Jakob Bernoulli related mathe-
matical probabilities to practical (or “moral”) certainty:

Something is morally certain if its probability is so close to certainty
that the shortfall is imperceptible. Something is morally impossible if
its probability is no more than the amount by which moral certainty
falls short of complete certainty. Because it is only rarely possible
to obtain full certainty, necessity and custom demand that what is
merely morally certain be taken as certain. It would therefore be
useful if fixed limits were set for moral certainty by the authority
of the magistracy — if it were determined, that is to say, whether
99/100 certainty is sufficient or 999/1000 is required.

In other words, it is a practical certainty that an event with very small prob-
ability will not happen. Antoine Cournot seems to be the first to suggest, in
the book [17], that this principle is the only way of connecting mathematical
probabilities to the world. Accordingly the principle is often ascribed to
Cournot.

Cournot’s Principle It is a practical certainty that an event with very
small probability will not happen.

The principle was supported by many heavyweights of probability theory
and statistics, in particular Émile Borel [5], Ronald A. Fisher [24], Andrei N.
Kolmogorov [32] and Paul Lévy [36]. Borel called Cournot’s principle The
Single Law of Chance.

More information on Cournot’s principle is found in the Shafer and Vovk
book [45] and Shafer’s lecture [44] that is available online.

2.2. How Small is Sufficiently Small?

Quisani: How small is sufficiently small? I presume that there is some
cut-off point, a threshold value, the least upper bound for the sufficiently
small values.
Authors: Yes, that’s the idea. Let us quote Émile Borel in this connection.
In his 1943 book [5] for the non-scientist he wrote the following.

When we stated The Single Law of Chance, “events whose probabil-
ity is sufficiently small never occur,” we did not conceal the lack of
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precision of the statement. There are cases where no doubt is possi-
ble; such is that of the complete works of Goethe being reproduced
by a typist who does not know German and is typing at random.
Between this somewhat extreme case and ones in which the probabil-
ities are very small but nevertheless such that the occurrence of the
corresponding event is not incredible, there are many intermediate
cases. We shall attempt to determine as precisely as possible which
values of probability must be regarded as negligible under certain
circumstances.

Note “under certain circumstances”. Different application areas may use
different threshold values. You may want to reject the null hypothesis “by
preponderance of evidence” or “beyond a reasonable doubt”. If the courts
of law were to use probabilistic thresholds (tailored to specialized circum-
stances), these distinct judicial criteria would give rise to distinct threshold
values. Different criteria and different threshold values may be used in test-
ing scientific hypotheses.

Q: I suppose much experience is needed to just propose a reasonable thresh-
old for a fixed application area. And new developments, new technologies
may require that the accepted value be revised. I am thinking of the use of
DNA evidence in courts. A number of convictions have been overturned. If
the courts used thresholds, some of them should have been adjusted down.
I can imagine also the necessity to adjust a threshold value up. Think of
cases when people have not been convicted but later confessed to crimes.

A: The issue of appropriate threshold values has been much discussed,
especially in connection with statistical hypothesis testing. In fact there
are many discussions, in various applications domains, e.g. clinical trials
[19, 28, 39, 42], psychology [16, 27]. Statistical hypothesis testing is often
misunderstood and abused [1, 16, 27, 41]. In the rest of the paper, we will
avoid the issue of appropriate threshold values.

Proviso 1. Given a probabilistic trial, we will always assume the existence
of an agreed and current probability threshold for the application domain of
the trial.

2.3. Cournot’s Principle Expounded

Our formulation of Cournot’s principle is rather common. It is also aphoris-
tic. As stated, Cournot’s principle does not hold water: events of very small
probability happen all the time in the physical world. Several aspects of
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the principle are implicit. One aspect, for example, is that the probabilistic
experiment in question is performed only once. (This particular aspect is
made explicit in [32].) In this subsection we explicate Cournot’s principle.
Later we will broaden it and call it the bridge principle to emphasize that it
bridges between probability theory and the physical world.

As in probability theory, a trial T is a real or imaginary experiment with
a well defined set ΩT of possible outcomes and with events of T as subsets
of ΩT . In general (when ΩT is uncountable) there may be some subsets of
ΩT that are not events. The case of most interest to us is when ΩT is finite;
in that case every subset of ΩT is an event.

We introduce a few nonstandard terms that are useful for our purposes.
An executed trial is a trial together with a particular execution of the trial;
the execution results in a particular outcome called the actual outcome of
the executed trial. An event E happens or occurs at the executed trial if
and only if E contains the actual outcome.

A probabilistic trial (T,F) is a trial T together with a hypothesis, called
the null hypothesis, that the probability distribution that governs the trial T
belongs to F . The probability distributions of F are the innate probability
distributions of the probabilistic trial (T,F). (We are not going to define
what it means for a trial T to be governed by a probability distribution
P; the connection to the physical world is given by the expounded Cournot
principle below.) An executed probabilistic trial is a probabilistic trial (T,F)
together with a particular execution of T (that produces the actual outcome
of the executed probabilistic trial).

An event E of a probabilistic trial (T,F) is negligible if, for every in-
nate probability distribution P, the probability P(E) is less than the current
probability threshold in the application area of the trial.

Example 1. View the lottery of §1.1 as an executed probabilistic trial with
possible outcomes of the form “o wins the lottery” where o ranges over the
lottery ticket owners. The null hypothesis says that the trial is governed by
the probability distribution where the probability of outcome “o wins the
lottery” is proportional to the number of lottery tickets that o owns. The ac-
tual outcome is “Donna wins the lottery”. Since Donna bought three tickets,
the event “the winner bought three tickets” occurs during the execution.

A probabilistic scenario (T,F , E) is a probabilistic trial (T,F) together
with an event E ⊆ ΩT called the focal event of the probabilistic scenario. An
executed probabilistic scenario is a probabilistic scenario (T,F , E) together
with a particular execution of T (that produces the actual outcome of the
executed probabilistic scenario).
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Cournot’s Principle Expounded Consider a probabilistic scenario with
a negligible focal event. If the focal event is specified before the execution
of the trial then it is practically certain that the focal event will not happen
upon the execution.

Q: What is the point in fixing an event and execution?

A: If too many small-probability events are specified then it may become
likely that at least one of them happens even if we restrict attention to one
execution of the trial. Similarly any event of positive probability becomes
likely to happen if the trial is executed too many times.

Q: Given an informal description of a trial, it may be not obvious what
the possible outcomes are. Consider the lottery case. The way the story
is told in §1.1, every outcome is associated with the winning person. This
is natural. But it is also natural, maybe even more natural, to associate
outcomes with the winning tickets.

A: You are right. An informal description of a trial may be somewhat
vague about precisely what possible outcomes are. But the definition of
a probabilistic trial requires that the set of possible outcomes be indicated
explicitly. In the lottery case, there are indeed these two natural ways to view
possible outcomes. It does not really matter which way to go. We picked
the first way because it is a tiny bit more convenient for our purposes.

2.4. Cournot’s Principle and Statistical Hypothesis Testing

Q: You started with the problem of connecting probabilities to the physical
world. But do you know the true probabilities of real world events? I think
not. All you have is a mathematical model. It surely is at best an approx-
imation of reality. For example, people speak about tossing a fair coin but
no real coin is perfectly fair and no tossing is perfect. More importantly, a
real world trial may be rigged, so that your mathematical model may be far
from reality. I would not be surprised if some magicians can produce any
desired sequence of heads and tails by repeatedly tossing a coin.

A: Turn Cournot’s principle upside down. Consider an executed probabilis-
tic scenario with a negligible focal event specified before executing the trial.
If the focal event occurs during the execution of the trial then reject the null
hypothesis.

Q: Is this related to statistical hypothesis testing?

A: This is, as far as we understand, the basic idea of Ronald A. Fisher’s
method of statistical hypothesis testing [24, 25, 26]. The term “null
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hypothesis” is borrowed from Fisher. In Fisher’s approach, the focal event
is specified by means of the p-value of some statistics.

Q: Hmm, I don’t know anything about p-values. What is your best reference
on Fisher’s approach?

A: The Cox and Hinkley book [18].

2.5. The Bridge Principle

Now we are ready to broaden Cournot’s principle. We use the definitions
of §2.3.

The Bridge Principle Consider a probabilistic scenario with a negligible
focal event. If the focal event is specified independently of the execution of
the trial then it is practically certain that the focal event does not happen
upon the execution.

We will use the bridge principle as a ground for rejection of (or at least
as a significant argument against) the null hypothesis.

Q: How can an after-the-fact specification be independent? I think that
I understand the intent of prior specifications. They are predictions. If I
give Grant a deck of cards and, without examining the cards, he draws the
king of spades, there is no surprise. But if he announces in advance that
he is going to draw the king of spades and then indeed he does that, then
there is a surprise. I’d think that Grant is a magician. But after-the-fact
“predictions” do not make sense to me.

A: Suppose that Grant did not announce a card in advance. Instead Yuri an-
nounces the card, after the fact and apparently without any communication
with Grant. Is there an element of surprise?

Q: Yes, I suppose there is. I would suspect that Grant is a magician or that
there was some communication between you two. I guess the point is not
that the focal event is specified in advance but that it is specified — possibly
after the fact — without any knowledge about the outcome of the trial, not
even partial knowledge.

A: Let us give a name to the principle that you propose:

The Narrow Bridge Principle Consider a probabilistic scenario with a
negligible focal event. If the focal event is specified without any information
about the actual outcome of the trial then it is practically certain that the
focal event does not happen upon the execution.
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Unfortunately the narrow bridge principle is too narrow for our purposes.
To illustrate the broader principle, consider a trial that consists of tossing a
fair coin 41 times. Would the outcome

HTTTTHTHHTHTHTHHTTHTTHHHTTTHHTHHTTTTTHHHH (1)

be surprising?

Q: I do not think so.

A: And what about the outcome where all tosses but the last one came up
heads?

Q: Yes, it would be surprising. I would suspect cheating.

A: But why? Both outcomes have exactly the same probability, 2−41.

Q: I begin to see your point. The second outcome is special. It is surprising
even though it has not been predicted. I guess it is surprising by its very
nature.

A: Yes. But what makes the second outcome special?

Q: The particularly simple specification?

A: That is exactly it. The particularly simple specification makes the out-
come surprising and independent from the execution of the trial.

Q: But how do you measure the simplicity of specifications? There are 41
characters, including blanks, in the phrase “all tosses but the last one came
up heads”, and 41 binary symbols in 1. Since the Latin alphabet (with the
blank symbols) is richer than the binary alphabet {H, T}, one can reasonably
argue that the specification 1 is simpler, much simpler.

A: This is a good question. The whole next section is devoted to it.

3. Random Events and their Specification
Complexity

3.1. Algorithmic Information Theory

The introductory examples illustrate the possibility that some presumably
random events may be not random at all.

Q: What does it mean that an event is random?

A: Classical probability theory does not address the question but algorithmic
information theory (AIT) does. The basic ideas of AIT were discovered in
the 1960s independently by Ray Solomonoff [47], Andrei N. Kolmogorov [33]
and Gregory J. Chaitin [10]. The history of these discoveries is described in
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§1.13 of the book [38] by Li and Vitányi that we use as our main reference
on the subject. Chaitin’s book [11] on AIT is available online.

A key notion of AIT is the Kolmogorov (or information) complexity
of strings. Intuitively, the Kolmogorov complexity C(s) of a string s is the
length of a shortest program that outputs s. The larger C(s) is, comparative
to the length of s, the more random s is.

Q: Programs in what programming language?

A: Programs for a universal Turing machine.AIT was influenced by the com-
putation theory of the time. Traditionally, in AIT, one restricts attention to
Turing machines with the binary alphabet, and the universality of a Turing
machine U means that U faithfully simulates any other Turing machine T
on any input x given T (in one form or another) and given exactly that same
input x. View a universal Turing machine U as a programming language,
so that programs are binary strings. The Kolmogorov complexity CU (s) of a
binary string s is the length of a shortest U program that outputs s.

Q: But this depends on the choice of a universal Turing machine U .

A: It does. But, by the Invariance Theorem [38, §2.1], for any two universal
Turing machines U1 and U2, there is a constant k such that CU (s) ≤ CV (s)+
k for all binary strings s. In that sense, the dependence on the choice of
universal Turing machine U is limited.

There is also a conditional version CU (s|t) of Kolmogorov complexity,
that is the complexity of string s given a string t.

Q: I wonder how would one use Kolmogorov complexity to show that the
suspicious outcomes of the introductory examples are not random.

A: Unfortunately Kolmogorov complexity does not seem to work well for
our purposes. Whatever universal Turing machine U is fixed, the function
CU (s) is not computable [38, Theorem 2.3.2]. And the machine U does not
know anything about the scenarios. Consider the lottery scenario for exam-
ple. Intuitively the event of Donna winning the lottery should have smaller
description complexity than the event of some stranger to John winning
the lottery. But this is most probably not the case, precisely because the
machine U does not know anything about the scenario.

Q: Maybe one can use the conditional version CU (s|t0) of Kolmogorov com-
plexity where t0 is a particular string that describes the given scenario. I
suspect that the function f(s) = CU (s|t0) is still uncomputable. But maybe
one can approximate it.

A: Maybe. But it seems to us that there are simpler and more natural ways
to deal with scenarios like those in our introductory examples.
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3.2. Description Complexity

We assume that the reader is familiar with the basics of first-order logic
though we recall some notions. A (one-sorted) relational structure A consists
of
• a nonempty set, the base set of structure A, whose elements are called

the elements of A;
• several relations over the base set including equality, the basic relations

of structure A; each basic relation has its own arity (the number of
arguments);

• several distinguished elements of A known as constants.

The ever present equality is a logic relation, in contrast to other basic re-
lations. The names of the basic non-logic relations and constants form the
vocabulary of A. Equality is typically omitted when a structure is described.
For example, a directed graph is typically described as a relational structure
with one binary relation and no constants.

A multi-sorted relational structure is defined similarly except that the
base set is split into several nonempty subsets called sorts. Each argument
position i of every basic relation R is assigned a particular sort Si; the type
of R is the direct product S1×· · ·×Sr where r is the arity of R. Equality, the
only logic relation, is an exception. Its type can be described as

⋃
S(S × S)

where S ranges over the sorts. The vocabulary of a multi-sorted relational
structure contains the names of sorts, relations and constants. Besides, the
vocabulary indicates the types of basic relations, individual variables and
constants.

Example 2. Here is a structure related to the lottery scenario. It has two
sorts. One sort, called Person, consists of people, namely all lottery ticket
owners as well as John, the lottery organizer. The other sort, called Ticket,
consists of all the lottery tickets that have been sold. The structure has a bi-
nary relation Owns of type Person × Ticket, with the obvious interpretation.
It also has a constant John that denotes the lottery organizer.

If A is a relational structure, S is a sort of A and X ⊆ S, we say that
X is definable in A if there is a first order formula ϕ(x) with a single free
variable x of type S such that X is the set of elements a of sort S satisfying
the proposition ϕ(a) in A, that is if

X = {a : A |= ϕ(a)}.
The formula ϕ(x) is a definition of X in A. The description complexity of
X in A is the length of the shortest definition of X in A.
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Example 3. The event “the winner owns just one ticket” consists of the
outcomes “p wins the lottery” where p ranges over the people owning exactly
one ticket. The event is thus definable by formula

∃t1(Owns(p, t1) ∧ (∀t2(Owns(p, t2) → t1 = t2))).

in the structure of Example 2.

Q: How do you measure the length of a formula?

A: View the names of relations, variables and constants as single symbols,
and count the number of symbols in the formula. Recall that the vocabulary
specifies the type of every variable and every constant.

Q: As far as the lottery case is concerned, the structure of Example 2 is
poor. For example, it does not distinguish between people that own the same
amount of tickets. In particular, it does not distinguish between Donna and
anybody who owns exactly three tickets. You can extend it with a constant
for Donna. If you want that the structure reflects a broader suspicion that
John may cheat, you can add a constant for every person such that there is
a reasonable suspicion that John will make him a winner. Much depends of
course on what is known about John. For example, you can add a constant
for every close relative and every close friend of John.

A: Alteratively we may introduce binary relations CloseRelative(p, q) and
CloseFriend(p, q).

Example 4. Extend the structure of Example 2 with binary relations
CloseRelative(p, q) and CloseFriend(p, q) of type Person × Person, with the
obvious interpretations: q is a close relative of p, and q is a close friend of p
respectively; in either case q is distinct from p.

3.3. Alternatives

Q: There is something simplistic about Example 4. Both relations seem
to play equal roles. In reality, one of them may be more important. For
example, John may be more willing to make a close relative, rather than a
close friend, to win. People often put different weights on different relations.
For a recent example see [43]. You should do the same.

A: You are right of course but, for the time being, we keep things simple.

Q: And why do you use relational first-order logic? There are many logics
in the literature.
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A: In this first paper on the issue, it is beneficial for us to use relational first-
order logic as our specification logic. It the best known and most popular
logic, and it works reasonably well. As (and if) the subject develops, it may
be discovered that the best specification logic for one application domain
may not be the best for another. At this point, our experience is very
limited.
Q: First-order logic isn’t the best logic for all purposes.
A: It is not. And there are two distinct issues here. One issue is expressivity.
If, for example, you need recursion, first-order logic may be not for you. It
lacks recursion. The other issue is succinctness. It is possible to increase
the succinctness of relational first-order specifications without increasing the
expressive power of the logic. For example, one may want to use function
symbols. One very modest extension of relational first-order logic which is
nevertheless useful in making specifications shorter is to introduce quantifiers
∃̇xϕ (note the dot over ∃) saying that there exists x different from all free
variables of the formula ϕ under quantification. If y1, . . . , yk are the free
variables of ϕ then ∃̇xϕ is equivalent to

∃x(x 6= y1 ∧ · · · ∧ x 6= yk ∧ ϕ)

but it is shorter. It would be natural of course to introduce the ∃̇ quantifier
together with its dual ∀̇ quantifier.
Q: Instead of logic, one can use computation models, especially restricted
computation models, e.g. finite state automata, for specification.
A: Yes, you are right. Note though that, for every common computation
model, there is a logic with equivalent expressivity. For example, in the case
of finite automata over strings, it is existential second-order logic [7].

4. Impugning Randomness

Now we are ready to explain our method of impugning the null hypothesis
in executed probabilistic scenarios with suspicious outcomes. Given

• a trial such that some of its outcomes arouse suspicion and

• a null hypothesis about the probability distribution that governs the
trial,

one has several tasks to do.

1: Background Information Analyze the probabilistic trial and estab-
lish what background information is relevant.
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2: Logic Model Model the trial and relevant background information as
a logic structure.

3: Focal Event Propose a focal event that is

• negligible under the null hypothesis and

• has a short description in the logic model.

By the bridge principle, the focal event is not supposed to happen, under the
null hypothesis, during the execution of the trial. If the focal event contains
the actual outcome of the trial, then the focal event has happened. This
gives us a reason to reject the null hypothesis.

What background information is relevant?

Relevant background information reflects various ways that suspicious out-
comes occur. In this connection historical data is important. In the lottery
case, for example, it is relevant that some lottery organizers have been known
to cheat.

What does the Model Builder Know about the Actual Outcome?

The less the model builder knows about the actual outcome the better.
Ideally the model builder has no information about the actual outcome, so
that we can use the narrow bridge principle. We may not have a model
builder with no information about the actual outcome; it may even happen
that the actual outcome has been advertised so widely that everybody knows
it. In the absence of blissfully unaware model builder, we should try to put
ourselves into his/her shoes.

The Desired Logic Model

One may be lucky to find an existing logic model that has been successfully
used in similar scenarios. If not, construct the most natural and frugal model
you can.
Q: “Natural” is a positive word. Surely it is beneficial that the desired
model is natural. But why should the model be frugal?
A: If the model is too rich (like in the case of classical algorithmic informa-
tion theory), too many events have short specifications. Imagine for example
that, in the lottery case, the model allows you to specify shortly various peo-
ple that have nothing to do with the lottery organizer.
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Q: But how do you know that those people have nothing to do with the lot-
tery organizer? Maybe one of them is a secret lover of the lottery organizer.
A: Indeed, the background information deemed relevant may be deficient.
But, at the model building stage, we want to reflect only the background
information deemed relevant.

The Desired Focal Event

The desired focal event contains the suspicious outcomes of the trial.

5. Examples

We return to the four cases of §1.

5.1. The Case of Lottery

Trial For an informal description of the trial see §1.1. Recall that John is
the lottery organizer, and Donna is his wife. As mentioned in Example 1,
we view the lottery as a trial with potential outcomes of the form “o wins
the lottery” where o ranges over the lottery ticket owners.

Null Hypothesis There is only one innate probability distribution P, and
the probability P(x) of any person x to win is proportional to the number of
lottery tickets that x owns.

Background Information We assume that the following is known about
John, the lottery organizer. He is a family man, with a few close friends
that he has known for a long time. He bought no lottery tickets.

Actual Outcome “Donna wins the lottery”.

Logic Model Our model is a simplification of the structure of Exam-
ple 4. We don’t need the sort Ticket introduced originally in Example 2
to illustrate the notion of multi-sorted model. And we do not need the full
extent of relations CloseRelative and CloseFriend, only the sections of them
related to John. Our model is one-sorted. The one sort, called Person, con-
sists of people, namely all lottery ticket owners as well as John, the lottery
organizer. The structure has one constant and two unary relations. The
constant is John; it denotes the lottery organizer. The two unary relations
are CloseRelativeOfJohn(p) and CloseFriendOfJohn(p), both of type Person.
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The interpretations of the two relations are obvious: p is a close relative of
John, and p is a close friend of respectively; in both cases p is distinct from
John.

Focal Event: The winner is a close relative or friend of John, the lottery
organizer, in other words, the winner belongs to the set

{x : CloseRelativeOfJohn(x) ∨ CloseFriendOfJohn(x)}.

5.2. The Case of Jury Selection

Trial For an informal description of the trial see §1.2. The trial in question
selects a pool of 50 prospective jurors from about a 1,000,000 people available
for the purpose.

Null Hypothesis There is only one innate probability distribution, and
the one innate probability distribution is uniform so that all possible pools
of 50 prospective jurors are equally probable.

Background Information There is a unique Facebook group of about
100 people that discusses the criminal case.

Actual Outcome A pool with seven prospective jurors from the Facebook
group.

Logic Model The model has two sorts and one relation.

• Sort Pool consists of all possible pools of 50 prospective jurors.

• Sort Member consists of the members of the Facebook group that dis-
cussed Thomas’s case.

• The relation In(m, p) of type Member × Pool holds if and only if member
m of the Facebook group belongs to pool p.

Focal Event

{p : ∃m1∃m2

(
m1 6= m2 ∧ In(m1, p) ∧ In(m2, p)

)}

Q: If the null hypothesis is impugned then some rules have been violated.
Who is the guilty party? In the lottery case, it was clear more or less that
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John was the guilty party. In this case, it is not obvious who the guilty
party is.

A: We do not pretend to know the guilty party. Our only goal is to impugn
randomness. There may be more than one guilty party as far as we know.
Their actions may or may not have been coordinated.

Q: As far as I see, plenty of randomness might have remained. You did not
impugn all randomness.

A: You are right. Let us express our goal more precisely: it is to impugn
the null hypothesis, no more no less.

5.3. A Stalking Case

Trial An informal description of the case is given in §1.3. The 10 nights
of the trial may be represented by numbers 1, . . . , 10. The outcomes of the
trial may be represented by functions f from {1, . . . , 10} to {0, 1} where the
meaning of f(n) = 1 (resp. f(n) = 0) is that Alice and Bob met (resp. did
not met) Chris at the restaurant on night n.

Null Hypothesis Intentionally, the null hypothesis says that Chris does
not stalk Alice. Formally, the null hypothesis says that a probability distri-
bution P on the outcomes is innate if and only if it satisfies the following two
requirements for every outcome f .

1. Events f(n1) = 1 and f(n2) = 1 are independent for any nights n1 6= n2.

2. P(f(n) = 1) ≤ 1/100 for every night n.

Requirement 2 says that P(f(n) = 1) is less than (rather than equal to)
1/100 rather than P(f(n) = 1) = 1/100 because, at night n, Chris may not
to be present at all in any of the 100 restaurants at the time when Alice and
Bob dine. If he is in one of the 100 restaurants when Alice and Bob dine
then P(f(n) = 1) = 1/100.

Background Information Chris is suspected of stalking Alice in restau-
rants.

Actual Outcome Five times out of ten times Alice and Bob meet Chris
at the chosen restaurant.
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Logic Model There are three sorts of elements and one relation.

• Sort Night consists of numbers 1, . . . , 10.

• Sort Outcome consists of all possible functions from Night to {0, 1}.
• Relation R(f, n) holds if and only if, on night n, Alice and Bob meet

Chris at the chosen restaurant.

Focal Event {f : ∃n1∃n2

(
n1 6= n2 ∧R(f, n1) ∧R(f, n2)

)}.
Q: The focal event is that there are two distinct nights when Chris dines at
the restaurant where Alice and Bob dine. What if the current probability
threshold is lower than you presume, and the focal event turns out to be
non-negligible?
A: In this particular case, it is natural to consider the focal event that there
are three distinct nights when Chris dines at the restaurant where Alice and
Bob dine.
Q: It is rather expensive to say that there are k distinct elements; the
description complexity is O(k2). Now I see why you mentioned those dotted
existential quantifiers ∃̇ in §3.3.

5.4. The case of Nicholas Caputo

Trial An informal description of the case is given in §1.4. The 41 elections
may be represented by numbers 1, . . . , 41. The possible outcomes of the trial
can be seen as functions f from {1, . . . , 41} to {D,N} where the letters D,
N indicate whether the top ballot line went to a Democrat or not.

Null Hypothesis Intentionally the null hypothesis is that the drawings
were fair. Formally, the null hypothesis says that there is a unique innate
probability distribution P on the outcomes, and that P satisfies the following
two requirements for every outcome f .

1. Events f(e1) = D and f(e2) = D are independent for any elections
e1 6= e2.

2. For every election e, P(f(e) = D) = re where re is the fraction of
Democrats on the ballot.

We assume that every re ≥ 0.4.

Background Information The county clerk, who conducted the draw-
ings, was a Democrat.
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Actual Outcome 40 times out of 41 times the top ballot line went to
Democrats.

Logic Model The model has three sorts, two constants and one relation.

• Sort Election consists of numbers 1, . . . , 41 representing the 41 elections.

• Sort Party consists of two elements. The elements of Party will be called
parties.

• Sort Outcome consists of all f from Election to Party.

• The constants D and N of type Party denote distinct elements of type
Party.

• The relation R(f, e, p) of type Outcome × Election × Party holds if and
only if, according to outcome f , the top ballot line went to party p at
elections e.

Focal Event:

{f : ∀i∀j((R(f, i, N) ∧R(f, j, N)) → i = j)}.

6. Related Work

Our paper touches upon diverse areas of science. We restrict attention to a
few key issues: Cournot’s principle, algebraic information complexity, and
social network analysis.

6.1. Cournot’s Principle

The idea that specified events of small probability do not happen seems to
be fundamental to our human experience. And it has been much discussed,
applied and misapplied. We don’t — and couldn’t — survey here the ocean
of related literature. In §2 we gave already quite a number of references in
support of Cournot’s principle. On the topic of misapplication of Cournot’s
principle, let us now turn to the work of William Dembski. Dembski is
an intelligent design theorist who has written at least two books, that are
influential in creationist circles, on applications of “The Law of Small Prob-
ability” to proving intelligent design [20, 21].

We single out Dembski because it is the only approach that we know
which is, at least on the surface, similar to ours. Both approaches generalize
Cournot’s principle and speak of independent specifications. And both ap-
proaches use the information complexity of an event as a basis to argue that
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it was implicitly specified. We discovered Dembski’s books rather late, when
this paper was in an advanced stage, and our first impression, mostly from
the introductory part of book [20], was that he ate our lunch so to speak.
But then we realized how different the two approaches really were. And
then we found good mathematical examinations of the fundamental flaws of
Dembski’s work: [49] and [6].

Our approach is much more narrow. In each of our scenarios, there is
a particular trial T with well defined set ΩT of possible outcomes, a fixed
family F of probability distributions — the innate probability distributions
— on ΩT , and a particular event — the focal event — of sufficiently small
probability with respect to every innate probability distribution. The null
conjecture is that the trial is governed by one of the innate probability distri-
butions. Here events are subsets of ΩT , the trial is supposed to be executed
only once, and the focal event is supposed to be specified independently from
the actual outcome. By impugning randomness we mean impugning the null
hypothesis.

Dembski’s introductory examples look similar. In fact we borrowed one of
his examples, about “the man with a golden arm”. But Dembski applies his
theory to vastly broader scenarios where an event may be e.g. the emergence
of life. And he wants to impugn any chance whatsoever. That seems hopeless
to us (and to others: see, e.g., §4 of [22]).

Consider the emergence of life case for example. What would the prob-
abilistic trial be in that case? If one takes the creationist point of view then
there is no probabilistic trial. Let’s take the mainstream scientific point of
view, the one that Dembski intends to impugn. It is not clear at all what
the trial is, when it starts and when it is finished, what the possible out-
comes are, and what probability distributions need to be rejected. Moreover,
Dembski often implicitly works with respect to a conveniently chosen single
distribution, and then uses calculations based upon it as an argument for
eliminating chance with respect to all distributions. Such reasoning is clearly
fallacious. In their analysis of Dembski’s work [22] Elsberry and Shallit ask:

[...] probability with respect to what distribution? Events do not
typically come with probability spaces already attached, and this is
even more the case for the singular events Dembski is interested in
studying. Unfortunately, Dembski is quite inconsistent in this regard.
Sometimes he computes a probability based on a known or hypothe-
sized causal history of the event; [...]. Sometimes the causal history
is ignored entirely, and probability is computed with respect to a uni-
form distribution. [...] Since much of Dembski’s argument involves
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computation and comparison of probabilities (or “information”), this
lack of consistency is troubling and unexplained.

For more detailed critique following this line of questioning see [22, §7].
In our approach, the innate distributions must be explicitly given, and

only chance with respect to them is to be impugned.
The most liberal part of our approach is the definition of independent

specification. But even in that aspect, our approach is extremely narrow
compared to Dembski’s.

There are other issues with Dembski’s work; see [49, 6, 22].

6.2. Algorithmic Information Theory

The idea of basing the intrinsic randomness of an event upon its description
in a fixed language is fundamental to algorithmic information theory (in
short AIT) [11, 38] originated by Ray Solomonoff [47], Andrei N. Kolmogorov
[33] and Gregory J. Chaitin [10].

In §3.1, we sketched the basic ideas of the theory. In the classical AIT, the
theoretical power is gained by basing the information complexity measure
on universal Turing machines. This becomes an impediment to practical ap-
plications; the classical information complexity of (the string representation
of) events is not computable. For practical applications, it is thus natural to
look at restricted variants of AIT which “impoverish” the event description
language even though the classical theorems of AIT may no longer hold.

The influential Lempel-Ziv compression theory of strings [54, 55] can be
viewed as such a restriction of AIT. However Lempel and Ziv developed
their theory without any direct connection with AIT. One recent and even
more restrictive theory [9] was inspired by AIT: “we develop a version of
Algorithmic Information Theory (AIT) by replacing Turing machines with
finite transducers”.

One useful application of AIT to real-world phenomena has been through
the Universal Similarity Metric and its uses in genetics and bioinformatics
[34, 37, 23, 29], plagiarism detection [13] and even analysis of music [15].
In [14], the authors combine a restricted variant of Kolmogorov complex-
ity with results obtained from Google searches to derive a metric for the
similarity of the meaning of words and phrases. In doing so, they are able
to automatically distinguish between colors and numbers, perform rudimen-
tary automatic English to Spanish translation, and even distinguish works
of art by properties of the artists. In such lines of research, practition-
ers often replace the Kolmogorov complexity measure with measures based
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on string-compression algorithms [50, 8, 52] more efficient than the original
Lempel-Ziv algorithms.

In cognitive science, the simplicity theory of Chater, Vitányi, Dessalles
and Schmidhuber offers an explanation as to why human beings tend to find
certain events “interesting” [12]. The explanation correlates the interest of
an event with its simplicity (i.e., the lowness of its Kolmogorov complexity).

Our logic-based definition of description complexity in §3.2 fits this mold
of restricted algorithmic information theories. We note, however, that the
logic approach is rather general and can handle the classical information
complexity and its restricted versions and even its more powerful (e.g. hyper-
arithmetical) versions.

6.3. Social Network Analysis

The idea of modeling real-world scenarios using relational structures dates
back at least to the 1950s [40]. The primary scientific developers of this
idea were for many years sociologists and social anthropologists working
in the field of social network analysis. As a field of mathematical sociology,
social network analysis has put forth a network-theory oriented view of social
relationships and used it to quantitatively analyze social phenomena.

Even in the days before massive social network data was available, so-
cial network analysts obtained fascinating results. For example, in a 1973
paper “The Strength of Weak Ties”, Mark Granovetter put forth the idea
that most jobs in the United States are found through “weak ties”, that is
acquaintances the job seeker knows only slightly. Granovetter obtained his
relational data by interviewing only dozens of people, yet his conclusions
held up experimentally and are widely influential today in sociology. With
the advent of large-scale digitized repositories of relational social network
data such as Facebook (according to a recent estimate, more than 40% of
the US population have Facebook accounts [51]), the applicability of so-
cial network analysis techniques grew tremendously. The relational algebra
of social network analysis tends to be simple. Typically, analysis is done
with rudimentary graph theory: members of a population (called actors)
are nodes in a graph and the relationships of interest between actors are
modeled as edges. Multiple binary relations are combined into composite
relations so that core social network analysis calculations are done over a
single graph’s adjacency matrix [48].

In the case that our models are graphs, there is much machinery of social
network analysis which could be of use to us. For instance, social network
analysts have developed robust and scalable methods for determining the
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central nodes of interest of social networks, based upon things like weighted
connectivity. We can imagine this being useful for impugning randomness.
For instance, if one does not know which members of the population should
be distinguished and named by constant symbols, the very structure of a
social network may force certain nodes upfront. There are many other tech-
niques from social network analysis (and available high-performance soft-
ware) which have the potential to be useful for our goals.

7. Final Discussion

Q: I have been thinking about algorithmic information theory and its ap-
plications, and I also did some reading, e.g. [31, 46]. In general your logic
approach appeals to me but I have some reservations.

A: Let’s start with the positive part. What do you like about the logic
approach?

Q: The situation at hand is described directly and rather naturally. I also
like that some outcomes and events are not definable at all. Consider for
example the lottery-related model in §5.1. Unless John, the lottery organizer,
has a single close relative or a single close friend, no particular outcome is
definable in the model. And the model does not distinguish at all between
any two persons outside the circle that contains John, his close relatives and
his close friends. This simplicity may be naive but it is certainly appealing.

A: Indistinguishability is important. It is rather surprising in a sense that,
in the application of probability theory, so often one is able to compute or
at least approximate probabilities. Think about it. The number of possible
outcomes of a trial may be rather large and may even be infinite. And these
are just outcomes; most events contain multiple outcomes. A probabilistic
measure on the event space is a function from the events to real numbers
between 0 and 1 that satisfies some slight conditions.

Q: Most probability measures are useless I guess. Which of them are useful?

A: Those few that allow us feasible — though possibly approximate — com-
putations of the probabilities of interesting events. Typically useful measures
heavily exploit the symmetries inherent in the trial and the independence of
various parts of the trial.

Q: I think I see the connection to indistinguishability. But let me go to
my reservations. It is basically about the annoying freedom in fixing the
probability threshold, in choosing the appropriate logic, in figuring out what
background information is relevant and what should the focal event be, in
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constructing the logical model, and in deciding whether a proposed logical
specification of the focal event is short enough.

A: The “annoying freedom” is inherent in the impugning-randomness prob-
lem.

Q: Kolmogorov complexity is objective, due to the Invariance Theorem men-
tioned in §3.1.

A: It is objective only to a point. Recall that the Invariance Theorem
involves an unspecified additive constant. So Kolmogorov complexity also
suffers from the nagging question “is it short enough”. Besides, one may
be interested in the length of a shortest specification of a given string in
first-order arithmetic or Zermelo-Fraenkel set theory for example. The re-
sulting specification complexity measures are rather objective. They are
undecidable of course, but so is Kolmogorov complexity.

Q: So how do you intend to deal with the annoying freedom?

A: We believe that the annoying-freedom problem cannot be solved by the-
orists. It can be solved, better and better, by experimentation, trial and
error, accumulation of historical records, standardization, etc.

Q: Allow me one other question before we finish. You mentioned in §2.4
that, in Fisher’s approach, the focal event is specified by means of the p-
value of some statistics. “In statistical significance testing”, says Wikipedia
[53], “the p-value is the probability of obtaining a test statistic at least
as extreme as the one that was actually observed, assuming that the null
hypothesis is true”. Note the closure under the at-least-as-extreme values.
If a focal event is not specified by means of a p-value, is there any kind of
closure that the focal event should satisfy?

A: Yes, in our examples, the focal event contained not only the actually
observed outcome but also other suspicious outcomes. In fact, the focal-
event approach is rather flexible. Consider the lottery scenario for example.
The actual outcome — that Donna won the lottery — may be judged to
be the most suspicious and, from that point of view, the most extreme, so
that there are no other outcomes at least as extreme. But the focal event
contains additional suspicious outcomes.
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