
Computation as Subtyping: On the Turing
Completeness of Type Systems, with
Applications to Formal Grammars

Anonymous

ABSTRACT

Keywords: type
logic, feature
structures,
unification,
computability,
recursion,
relational
constraints

Typed feature structures have a range of applications in logic and lin-
guistics. Various formalisms exist, some including operations that are
known to be Turing-complete, and others known to be less expres-
sive. In this paper, we consider a restricted formalism which is used
in a number of HPSG grammars, where the unification operation was
believed to be of limited computational power. We show to the con-
trary that, even without mechanisms such as disjunctive constraints,
the requirement that every substructure is well-typed is enough to
yield Turing completeness. This relies on the fact that enforcing a
type constraint can recursively enforce another type constraint on a
substructure. To make such recursive type constraints easier to work
with in practice, we introduce the concepts of “computation types”
and “wrapper types”, and give some illustrative examples, including
specific operations on lists and booleans, as well as applications to
several syntactic phenomena, including coordination, long-distance
dependencies, valence changes, and free word order.

1INTRODUCTION

Typed feature structures provide an effective way to organise informa-
tion, and they are used in precise linguistic theories, including Head-
driven Phrase Structure Grammar (HPSG; Pollard and Sag 1994). In

Journal of Language Modelling Vol i2, No eiπ (1970), pp. 1–51

Anonymous

this paper, we follow the formalisation of typed feature structures pre-
sented by Copestake (2000), which has become the Joint Reference
Formalism for the DELPH-IN consortium (for example, see: Bender
et al. 2010; Fokkens et al. 2011; Bender and Emerson 2021; Zamaraeva
et al. 2022). This formalism is supported by a number of processing
engines, including the LKB (Copestake 2002), PET (Callmeier 2000),
ACE (Crysmann and Packard 2012), and AGREE (Slayden 2012).

This formalism is deliberately restricted compared to some other
versions of HPSG. All constraints are directly expressed as feature
structures, without a separate notion of “feature structure description”
(for an account of the historical development, see: Flickinger et al.
2021). For example, this rules out disjunctive constraints and rela-
tional constraints, which are available in the TRALE system (Meurers
et al. 2002; Penn 2004). The set of types is finite, with no mechanism
for defining “complex” types such as dot types (Pustejovsky 1995) or
dependent types (Martin-Löf 1984). The only operations for defining
a new feature structure are unification and generalisation.

The simplicity of the formalism might suggest that it has less com-
putational complexity, and indeed, Copestake claimed that “the type
inference system is essentially non-recursive”. However, we show in
this paper that the type inference system is in fact Turing-complete.

In §2, we review the formalism, and show that type inference can
be recursive. To set up a practical framework for working with recur-
sive type constraints, in §3 we explain how functions can be encoded
as subtypes, giving examples on both finite domains (such as booleans)
and infinite domains (such as natural numbers and lists). In §4, we
quantify the computational complexity of the formalism, showing that
one-feature type systems are finite-state, but two-feature type systems
are Turing-complete. In §5, we present a general design pattern suit-
able for large-scale grammars, allowing a separation between the en-
coding of functions and their application in phrase structure rules, and
we apply this design pattern to several syntactic phenomena.

2 FORMAL FRAMEWORK

In this section, we summarise the formalism presented by Copestake
(2000), which we adopt in this paper. In brief, a type system consists

[2]

Computation as Subtyping

of a type hierarchy, a set of features, and a set of constraints. The type
hierarchy and the features allow us to define feature structures, and
the constraints control which feature structures are well-formed.

A type hierarchy is a finite upper-semilattice: a set equipped with
a subsumption relation (a bounded-complete partial order), a unifi-
cation operation (giving the greatest lower bound, if a lower bound
exists) and a generalisation operation (giving the least upper bound).1

There are several equivalent ways of defining feature structures
(for expositions, see: Carpenter 1992; Francez and Wintner 2011).
Given a type hierarchy and a set of features, a typed feature struc-
ture can be defined as a rooted directed acyclic graph,2 where nodes
are labelled with types, edges are labelled with features, and edges
from the same node must have distinct labels. Nodes can therefore be
identified in terms of paths of features from the root. Hence, a typed
feature structure F can be represented in terms of a partial function
θF from paths to types, and an equivalence relation ≈F on paths indi-
cating a re-entrancy (the paths lead to the same node).3

Subsumption on types naturally induces subsumption on feature
structures: F subsumes G if it is more general in terms of both types
and re-entrancies. More precisely, F w G if, for every path π in F ,
θF (π)w θG(π), and for every pair of paths, π1≈Fπ2 implies π1≈Gπ2.

To define a type system, each type t is assigned a constraint Ct ,
expressed as a feature structure with root of type t. More general types
have more general constraints: if t w u, then Ct w Cu. A well-formed
feature structure is one where all type constraints are satisfied: for
each node, the substructure rooted at that node must be subsumed
by the node’s type’s constraint. A type system is well-defined if all
type constraints are well-formed (in other words, the constraints are
compatible).

1Some authors follow the opposite convention, where: a hierarchy is a lower-
semilattice, unification gives upper bounds, generalisation gives lower bounds.

2Acyclicity is not crucial for the results in this paper, although it sometimes
serves to simplify a problem.

3Conversely, for a pair (θ ,≈) to be a feature structure, they must be compat-
ible (if π1 ≈ π2 then θ (π1) = θ (π2)), prefix-closed (if θ (πα) is defined, so must
θ (π)), and fusion-closed (if π1 ≈ π2 and θ (πα) is defined, then π1α ≈ π2α). If
they are finite, then the feature structure is acyclic.

[3]

Anonymous

In addition, we can also introduce appropriateness constraints
for features, assigning each feature α an appropriate type tα. A well-
formed feature structure must then also satisfy feature appropriate-
ness: for each edge from each node, the node’s type must be subsumed
by the edge’s feature’s appropriate type. Feature appropriateness is not
important for our complexity results in §3 and §4, but it will be essen-
tial for defining wrapper types in §5.

Finally, there are natural unification and generalisation opera-
tions on well-formed feature structures: unification gives the greatest
lower bound (GLB), if a lower bound exists, and generalisation gives
the least upper bound (LUB). In both cases, these are guaranteed to be
unique.4 If the unification of two feature structures is defined, they
are said to be unifiable.

2.1 Relational Constraints

The formalism introduced above was intended to be computationally
efficient. In particular, it does not include relational constraints, which
would stipulate that the substructure rooted at one node must be re-
lated in some way to the substructure rooted at another node.

Aït-Kaci (1984) showed that relational constraints can be imple-
mented using so-called “junk slots”, which hold an intermediate step
in a computation. However, implementing relational constraints in
this way requires disjunctive type constraints. As an extension of the
formalism presented above, this would mean that a type can be asso-
ciated with more than one constraint structure, so that a well-formed
feature structure is one where at least one constraint structure applies
at each node. This is a flexible mechanism that enables relational con-
straints, as will be explained in more detail in §5.4.3, and contrasted
with our proposed approach.

The lack of disjunctive constraints (and also other extensions) is
what led Copestake (2000) to claim that the type inference system is
non-recursive. We will see that relational constraints can in fact be
implemented without disjunction, but using a different approach, as

4 In contrast, this is not guaranteed in some other formalisms, for example if
set-valued features are allowed (Pollard and Moshier 1990), or if constraints can
be stated more expressively than as a feature structure (Carpenter 1992, §15).

[4]

Computation as Subtyping

a

b x

y

a

b
F−→ a

x

y
F−→ b

F−→ x

Figure 1:
A simple but
pathological type
system (left:
hierarchy; right:
constraints)

presented in §3. Before introducing this approach, it is instructive to
first see a simple example of a type system exhibiting recursion, as
demonstrated in the following section (§2.2).

2.2Recursion: Pathological Counterexample

At first sight, it may seem that unification in our restricted formalism
can be implemented straightforwardly: given two feature structures
to be unified, we unify the re-entrancies and unify the types, then for
any node with nontrivial type unification, we enforce the new type
constraint. This is a deterministic process.

However, enforcing type constraints has the potential for recur-
sion, which we will exploit in §3 and §4. In this section, we will illus-
trate the potential for recursion with a simple but pathological coun-
terexample, a small type system where unification can fail to termi-
nate, despite all type constraints being finite.

Consider the type system defined by the hierarchy and constraints
in Fig. 1. The types a and b together allow the feature F to repeat any
number of times. Pathological behaviour is created by the additional
types x and y and the type constraint for y , as we will now see.

Consider unifying y
F−→ b

F−→ x and b
F−→ x , both of which are well-

formed. Combining the types and re-entrancies gives y
F−→ y

F−→ x ,
where the second node is of type y (unifying b and x). Enforcing y ’s
constraint on that node then gives y

F−→ y
F−→ y

F−→ x , where the third
node is of type y (again unifying b and x). This continues recursively.

Intuitively, the x or y types must repeat every two steps, exactly
reaching the last node. The two input feature structures require this
for even and odd numbers of steps, respectively, leapfrogging each
other forever.

[5]

Anonymous

Figure 2:
Type system for

negation. For
example, unify-
ing bool-with-neg
and true yields
RESULT false.

bool

true false bool-with-neg

true-with-neg false-with-neg

bool-with-neg RESULT−−−−→ bool
true-with-neg RESULT−−−−→ false
false-with-neg RESULT−−−−→ true

3 COMPUTATION AS SUBTYPING

A function maps elements in some domain to elements in some range.
However, a type system doesn’t include functions as basic objects. In
this section, we explain how to represent a function as a type, using a
feature to hold the output of the function. Given a type system which
includes the domain and range, we can define a larger type system
which includes the desired function. This requires no change to the
formalism: applying the function becomes a special case of unification,
where the function type is unified with a type in the domain.

We will first discuss functions over finite domains in §3.1 (for
example, boolean functions), and then turn to functions over infinite
domains in §3.2 (for example, functions on natural numbers or lists).

3.1 Functions with a Finite Domain

Consider a function from one type hierarchy to another.5 The aim
is to represent this function by defining a larger type hierarchy.

For each type in the domain, we define a new subtype, whose
constraint structure includes the feature RESULT, whose value is the
output of the function. Subsumption relations between the new sub-
types are defined to exactly mirror those of the original hierarchy. An
example is shown in Fig. 2, for logical negation (trivial constraints for
bool, true, and false are not shown).

Formally speaking, there is nothing special about a type system
defined in this way. However, the new subtypes and their constraints

5The function must respect the hierarchies: if a w b then f (a) w f (b). This
is not restrictive: any function between finite sets can be extended to such a
function, by adding an underspecified type to the domain and to the range.

[6]

Computation as Subtyping

bool

true false bool-with-
curried-and

true-with-
curried-and

false-with-
curried-and

bool-with-
and-bool

true-with-
and-bool

false-with-
and-bool

bool-with-
and-true

bool-with-
and-false

true-with-
and-true

false-with-
and-true

true-with-
and-false

false-with-
and-false

bool-with-curried-and RESULT−−−−→ bool-with-and-bool RESULT−−−−→ bool
true-with-curried-and RESULT−−−−→ bool-with-and-true RESULT−−−−→ bool
false-with-curried-and RESULT−−−−→ bool-with-and-false RESULT−−−−→ false
bool-with-and-bool RESULT−−−−→ bool
bool-with-and-false RESULT−−−−→ false
false-with-and-bool RESULT−−−−→ false
true-with-and-true RESULT−−−−→ true

Figure 3:
Type system for
logical “and”,
using currying
(non-trivial type
constraints
shown below
type hierarchy).
For example,
unifying bool-
with-curried-and,
true, and
[RESULT false]
yields [RESULT|
RESULT false].

exactly represent the function f . Unifying the most general of the new
subtypes with any original domain type x yields a structure where the
value of RESULT is exactly f (x).

The above procedure allows us to define unary functions. How-
ever, n-ary functions can be reduced to unary functions via “curry-
ing”.6 For example, a binary function f : X , Y → Z can be seen as
a unary function f : X → (Y → Z) mapping the first argument to a
unary function of the second argument. The second function can be
represented as a type, which will be the output of the first function.
An example is shown in Fig. 3, for logical “and”,7 where type con-

6Named after Haskell Curry, but Curry credits the idea to Moses Schönfinkel.
7To satisfy feature appropriateness, we would need to add a type introduc-

ing the RESULT feature, which both bool-with-curried-and and bool-with-and-bool
inherit from. This will be discussed further in §5.2.1.

[7]

Anonymous

Figure 4:
Natural numbers

from 0 to 3,
represented as
Peano feature

structures.

zero
pos SUCC−−−→ zero
pos SUCC−−−→ pos SUCC−−−→ zero
pos SUCC−−−→ pos SUCC−−−→ pos SUCC−−−→ zero

Figure 5:
Type system for
Peano feature

structures.

natnum

zero pos
pos SUCC−−−→ natnum

straints are only shown if they cannot be inferred from supertype con-
straints.8 Defining all of the necessary subtypes of the second function
effectively means defining a unary function for the Cartesian product
of the input domains: for example, in the bottom row of the hierarchy
in Fig. 3, there is one type for each combination of true and false in
the two inputs. We will see a refinement of this idea in §5.3.1.

3.2 Functions with an Infinite Domain

An infinite domain cannot be directly represented as a type hierar-
chy, since the number of types must be finite. However, an infinite
domain can be represented using typed feature structures, if there is
recursion in the features. If a type admits an infinite set of well-formed
feature structures (whose roots are subsumed by that type), then we
can consider that type as representing an infinite domain.

Functions on an infinite domain can be defined in the same way
as in §3.1, with the only difference that the constraints for the new
subtypes can exploit the recursive features. The boolean hierarchy was
finite and did not require any type constraints, but in the following
sections we will consider natural numbers and lists, both of which can
be defined as feature structures with recursive features.

8The type constraints can be defined even more succinctly: the values of
RESULT|RESULT are redundant, since they can be inferred from other constraints.
Fig. 3 shows well-formed constraints, rather than partial constraints that would
be used in a practical grammar.

[8]

Computation as Subtyping

natnum

zero pos natnum-with-add-one

zero-with-add-one pos-with-add-one

pos SUCC−−−→ natnum
natnum-with-add-one RESULT−−−−→ pos SUCC−−−→ natnum
zero-with-add-one RESULT−−−−→ pos SUCC−−−→ zero
pos-with-add-one SUCC−−−→ natnum

pos
pos

R
E
SU
LT

SU
CC

SU
CC

Figure 6:
Peano type
system, extended
to include a
function for
adding one.

3.2.1Natural Numbers

The simplest way to represent the natural numbers is using Peano
numerals, where numbers above zero are recursively defined as “suc-
cessors” of smaller numbers.

To implement Peano numerals in a type system, we can encode
zero as an atomic type, and use a SUCC(essor) feature to encode larger
numbers, with the number of SUCC features corresponding to the size
of the number. This is illustrated in Fig. 4, where the pos type indicates
a positive number. This means we can represent any natural number
using just three types and one feature, as defined in Fig. 5.

For large numbers, this is an inefficient system (compared to bi-
nary or decimal, for example). However, its simplicity makes it useful
for illustrating computation on an infinite domain.

In Fig. 6, the type system is extended to include a function that
adds one to a number. As before, we define a subtype for each original
type, and the type constraints together define the function’s behaviour.
For pos-with-add-one, the constraint uses a re-entrancy, so that the re-
sult has one extra SUCC feature, no matter the size of the input.9

9 If cycles are allowed, we could make RESULT|SUCC re-entrant with the root.
This would however mean the result is not “clean”, a concept discussed in §5.2.1.

[9]

Anonymous

Figure 7:
Peano type

system, extended
to include a
function for
doubling.

natnum

zero pos natnum-with-double

zero-with-double pos-with-double

pos SUCC−−−→ natnum
natnum-with-double RESULT−−−−→ natnum
zero-with-add-one RESULT−−−−→ zero
pos-with-double SUCC−−−→ natnum-with-double

pos natnumpos

R
E
SU
LT

SUCC SUCC

R
E
SU
LT

Figure 8:
Example of

unification with
recursive type

constraints,
using the type

system in Fig. 7.

natnum-with-double

natnum

R
E
SU
LT

u pos SUCC−−−→ pos SUCC−−−→ pos SUCC−−−→ zero =

pos-with-double SUCC−−→ pos-with-double SUCC−−→ pos-with-double SUCC−−→ zero-with-double

pos pospos pospos zeropos

R
E
SU
LT

SUCC SUCC

R
E
SU
LT

SUCC SUCC

R
E
SU
LT

SUCC SUCC

R
E
SU
LT

As an example of a recursively defined function, we can con-
sider doubling a number, as shown in Fig. 7. There are two crucial
aspects to note in the constraint for pos-with-double. Firstly, the type
natnum-with-double on SUCC means that the subtypes will be prop-
agated along the whole structure. The more general type is used
(natnum-with-double instead of pos-with-double) so that this propaga-
tion can terminate. Secondly, the re-entrancy between SUCC|RESULT
and RESULT|SUCC|SUCC means that the value of the output is re-
cursively defined based on the propagated subtypes. Since two SUCC
features are added to RESULT for just one in the input, and since this
process propagates along the whole input, the value of RESULT will

[10]

Computation as Subtyping

list

empty-list nonempty-list
nonempty-list REST−−−→ list

topFIRST

Figure 9:
Types for lists.

nonempty-list REST−−−→ nonempty-list REST−−−→ empty-list
zeroFIRST

posFIRST SUCC−−−→ pos SUCC−−−→ zero

Figure 10:
The list 〈2,0〉 as
a feature
structure.

have exactly twice as many SUCC features as the input.
An example is shown in Fig. 8, where 3 is doubled to give 6. Simi-

larly to the pathological type system that we saw in §2.2, this example
illustrates how unification of well-formed structures can recursively
trigger type constraints, leading to a much larger feature structure.
Unlike the pathological type system, in this case the recursion eventu-
ally halts, when the propagated natnum-with-double types reach zero.

We will see this general pattern several times in this paper:
propagation of subtyping along a feature, and re-entrancy between
α|RESULT and RESULT|β , where α is a feature path in the input, and
β is a feature path in the output.

3.2.2Lists

Lists can be recursively defined in a type system, as shown in
Fig. 9, using three types that mirror the ones we saw for Peano nu-
merals. There are two features: REST is recursive, mirroring the SUCC
feature, while FIRST holds an element of the list. The types in Fig. 9
are intended to be part of a larger type system, with top indicating the
most general type in the larger hierarchy.

An example of a fully specified list is given in Fig. 10, where the
list is of length two, containing the Peano numerals for two and zero.

As a simple example of a function on lists, the type system in
Fig. 11 includes a function for calculating the length of a list. The
list-with-length subtype propagates along the REST feature, and the
re-entrancy between RESULT|SUCC and REST|RESULT recursively de-
fines the output in terms of the input.

Lists will be further discussed in §5.4.

[11]

Anonymous

Figure 11:
Type system

with a function
for the length of
a list. Constraints
for nonempty-list
and pos are not

shown; see
Figs. 5 and 9.
Only a partial
constraint is
shown for

nonempty-list-
with-length; the
full constraint

(with FIRST) can
be inferred from

supertype
constraints.

top

natnum

zero pos

list

empty-list nonempty-list list-with-length

empty-list-with-length nonempty-list-with-length

list-with-length RESULT−−−−→ natnum
empty-list-with-length RESULT−−−−→ zero
nonempty-list-with-length REST−−−→ list-with-length

pos natnumSUCC

R
E
SU
LT

R
E
SU
LT

4 TURING COMPLETENESS

In this section, we view type systems as models of computation, and
show that they are Turing-complete: any computable function can be
encoded in a type system.

A corollary is that checking type systems for consistency is unde-
cidable: given a type hierarchy and partially specified type constraints,
there is no algorithm which can always determine whether the con-
straints can be expanded to give a well-defined type system.

This section can be safely skipped by readers primarily interested
in using computation types in a grammar – the linguistic examples in
§5 are much more restricted than what is possible in the general case.

In §4.1, we first present a direct way to encode a Turing machine
as a type system. In the subsequent sections, we prove two theorems:
in §4.2, we show that one-feature type systems are computationally
equivalent to finite-state automata, and in §4.3, we show that two-
feature type systems are equivalent to Turing machines.

In the rest of this paper, only partial constraints are given, if the
full constraints can be easily inferred (as we saw in Fig. 11).

[12]

Computation as Subtyping

4.1Encoding an Arbitrary Turing Machine as a Type System

A deterministic Turing machine is a general model of computation (for
an exposition, see: Hopcroft and Ullman 1979). It runs in discrete time
steps, and has access to a one-dimensional memory tape with discrete
cells, which continue indefinitely in both directions. It only reads one
cell at a time. At each time step, based on the machine’s current state,
the machine chooses a symbol to write in the current cell, and chooses
whether to move left or right along the tape.

More formally, a Turing machine can be defined by: a finite set
of symbols Σ (including a blank symbol 0 ∈ Σ), a finite set of states Q
(including a start state q0 ∈Q), and a transition function δ : Q×Σ→
Σ×{left, right}× (Q∪{halt}).10 The initial tape can only have a finite
number of cells that are not blank. Given the initial tape and state,
running the machine until it halts is deterministic: at each time step,
δ determines the tape and state at the next step.

Fig. 12 shows how a Turing machine can be implemented as a
type system, in a relatively direct way. The tape can be represented
by two strings, one for the tape to the left of the machine head, and
one for the tape to the right. The string subhierarchy works similarly
to lists and Peano numerals, using a recursive feature REST, but it also
introduces a subtype for each symbol. The Turing machine, of type
machine, can then be represented using two features LEFT and RIGHT,
for the two halves of the tape. Beyond the end of each string, the tape
is taken to be blank.

Subtypes of machine specify the current symbol, and the current
state. The subtype run introduces the features NEXT for running the
machine one step, FINAL for running the machine until it halts, and
WRITE for the symbol to write at this step. If the machine halts after
the current time step (subtype halt), the final tape is the next tape; or, if
the machine continues (subtype continue), with the final result is prop-
agated by a re-entrancy. Shifting is encoded using the subtypes shift-
left and shift-right, which manipulate the tape strings using the subtype
string-with-pop, which pops the first element, as shown in Fig. 14. In
the case that the string is empty, the blank symbol is returned.

10There are various alternative definitions that are computationally equiva-
lent. For example, we could include “no shift” as an alternative to left/right.

[13]

Anonymous

Figure 12:
High-level

hierarchy for
implementing a
Turing machine.

A feature
structure of type
machine can hold
the tape (strings
under LEFT and

RIGHT), the
current symbol

(read-0 or
read-1), and the

current state
(a, b, or c). The

result of running
one step is under

NEXT, and the
result of running
until it halts is
under FINAL.

The full
hierarchy will

have exactly one
subtype for each
combination of

state and symbol,
as illustrated in

Fig. 13, and
further subtypes
of string-with-pop,

as shown in
Fig. 14.

top

machine string

read-0 read-1run

halt continue shift-left shift-right a b c

symbol end

0 1

string-with-pop... ...
...

...
... ...

...
... ...

machine LEFT−−−→ string
stringRIGHT

run NEXT−−−→ machine
machine
symbol

FINAL

WRITE

symbol REST−−−→ string
halt NEXT−−−→ machine−−−→

FINAL

continue NEXT−−−→ run

machine

FIN
A
L

FINAL

shift-left stringstring-
with-pop

machinestring symbol

LEFT RIGHT

LEFT RIGHT

N
E
X
T

W
RITE

R
E
ST

R
E
SU
LT-

ST
R
IN
G

RESULT-HEAD

shift-rightstring string-
with-pop

machinesymbol string

LEFT RIGHT

LEFT RIGHT

N
E
X
TW

RI
TE

R
E
ST

R
E
SU
LT-

ST
R
IN
G

RE
SU
LT
-H
EA
D

Figure 13:
Example of a
fully specified

type, unifying a
state and symbol,
and determining
the transition.

a-0

a read-0 shift-left continue
......

a-0 WRITE−−−−→ 1
bNEXT

[14]

Computation as Subtyping

string

symbol end

0 1

string-with-pop

symbol-with-pop end-with-pop

0-with-pop 1-with-pop

string-with-pop RESULT-STRING−−−−−−−−−→ string
machineRESULT-HEAD

symbol-with-pop REST−−−−−−−−−→ string−−−−−−−−−→
RESULT-STRING

0-with-pop RESULT-HEAD−−−−−−−−→ read-0
1-with-pop RESULT-HEAD−−−−−−−−→ read-1
end-with-pop RESULT-STRING−−−−−−−−−→ end

read-0RESULT-HEAD

Figure 14:
Types for strings
(representing
one half of the
Turing machine
tape) and a
function for
popping the first
element, where
0 is the blank
symbol (default
for an empty
string).

Each step of computation is encoded using subtypes. The transi-
tion function δ is a function of the current state and symbol, so we
need one subtype for each combination of state and symbol, as illus-
trated in Fig. 13. Each such subtype specifies the symbol to write,
whether to shift left or right, whether to halt or continue, and, if con-
tinuing, the next state.11

Such a type hierarchy is doubly recursive: strings can be arbitrar-
ily long (repeating REST), and there can be arbitrarily many time steps

11To give a well-defined type hierarchy, additional GLB types are necessary,
for common subtypes of shift-left/shift-right and halt/continue, and further sub-
types of those with a state or symbol. The fully specified state-and-symbol types
would inherit from these GLB types rather than directly from the state, symbol,
shifting, and halt/continue types. The GLB types ensure that unification is well-
defined for any pair of types, but play no role when running a machine from a
given state on a given tape. A grammar processing engine like the LKB can add
such GLB types automatically.

[15]

Anonymous

Figure 15:
Well-formed
constraint,

expanding the
partial constraint
in Fig. 13. This
can be inferred
from other type

constraints.
Recursion is

limited because
the left tape is
underspecified,
so the next state

is not unified
with a symbol.

a-0 stringstring-
with-pop

bstring 1

machine stringstring

machinestring string

symbolstring REST←−−−

LEFT RIGHT

LEFT RIGHT

LEFT RIGHT

LEFT RIGHT

N
E
X
T

WRITE

R
E
ST

R
E
SU
LT-

ST
R
IN
G

RESULT-HEAD

FINAL

FINAL

N
E
X
T

WR
ITE

(repeating NEXT). The recursion of these features terminates with the
types end and halt, respectively. However, the recursive types symbol
and continue underspecify what comes next. In fact, there is no type
constraint which is fully specified: every maximally specific type has a
feature with an underspecified value (subtypes of machine underspec-
ify LEFT and RIGHT; subtypes of string underspecify RESULT-HEAD).

Because of underspecification, the partial constraints in Figs. 12
to 14 can be easily expanded to well-formed constraints (accumulating
information from other type constraints), without having to run the
Turing machine. Expanding the partial constraint in Fig. 13 gives the
well-formed constraint in Fig. 15. In contrast, unifying a state (with
underspecified tape) and a tape (with underspecified state) is Turing-
complete: the result is finite iff the Turing machine halts.

As a concrete example, a 3-state 2-symbol “busy beaver” is de-
fined in Fig. 16: this machine maximises the number of non-blank
symbols written to the tape, when starting from an blank tape, and
ensuring that the machine eventually halts. Unifying the start state a
with a blank tape gives the result in Fig. 17. Since the state and tape
are both fully specified, the computation of the next state triggers the
computation of the state after that, and so on.

Turing completeness requires the possibility of unbounded com-
putation. With computation encoded as unification, this means that

[16]

Computation as Subtyping

Type Supertypes WRITE NEXT
a-0 a read-0 shift-left continue 1 b
a-1 a read-1 shift-right continue 1 c
b-0 b read-0 shift-right continue 1 a
b-1 b read-1 shift-left continue 1 b
c-0 c read-0 shift-right continue 1 b
c-1 c read-1 shift-right halt 1 -

Figure 16:
Defining
transitions for a
3-state 2-symbol
busy beaver, in
the manner of
Fig. 13.

astr str

machstr str
machstr str

sym str
u e← r0→ e =

a0ep ep
b0ep 1p
a11p
c01p ep
b01p ep
a01p e
b1 1
b1 1
b1 1p
b1 1p
b0 1pe
a11
c11
r11

Figure 17:
Running the
Turing machine
given in Fig. 16,
by unifying two
well-formed
feature structures
(for the state and
tape). To clearly
show the pattern
of re-entrancies,
type names are
abbreviated (e.g.
p for -with-pop),
feature names
are suppressed,
and the feature
FINAL is shown
in grey. (Other
features can be
unambiguously
inferred.) The
machine halts
after thirteen
transitions, and
the final tape has
six 1s.

[17]

Anonymous

(in the general case) we cannot bound the size of the resulting feature
structure. In our encoding of Turing machines, the longest path of the
form NEXT|…|NEXT is unbounded. Nonetheless, the final tape (if the
machine halts) is accessible from the root under the fixed path FINAL,
which is re-entrant with the longest path of the form NEXT|…|NEXT.

4.2 One-Feature Type Systems are Finite-State

Having seen that Turing machines can be encoded as type systems,
it is natural to ask what restrictions on type systems can guarantee
reduced computational complexity.

For a type system with only a single feature, no re-entrancies are
possible, and a feature structure can be expressed as a string of types.12
Constraints can only apply “locally” to a substring, which suggests that
such systems are of limited complexity. In fact, recognising when two
feature structures are unifiable is of equivalent complexity to recog-
nising when a string is accepted by a finite-state automaton (FSA).
This can be stated more precisely as the following theorem.
THEOREM 1

i For any FSA, there is a one-feature type system where unification can
determine whether the FSA accepts a string: the string and the start
state are each encoded as a feature structure, and their unification is
defined iff the string is accepted.

ii For any one-feature type system, there is an FSA which recognises
when two feature structures are unifiable: they are encoded as a single
string with symbols encoding pairs of types, and the string is accepted
iff their unification is defined.

It may be helpful to sketch the proof before presenting it. For
simplicity, in part i we assume a deterministic FSA, while in part ii we
allow ε-transitions, but these formalisms are known to be equivalent
(by the subset construction), so this is without loss of generality.

12 If cycles are allowed, a restricted kind of re-entrancy is possible. A feature
structure can be expressed as a string of types followed by a second string that
loops back on itself. This complicates the following proof but the result still holds.

[18]

Computation as Subtyping

For part i, the proof follows the approach in §3.2, but without a
RESULT feature – we just need unification success or failure, without
any output.13 The one feature allows us to represent strings, and sub-
types are used for both states and symbols. Common subtypes of states
and symbols enforce transitions to the next state. Unifying a string and
a state triggers the common subtype’s constraint, and this propagates
until the end of the string.

For part ii, the proof is more involved, since we can have larger
constraints, and unification can create a larger structure than either
input. However, since the type hierarchy is finite, there is a maximum
size of constraint. Each constraint is itself a string of types, which
must be “overlaid” at different positions. The maximum constraint size
therefore provides a maximum “window size” of previous types that
need to be considered, hence only a fixed amount of memory needs to
be encoded in the state.

We can define an FSA which proceeds through both feature struc-
tures at once. Until it reaches the ends of the structures, it reads the
two current types, unifies them, and enforces the previous constraints
at this point in the structure. If this is possible, the resulting type is held
in memory, the type at the other end of the window is forgotten, and
the process continues. At the end of the input structures, ε-transitions
are used, which continue building the feature structure required by the
constraints, but without reading any more input. If this process termi-
nates (which is not guaranteed, as we saw in §2.2), the FSA reaches an
accepting state. To control the switch to ε-transitions, the state indi-
cates not only the k previous types but also whether we have reached
the end of the input.
PROOF OF PART I Let Q, q0∈Q, F⊂Q, Σ, and δ : Q×Σ→Q be the
states, start state, accepting states, alphabet, and transition function of
the deterministic FSA. Let Σs = Σ∪{symbol} and Σt = Σs ∪{top, end}.
We define the set of types to be Σt ∪ (F × Σt) ∪ ((Q \ F) × Σs). The
most general type is top, with trivial constraint; end is a subtype of
top, with trivial constraint; symbol is a subtype of top, introducing the

13Alternatively, we can view states as input and symbols as functions (or vice
versa!), the single feature as holding the output, and the input string as a sequence
of functions to apply to the start state. These different views are simultaneously
possible because functions are simply a pattern within the formalism.

[19]

Anonymous

one feature, with constraint symbol→ top. Each x ∈ Σ is a subtype of
symbol, with trivial inherited constraint. For each q ∈ F : (q, top) is a
subtype of top; (q, end) is a subtype of (q, top) and end; (q, symbol) is a
subtype of (q, top) and symbol; all with trivial (inherited) constraints.
For each q ∈ Q \ F , (q, symbol) is a subtype of symbol, with trivial
inherited constraint. Each (q, x) ∈ Q × Σ is a subtype of (q, symbol)
and x , with constraint (q, x)→ δ(q, x).

This defines the type system. If q0 ∈ F , we define the start struc-
ture to be (q0, top), otherwise we define it to be (q0, symbol) → top.
An input string x1 · · · xn can be encoded as the feature structure
x1→ · · · → xn→ end. By construction, this is unifiable with the start
structure iff the string is accepted by the FSA. □
PROOF OF PART II For any type t, we will denote its constraint
as c(t). Any feature structure f is of the form f0→ · · · → fn, for some
n≥ 0. We will call n the length of f , and denote it as len(f). For any
i > len(f), let fi = ;.

Let T be the set of types. Let T0 = T ∪{;}. We extend unification
over T to unification over T0, where ; u t = t for all t. Let k be the
maximum length of all constraints.

We define the alphabet to be T 2
0 . We define the set of states to be

T k
0 × {0,1}, with start state (;k, 0). For a ∈ T k

0 , let u(a) =
dk

i=1 c(ai)i .
For state (a, 0) and input symbol (x , y)with x 6= ;, let t = xu yu u(a).
If t is defined, we define one transition with this state and symbol, to
state ((t, a1, . . . , ak−1), 0). For (a, 0) and (;,;), if u(a) is defined, we
define a transition to ((u(a), a1, . . . , ak−1), 1). For (a, 1) with a1 6= ;,
if u(a) is defined, we define an ε-transition to ((u(a), a1, . . . , ak−1), 1).
Accepting states are of the form (a, 1) with a1 = ;.

This defines the FSA. Let f and g be any two feature structures,
with lengths n and m, where n ≥ m without loss of generality. They
can be jointly encoded as (f0, g0) · · · (fm, gm)(fm+1,;) · · · (fn,;)(;,;).
By construction, the FSA accepts this string iff f and g are unifiable,
with the unique sequence of states from start state to accepting state
(;k, 0), (a(0), b(0)), . . . , (a(l), b(l)), (a(l+1), 1) giving the result of unifica-
tion a(0)1 → · · · → a(l)1 . □

One-feature type systems and FSAs are of equivalent computa-
tional complexity, but the constructions in these proofs do not give
a one-to-one mapping between them. In part i, some unifications do

[20]

Computation as Subtyping

not correspond to running the FSA; and in part ii, some inputs do not
correspond to well-formed feature structures.

Nonetheless, the constructions in these proofs can be straight-
forwardly extended from FSAs to sequential finite-state transducers
(FSTs).14 A sequential FST can be defined in terms of a set of states Q,
a start state q0∈Q, an input alphabet Σ, an output alphabet Γ , a transi-
tion function δ : Q×Σ→Q×Γ ∗, and a suffix function ρ : Q→ Γ ∗. This
behaves like a deterministic FSA, but also produces an output string
in Γ ⋆. The output string is initialised as the empty string, is appended
to during each transition (according to the transition function), and
is appended to when the machine halts (according to the suffix func-
tion). A sequential FST defines a string-to-string function (which may
be a partial function, if δ and ρ are partial functions).

Extending the construction in part i, given a sequential FST, we
can define additional types for the output alphabet, and an additional
RESULT feature to hold the output string (if the output alphabet is
distinct from the input alphabet, this second feature is not recursive).
For each (q, x) type, the constraint specifies an output substring (ac-
cording to δ), using a re-entrancy to connect up the output (as we
saw in §3.2). For each (q, end) type, the constraint specifies an output
string (according to ρ), ending the output with a end.

Extending the construction in part ii, given a one-feature type
system, we can define the output alphabet to be the set of types. We
know that the output string should be a(1)1 · · · a(l)1 . However, the ε-
transitions must be removed to fit the above definition of a sequential
FST. For (a, 0) states, there are no ε-transitions, and the transition
function can be extended to output a1. For (a, 1) states, there are only
ε-transitions, but we can use the powerset construction to determine
which ones will eventually reach an accepting state. For those states,
we can follow the sequence of states reached by ε-transitions (which
is deterministic), and define ρ to output the concatenation of a1 of
these states, i.e. a(n+1)

1 · · · a(l)1 .

14The term “sequential” follows recent scholarship (Lothaire 2005; Lombardy
and Sakarovitch 2006; Lambert 2022), replacing the older term “subsequential”
which followed Schützenberger (1977) (“sous-séquentiel” in the original French).

[21]

Anonymous

Figure 18:
An illustration of
the re-entrancies
for a recursive
transduction

machine halting
after three time

steps. In an
actual run of a
machine, all

nodes except the
continue and halt

nodes would
have more

specific types.

continue REST−−−→ state REST−−−→ string-with-fst

continue REST−−−→ state REST−−−→ string-with-fst

R
E
SU
LT

R
E
SU
LT

continue REST−−−→ state REST−−−→ string-with-fst

R
E
SU
LT

R
E
SU
LT

halt REST−−−−→ string

R
E
SU
LT

R
E
SU
LT

R
E
SU
LT

R
E
SU
LT

R
ESU

LT

RESULT

4.3 Two-Feature Type Systems are Turing-Complete

However, constraining a type system to have only two features does
not in fact constrain complexity at all. In this section, we show that two
features are sufficient for Turing completeness, which can be stated as
the following theorem. Unlike Theorem 1, this theorem does not have
two parts, because no model of computation is more powerful than a
Turing machine (by the Church-Turing thesis).
THEOREM 2 For any Turing machine, there is a two-feature type sys-
tem where unification can determine whether the Turing machine halts on a
given input: the input tape and the start state are each encoded as a feature
structure, and their unification is defined iff the machine halts.

We sketch the proof before presenting it. The intuition is that
we need one feature for the data, and one feature for computation.
Any data can be linearised (so one feature is sufficient for the data),
and one step of computation can apply an arbitrary FST (as we saw
in §4.2). While applying a fixed number of FSTs can be represented as
a single FST, unbounded recursion is more powerful.

The construction is illustrated in Fig. 18, using the type system
in Fig. 19. Compared to the direct construction in §4.1: the feature
REST combines the features REST, LEFT, and RIGHT; the feature RE-
SULT combines the features RESULT-STRING, RESULT-HEAD, NEXT,

[22]

Computation as Subtyping

and FINAL; and the feature WRITE is no longer needed, as writing is
determined by the choice of FST.

The machine type and its subtypes continue and halt are only
needed to propagate the final string. The type system would still be
Turing-complete without them, but the feature path to the final string
would have variable length.

Recursively applying FSTs is sufficient for Turing completeness,
because we can simulate tape operations using FSTs. We can represent
a two-ended tape with a single string by interleaving the elements: odd
elements of the string hold the left tape, and even elements hold the
right tape. This means “logically adjacent” symbols are exactly two
symbols away. A Turing machine transition requires pushing a symbol
to one side of the tape and popping a symbol from the other side. This
can be performed by an FST whose states encode two symbols and
which side of the tape it is on. After reading the first two symbols, one
symbol is popped to the output, while the other is held in memory
along with the symbol to be pushed. On the “push” side of the tape,
one symbol is output from memory and forgotten, while the input
symbol is saved to memory; on the “copy” side of the tape, the input
symbol is copied to the output, while the memory is left unchanged.

PROOF OF THEOREM 2 We define a recursive transduction machine
in terms of: a set of states Q, a start state q0∈Q, an alphabet Σ, a set S
of sequential FSTs with input and output alphabet Σ, and a transition
function δ : Q × Σ → S × (Q ∪ {halt}). Given an initial string, the
machine operates deterministically. Given the current state and the
first element of the current string, the transition function gives an FST
to apply to the rest of the string, which becomes the next string, and
also gives the next state. This continues until the halt state is reached.

Such a machine can be implemented as a two-feature type system,
as shown in Figs. 19 and 20. The type machine has two features: REST
holds the current string and (if continuing) the current state, while
RESULT holds the final string if the machine eventually halts. The sub-
types halt and continue ensure the final string is propagated. As a corol-
lary of Theorem 1, any sequential FST can be implemented in a type
system with two features; we use REST to recursively link adjacent
symbols, and RESULT to link the input to the output. The transition
function is implemented with subtype constraints; for each combina-

[23]

Anonymous

Figure 19:
High-level

hierarchy for a
two-feature

machine. The
immediate
subtypes of

string-with-fst and
state can be seen
as functions on

string and symbol,
respectively.

Each state type
will have one

subtype for each
symbol, with

examples shown
in Fig. 20. Each
FST type will

have one subtype
for each symbol

and also for
symbol and end.
Three additional
types would be

necessary to
ensure feature

appropriateness
(one for each

feature, and one
for combining

both).

top

machine

halt continue

string

symbol end

0 1state

a b c

string-with-fst

string-with-x string-with-y... ...

...

...

... ...

machine REST−−−−→ string
stringRESULT

halt REST−−−−→ string−−−−→
RESULT

continue REST−−−→ state RESULT−−−−→ machine RESULT−−−−→ string
RESULT

symbol REST−−−→ string
string-with-fst RESULT−−−−→ string
state REST−−−→ string-with-fst

machine string

R
E
SU
LT

R
E
SU
LT

REST

Figure 20:
Examples of

unifying states
and symbols.

Each constraint
specifies the FST
to apply to the
string, and the

next state.

a-0 a-1

a 0 1
... a-0 REST−−−−→ string-with-x

continue REST−−−→ b
RESULT

a-1 REST−−−−→ string-with-y
haltRESULT

[24]

Computation as Subtyping

tion of state and symbol, we define a unique common subtype, whose
constraint specifies: an FST type on REST (hence applying the FST to
the rest of the string); halt or continue on RESULT; and, if continuing,
a state on RESULT|REST (which is re-entrant with REST|RESULT).

It remains to be shown that a recursive transduction machine can
simulate a Turing machine. The tape can be encoded as a string by
alternately encoding one symbol from each side. Writing to the tape
and shifting left/right must be simulated with sequential FSTs.

We define an FST with states (Σ2×{P, C})∪(Σ×{L, R, R′}). We de-
fine transitions as: (x , y, P), z 7→ (y, z, C), x ; (x , y, C), z 7→ (x , y, P), z;
(x , L), y 7→ (x , y, C),ε; (x , R), y 7→ (x , R′), y ; (x , R′), y 7→ (x , y, C),ε.
We define suffixes as: (x , y, P) 7→ trim(x0y); (x , y, C) 7→ trim(0x0y);
(x , L) 7→ 0 trim(x); (x , R) 7→ 0 trim(0x); (x , R′) 7→ trim(0x); where 0
is the blank symbol and trim : Σ⋆→ Σ⋆ removes trailing blanks. Start-
ing in state (x , L) or (x , R), this FST writes x and shifts left or right,
respectively.

□

An immediate corollary of Theorem 2 is that any computable
function can be encoded in a two-feature type system, where possible
inputs are encoded as feature structures with one feature, and where
the function is encoded as a type, with the output under the second
feature. Unification is defined iff the function is defined on the input.

As an example, a 3-state 2-symbol busy beaver is shown in Fig. 21.
Avenues for future work would be to identify further classes of

type system with different levels of complexity, and to find methods
for establishing the complexity of a given type system. The practical
applications in §5 use two-feature type systems that are only finite-
state in complexity, with no recursion of the RESULT feature.

TODO! Sketch time and space... explain lack of separation be-
tween data and program, like lambda calculus (Vanoni 2022)... Men-
tion subregular? ... Sketch context-free... parse chart...

[25]

Anonymous

Figure 21:
The same Turing

machine as in
Fig. 17, but

encoded with
only two

features, as in
Figs. 18 to 20.
REST is to the

right; RESULT is
down. FST types
are suppressed:
except in the

bottom row, all
0, 1, and e nodes

should have a
more specific

type, with one of
the FST states in

the proof of
Theorem 2.

ct a str
m str
str

u m 0 e
str

=

ct a0 e
ct b0 1 e

ct a1 0 1 e
ct c0 0 1 0 1 e

ct b0 0 1 0 1 0 1 e
ct a0 0 1 0 1 0 1 0 1 e

ct b1 1 1 0 1 0 1 e
ct b1 1 1 1 1 e

ct b1 1 1 1 0 1 e
ct b1 1 0 1 0 1 0 1 e

ct b0 1 0 1 0 1 0 1 0 1 e
ct a1 1 1 1 0 1 0 1 e

ct c1 1 1 1 1 1 e
h 1 1 1 1 1 0 1 e

5 LINGUISTIC APPLICATIONS

The aim of this section is to make computation subtyping easier to ap-
ply in a practical grammar. We don’t need the full expressive power
of Turing completeness, but we also don’t need to explicitly restrict
the formalism. As explained by Bender and Emerson (2021), distin-
guishing formalism from theory allows the maintenance of software
systems that target the formalism, and a powerful formalism allows a
range of theories to be expressed.

A useful formalism allows us to state linguistic generalisations
clearly and easily. In particular, relational constraints are widely used
by HPSG grammarians, but are not available in the DELPH-IN Joint
Reference Formalism, as discussed byMeurers et al. (2003) andMelnik
(2007). We will first introduce the syntactic framework in §5.1, and
then explain how to mimic relational constraints in §5.2. This allows
a wider range of theoretical proposals to be directly implemented,
closing the gap with other grammar processing engines such as TRALE.

[26]

Computation as Subtyping

We will give several examples of relational constraints, covering
logical operations in §5.3 and list operations in §5.4. Finally, we will
present a mechanism for implementing nondeterministic relational
constraints in §5.5. In all of these cases, defining the type system can
be done once, and the resulting types can be easily used by a gram-
marian. No changes are required to the processing engines.

For the rest of the paper, we will switch to AVM notation of fea-
ture structures, which is more usual in the linguistics literature. Com-
pared to the graph notation that we have used so far, re-entrancies are
less obvious, but multiple features can be stated more succinctly. Lists
can be indicated with 〈〉 notation, even though they are not formally
special (as we saw in §3.2.2).

5.1Formal Framework

A typed feature structure grammar is defined by a type system, a set
of lexical entries (well-formed feature structures, with a distinguished
feature (PHON) holding the input token), a set of rules (well-formed
feature structures, with a distinguished feature (DTRS) holding a list
of feature structures for the daughters), and a set of root conditions
(well-formed feature structures).15

The rules are manipulated using an expanded notion of unifica-
tion, where a structure F can have a substructure at path α unified
with a structure G (more precisely, we append α to the beginning of
all paths in G, and then unify the resulting structure with F).

A grammar accepts strings via phrase structure trees. A string is
accepted if there exist a tree over the string, a root condition, a rule
for each non-leaf node, and a lexical entry for each leaf node (with
the token matching PHON), such that the feature structures can all
be unified: for each non-leaf node, the elements of the rule’s DTRS are
unified with the daughter feature structures (themselves either rules or
lexical entries), and the root condition is unified with the root feature
structure (either a rule or lexical entry).

15This simple picture may be more complicated in practice. A grammar might
let a lexical entry match many tokens (e.g. using a regular expression), and might
use lexical rules, which are unary rules that can manipulate the PHON feature.
Such details will not be discussed further in this paper.

[27]

Anonymous

Figure 22:
Example use of a

wrapper type,
for logical “and”.

my-phrase
MY-PATH
�
AND

1 , 2
��

DTRS
¬�MY-PATH 1
�
,
�MY-PATH 2
�¶

5.2 Wrapper Types: Relational Constraints
without Relational Constraints

In this section, we present a framework for mimicking relational
constraints. The intended use case is allowing a feature value on the
mother to be defined as a function of feature values on the daughters.

We saw in §3 that functions can be implemented as subtypes, and
we saw in §4 that any computable function can be implemented in this
way. However, directly programming with such subtypes is awkward,
particularly for functions with multiple arguments: each daughter fea-
ture needs to be subtyped, and the RESULT features need appropriate
re-entrancies.

Wrapper types allow a more straightforward way to state con-
straints, effectively providing an intuitive “programming interface”
for calling computation types. This is illustrated in Fig. 22, where a
boolean feature on the mother is specified as the logical “and” of the
daughters’ values. The boolean value is not directly held on MY-PATH,
but rather on MY-PATH|BOOL; the value of MY-PATH is a wrapper
type, in particular bool-wrapper. Once the type constraints have been
enforced, the value of MY-PATH|BOOL on the mother will be the log-
ical “and” of the values on the daughters. The extra BOOL feature is
necessary to cleanly separate the output of the function from the rest
of the computation.16

In §5.2.1, we suggest best practices for working with wrapper
types. There is no formal status to these best practices, since the for-
malism is unchanged from §2. Instead, they are best seen as a software
design pattern for grammar engineering: a general reusable approach
to implementing relational constraints. Wrapper types can be defined
once, and then used in many rules.

16 If cycles are allowed, the wrapping feature could be avoided. However, this
would introduce the complication that the type on the mother is a subtype, rather
than a “clean” data type (see §5.2.2).

[28]

Computation as Subtyping

In §5.2.2, we then warn of possible pitfalls if wrapper types are
used outside of the intended use case. Finally, in §5.2.3, we discuss
the notion of “computation history” when composing wrapper types,
and contrast two ways that wrapper types could be implemented.

5.2.1Suggested Best Practices

There should be a with-computation type which introduces the RESULT
feature. Using the same feature for all functions provides clarity of
intention. Using a supertype for the feature is necessary for feature
appropriateness, and provides further clarity of intention.

All types inheriting from with-computation are called computation
types, and the value of RESULT should hold the output of the function
being computed. A computation type should also inherit from another
type, which is the input to the function. The input and output types
are called data types.

Computation types should be named x-with-y, where x is the name
of the input type,17 and y describes the function. Defining a function
requires one subtype for each type in the input hierarchy, and all of
these should be named with the same y.18

There should be a wrapper type which has no features. This type
is not intended to be used directly, but using it as a supertype for all
wrapper types provides clarity of intention.

Immediate subtypes of wrapper should be named x-wrapper, and
should introduce the feature X to hold data of type x. A supertype
for the X feature is necessary for feature appropriateness, and also
provides clarity of intention.

Each subtype of an x-wrapper type should introduce a feature
which invokes one or more computation types, and should make the
result of the computation re-entrant with X.

17Or a modified version of the name, such as in the case of a list of elements
of a specific type, as we will see in §5.4.

18Using an inference engine that can automatically infer GLB types, it is only
strictly necessary to define types for the most general type and all the most spe-
cific types, as the other types can be automatically inferred. For some functions,
constraints on intermediate types are useful (as can be seen in Fig. 3), and explic-
itly naming GLB types can be helpful when viewing inferred feature structures.

[29]

Anonymous

The names of the wrapper features are more important than the
names of the wrapper types, because the features are how the wrapper
types are expected to be invoked. By assigning a unique feature to each
wrapper type, enforcing feature appropriateness means that invoking
the computation can be done simply by using the feature, as illus-
trated by the feature AND in Fig. 22. The feature triggers the wrapper
type, which in turn triggers the computation type(s). The name of the
feature is effectively the “programming interface” of the computation.

5.2.2 “Clean” Data and Pitfalls to Avoid

The intended use of wrapper types is as described above: some feature
value on the mother is a function of some values on the daughters. In
this case, the value on the mother is a “clean” data type, in the sense
that it is not subtyped to a computation type. However, the daughter
types are “destructively” modified: they are unified with computation
types, and so will not be clean data types. If these destructively mod-
ified types play no other role in the derivation, this is not a problem.
However, this does mean that care must be taken if applying wrapper
types in some other potential applications of relational constraints.

When applying a wrapper type, information “flows” from the in-
put to the output.19 For example, in Fig. 22, specifying the value of
MY-PATH|BOOL on either daughter to be false would force the value
of MY-PATH|BOOL on the mother to also be false. However, the con-
verse is not true: specifying true on the mother is compatible with un
underspecified bool on both daughters (true would be the only logical
possibility, and specifying false on either daughter would cause unifi-
cation failure, but the values can nonetheless remain underspecified).
This directionality (from input to output) is an important difference
compared to true relational constraints.20

In the intended use, information flows from daughter to mother.
If wrapper types are always applied in this way, the mother’s data

19This follows from the nature of the formalism and how computation types
are defined. For any feature path αβ , enforcing a more specific type at α can
force a more specific type at αβ , but not vice versa. In particular, specifying a
type at α can force a more specific type at α|RESULT, but not vice versa.

20 If cycles are allowed, “bidirectional” computation is possible, but this would
mean that there is no clean output.

[30]

Computation as Subtyping

is always clean, and can serve as input to another rule. This allows
information to flow through the derivation, from lexical entries to the
root of the phrase structure tree.

One possible pitfall is specifying a value as input to more than one
wrapper type. The input value must be subtyped, and it’s not possible
to subtype it in multiple ways at once.21

Another possible pitfall is applying wrapper types in ways that
don’t pass information from daughter to mother. For example, in a
“lexical threading” analysis of long-distance dependencies (Bouma
et al. 2001), the SLASH value in a lexical entry is specified as a func-
tion of the SLASH values on its SUBJ and COMPS lists. This means that
the SUBJ and COMPS lists are not clean, which would cause problems
if these lists are constrained in other ways. To bring lexical threading
in line with the intended use of wrapper types, append operations
would have to be delayed until later in the derivation.22

5.2.3Computation History

In the example in Fig. 22, two wrapper types are given as input to a
wrapper type. This allows wrappers to be composed within a single
rule, as illustrated in Fig. 23.

However, a downside is that “computation history” is exposed
beyond the current computation: a wrapper type can hold not only the
input and output data, but also all previous computations that were
used to produce the input. For example, in Fig. 23, the substructure
at MY-PATH contains not only the NOT operation, but also the AND
operation. When using wrapper types in a grammar, they will often be
composed recursively through a series of phrase structure rules. If the

21 It would be possible to define a computation type that outputs multiple
“copies” of the input, so that each copy could be passed to a different wrapper.
However, applying such a type would be much more cumbersome than the ex-
ample in Fig. 22. For grammar maintainability, we would not recommend this.

22For example, this could be done with a bookkeeping feature that holds the
part of the complement/subject SLASH list that should be appended to the head’s
SLASH list. This feature has its value specified in the lexical entry, following the
lexical threading analysis, but the append operation is delayed until the head-
comp or head-subj rule is applied. This is conceptually the inverse of the TO-BIND
feature proposed by Pollard and Sag (1994).

[31]

Anonymous

Figure 23:
Wrappers can be

composed, if
inputs are
wrappers.

my-complex-phrase
MY-PATH
h
NOT
�
AND

1 , 2
��i

DTRS
¬�MY-PATH 1
�
,
�MY-PATH 2
�¶

Figure 24:
Computation

history must be
cut off, if inputs
are data types.

my-alternative-phrase
MY-PATH
�
ALTERNATIVE-AND

1 , 2
��

DTRS
D�
MY-PATH
�BOOL 1
��
,
�
MY-PATH
�BOOL 2
��E

Figure 25:
Computation
history can be

cut off, if inputs
are wrappers.

my-history-trimming-phrase
MY-PATH
h
AND
¬�BOOL 1
�
,
�BOOL 2
�¶i

DTRS
D�
MY-PATH
�BOOL 1
��
,
�
MY-PATH
�BOOL 2
��E

full computation history is maintained in the feature structures, this
can lead to a high processing cost.23

To avoid this processing cost, computation history should be cut
off. This can be forced, by defining wrapper types to use data types as
input, as illustrated in Fig. 24. However, this makes it impossible to
compose wrappers within one rule. In contrast, when using wrapper
types as input, it is still possible to cut off computation history, but
this must be done explicitly, as illustrated in Fig. 25.

In the rest of this paper, we will assume wrapper types as input,
since this allows flexible composition (as in Fig. 23), but cutting off
computation history is still possible (as in Fig. 25).

5.3 Boolean Operations

We saw logical negation and logical “and” in §3.1, and we can
now define wrapper types for them, as shown in Fig. 26. Negation is a
unary operation, and so the input under NEG is a single bool-wrapper.

23Features that recursively maintain history without recursively constraining
grammaticality (such as DTRS) are typically suppressed during parsing after each
unification, to reduce computational cost. Wrapper features are recursive but can
constrain grammaticality, making them difficult to control in the same way.

[32]

Computation as Subtyping
not-bool
BOOL 1

NOT
�
BOOL
�
bool-with-neg
RESULT 1

��

and-bool
BOOL 1

AND
*�BOOL �bool-with-bool-pair-1stRESULT 2

��
,BOOL

bool-with-bool-pair-2ndRESULT 2
�
bool-pair-with-and
RESULT 1

�
+

Figure 26:
Wrapper types
for negation and
logical “and”.
Each type uses a
unique feature,
and invokes one
or more com-
putation types.

Logical “and” is a binary operation, and the input under AND is a list
of two bool-wrappers.24 In both cases, computation types are invoked,
with the result re-entrant with BOOL.

However, Fig. 26 departs from Fig. 3 by encapsulating the cur-
rying of the function, as explained in §5.3.1. This makes it easier to
define functions of multiple arguments.

In §5.3.2, we will apply boolean wrapper types to modelling coor-
dination, where agreement features of a coordinated phrase are often
a function of the features of the conjuncts.

5.3.1Encapsulated Currying

Defining functions with multiple arguments requires currying, and as
we saw in Fig. 3, this can be intricate. However, we can separate the
definition of the Cartesian product from the definition of the function.

The hierarchy in Fig. 27 defines an ordered pair of booleans. Using
these types as input, it is straightforward to define binary operations
(such as logical “and”, “or”, or implication). This would be similar to
the function hierarchy in Fig. 3, but without being subtypes of bool. For
example, the type true-true-with-and would inherit from true-true, true-
bool-with-and, and bool-true-with-and, and its constraint would specify�RESULT true�.

24An alternative interface would be to use two features, which might be more
intuitive for some other operations.

[33]

Anonymous

Figure 27:
Type hierarchy
for an ordered
pair of bools.

bool-pair

true-bool false-bool bool-true bool-false

true-true false-true true-false false-false

Figure 28:
Type constraints
for encapsulated

currying of
boolean

operations.

�
bool-with-bool-pair-1st
RESULT bool-pair

� �
bool-with-bool-pair-2nd
RESULT bool-pair

�
�
true-with-bool-pair-1st
RESULT true-bool

� �
true-with-bool-pair-2nd
RESULT bool-true

�
�
false-with-bool-pair-1st
RESULT false-bool

� �
false-with-bool-pair-2nd
RESULT bool-false

�
In order to use the bool-pair type, we need computation types to

convert from a pair of bool types to a bool-pair. Fig. 28 gives type con-
straints for bool-with-bool-pair-1st and bool-with-bool-pair-2nd, which
do exactly this. These types can be straightforwardly applied, as seen
in Fig. 26. Currying is encapsulated, in the sense that these types can
be reused by other binary functions, such as logical “or” and logical
implication.

Compared to Fig. 3, Fig. 26 still has two layers of computation
(two RESULT features in a row), but it maintains symmetry between
the two arguments.

This general approach can be generalised to other domains, and
we will see an example in §5.3.2, for grammatical number. Ternary
and higher arity functions can also take similar approach. For an input
hierarchy with n types, a k-ary function can be defined using a product
hierarchy with nk types. Flexible arity, such as logical “and” for an
arbitrary list of values, can be defined recursively as explained in §5.4.

5.3.2 Application: Coordination

TODO! expand
Person, number, gender (etc.) are often some function of the val-

ues of the conjuncts. GrammarMatrix has implemented this with rules,
but requires one rule for each combination of values on the daughters
(Drellishak and Bender 2005). Instead, single rule that enforces com-
putation types.

[34]

Computation as Subtyping

Aguila-Multner and Crysmann (2018) following prescriptive gram-
mar of French. Can simplify analysis, using bools and a logical oper-
ation (masculine feature with “or” or feminine feature with “and”),
and using wrapper types to make the grammar more maintainable.

singular, dual, plural – “addition” operation. first, second, third –
“minimum” operation.

5.4List Operations

Lists are a useful data structure, allowing a flexible number of objects
to be collected together. Lists can be used to define functions with
flexible arity, as discussed in §5.4.1.

Lists are often used in linguistic representations, for both syntactic
information (such as a list of complements) and semantic information
(such as a list of predications). It is often useful to be able to append
two lists, combining them into a single list. However, this cannot be
done by unifying the lists, and requires another mechanism such as
relational constraints. In fact, Müller (2015) says that “The relational
constraint that is used most often in HPSG is append”.

The ubiquity of list appends and the impossibility of appending
by direct unification has led to multiple proposals for how to imple-
ment the append operation. We will discuss appending with difference
lists in §5.4.2, with junk slots in §5.4.3, and finally with computation
types in §5.4.4. We will close this section with two applications of list
appends, multiple extraction in §5.4.5 and valence changes in §5.4.6.

5.4.1Functions with Flexible Arity

In some cases wemay want to define a function with flexible arity,
for example recursively applying a binary operation to all arguments.
This includes taking the logical “and” of a list of booleans, summing
a list of natural numbers, or appending a list of lists.

To do this, we can define a computation type for a list. Constraints
will propagate along the list, as we saw in §3.2.2. For a nonempty list,
we return the result of applying the binary operation to the current
element of the list and the result of the rest of the list. These con-
straints propagate along the whole list, recursively applying compu-
tation types to all elements.

[35]

Anonymous

Figure 29:
A wrapper type
for logical “and”

taking any
number of
booleans as

input, along with
its associated
computation
types. The

computation is
similar to

Fig. 26, but
recursively

applied along the
list.

all-bool
BOOL 1

ALL
�
list-of-bool-wrappers-with-and
RESULT 1

�

�
list-of-bool-wrappers-with-and
RESULT bool

�
�
empty-list-of-bool-wrappers-with-and
RESULT true

�

nonempty-list-of-bool-wrappers-with-and
FIRST
�
BOOL
�
bool-with-bool-pair-1st
RESULT 1

��

REST

list-of-bool-wrappers-with-and

RESULT

bool-with-bool-pair-2ndRESULT 1
�
bool-pair-with-and
RESULT 2

�

RESULT 2

For an empty list, we need to return some “default” value. This is

typically the identity for the operation, such as: zero for addition, one
for multiplication, true for logical “and”, false for logical “or”, and the
empty list for appending.

A wrapper type invoking such a computation type accepts a list
of any size as input, as illustrated in Fig. 29 for logical “and”.

5.4.2 Appending with Difference Lists

The append operation takes two lists and combines them: the result
is a single list that begins with all the elements of the first list, and
then continues with all the elements of the second list. However, this
operation cannot be implemented as a simple unification. The empty-
list at the end of the first list cannot be unified with the second list,
unless the second list is empty. So, we can see that fully specified lists
cannot be directly appended. We will refer to a list feature structure
ending with empty-list as a “closed” list. In contrast, an underspecified
list that ending with list will be referred to as an “open” list.

[36]

Computation as Subtypingdiff-listLIST 1
LAST 3

 diff-listLIST 1
LAST 2

 diff-listLIST 2
LAST 3

 Figure 30:
Appending with
difference lists.

Difference lists augment open lists with a bookkeeping feature
LAST to hold the open end of the list. This allows appending, as illus-
trated in Fig. 30, where the first difference list is the append of the
other two.25 Formally, the type constraint for diff-list simply specifies
that both LIST and LAST are of type list. However, this is done with
the expectation that LAST should be re-entrant with LIST|RESTn, for
some n≥ 0.

A difference list can be seen both as a data type and as a wrapper
type for a list (recall that there is no formal distinction, just a conven-
tion, so both views are simultaneously possible). Viewed as data type,
a difference list is defective, in the sense that the list is not intended
to be fully specified. Viewed as a wrapper type, a difference list is a
parametrised function, in the sense that the type constraint requires
further specification to define a function: given an open list under
LIST with an appropriate re-entrancy, the feature structure encodes a
function that takes an input list (under LAST) and gives an output list
(under LIST) with additional elements appended to the start.

The downside of difference lists is that they are awkward to use.
Appending two lists, as in Fig. 30, is not intuitive. Furthermore, be-
cause difference lists exploit underspecification, it is not possible to
check their length without making further appends impossible. For
example, consider a phrasal rule which should check the first element
of a difference list on a daughter, and then pass the rest of the list to the
mother. Intuitively, this should only be possible if there is at least one
element between LIST and LAST. However, an empty difference list is
simply one where LIST and LAST are re-entrant. Specifying that LIST
should be of type nonempty-list is compatible with this re-entrancy.
Further specifying that LAST should be of type empty-list would en-
force that there is at least one element between LIST and LAST, but
this closes the list, blocking further appends. The intuitive constraint
that there is at least one element between LIST and LAST cannot be ex-

25For further exposition and history, see: Geske and Goltz 2007.

[37]

Anonymous

Figure 31:
Type constraints
for appending

with junk slots,
also requiring
the disjunctive
constraint that
append implies
either append1

or append2.

appendARG1 list
ARG2 list
ARG3 list

append1ARG1 empty-list
ARG2 1
ARG3 1

append2
ARG1
�
FIRST 0
REST 1

�
ARG2 2

ARG3
�
FIRST 0
REST 3

�

JUNK

appendARG1 1
ARG2 2
ARG3 3

pressed as a feature structure, since the necessary re-entrancy involves
a path of variable length.26

5.4.3 Appending with Junk Slots

As mentioned in §2.1, Aït-Kaci (1984) showed that relational con-
straints can be implemented using so-called “junk slots” (for an ex-
position of junk slots for list appends, see: Götz and Meurers 1996). In
this section, we contrast this against our proposed approach.

Aït-Kaci worked within a more general framework than that pre-
sented in §2, allowing type constraints to be arbitrary logical formulae,
rather than feature structures (for more detail, see: Carpenter 1992,
§15). To implement the append operation, Aït-Kaci used a disjunc-
tive constraint. Disjunction is not part of the formalism considered
in this paper, and the closest analogue is to introduce a subtype for
each disjunct. Feature structures are given in Fig. 31, where append1
and append2 are subtypes of append, with the intention that ARG1 and
ARG2 are appended to give ARG3. In contrast to computation types,
this does not introduce any subtypes of list.

The two subtypes append1 and append2 are mutually exclusive,
enforcing that ARG1 is empty or nonempty, respectively. If we can
stipulate the logical formula append =⇒ append1∨append2, then the

26 It is possible to define a subtype which results in unification failure if there
is no such element (subtyping the LIST|REST list to have a feature re-entrant with
LAST, which creates a cycle precisely in such a case). However, the use of such a
type would be an acknowledgement that computation by subtyping is necessary
for full functionality, and the subtyping approach in §5.4.4 is more intuitive.

[38]

Computation as Subtyping

JUNK feature in append2 will recursively apply append, propagating
through the whole of ARG1.

A related mechanism is sort resolution: this requires every type
in a well-formed feature structure to be maximally specific in the type
hierarchy. With sort resolution, merely specifying append is not well-
formed. If append1 and append2 are the only subtypes of append, one
of the two must apply.

However, in our formalism, there is no way to stipulate a log-
ical proposition, and feature structures are not required to be sort-
resolved. Using the append type in Fig. 31 will therefore not have the
desired effect. The type constraint for append is well-formed, and there
is no mechanism that would force its subtypes’ constraints to apply.
This means that, no matter what lists are unified with ARG1 and ARG2,
ARG3 will remain an underspecified list.

However, allowing disjunctive constraints or requiring sort reso-
lution would be a nontrivial change to the formalism. In either case,
it would mean that unification no longer produces a unique result.

5.4.4Appending with Subtyping

Awrapper type can be used to append lists, with two steps of com-
putation: we first convert the lists to difference lists, then append the
difference lists. Both steps involve recursive constraints propagated
along a list, and type constraints are given in Fig. 32.

The list-with-diff-list type and its subtypes together define a func-
tion from lists to difference lists, where the result contains the same
elements as the original list. The constraint for an empty list returns
an empty difference list. The constraint for a nonempty list includes
the current element and propagates the open end of the list.

The list-of-list-wrappers-with-append type and its subtypes together
define a function from a list of list wrappers to the result of appending
the wrapped lists. This is a function with flexible arity, as explained
in §5.4.1. The constraint for an empty list returns an empty list. The
constraint for a nonempty list converts the current wrapped list to a
difference list, and identifies its open end with the result of appending
the rest of the wrapped lists.

Although the constraints in Fig. 32 are intricate, the append-list
type can be straightforwardly invoked using the APPEND feature. We
will see examples in the following two sections (§5.4.5 and §5.4.6).

[39]

Anonymous

Figure 32:
A wrapper type
for appending
lists, and its
associated

computation
types. The list-of-

list-wrappers-
with-append type
allows the input

to be any
number of lists:

it recursively
appends each list

to the next.
Appending lists

requires the
list-with-diff-list

type, which
recursively

creates a new
open list and

propagates the
open end, as
illustrated in
Fig. 33. To

append two lists,
the first list is
converted to a
difference list,

and its open end
is identified with
the second list,
as seen in the
constraint for

nonempty-list-of-
list-wrappers-
with-append.

append-list
LIST 1

APPEND
�
list-of-list-wrappers-with-append
RESULT 1

�

�
list-of-list-wrappers-with-append
RESULT list

�
�
empty-list-of-list-wrappers-with-append
RESULT empty-list

�

nonempty-list-of-list-wrappers-with-append

FIRST

LIST
list-with-diff-listRESULT
�
LIST 1
LAST 2

�
REST
�
list-of-list-wrappers-with-append
RESULT 2

�
RESULT 1

�
list-with-diff-list
RESULT diff-list

�
empty-list-with-diff-listRESULT
�
LIST 1
LAST 1

�

nonempty-list-with-diff-list
FIRST 1

REST

list-with-diff-listRESULT
�
LIST 2
LAST 3

�
RESULT

LIST
�
FIRST 1
REST 2

�
LAST 3

[40]

Computation as Subtyping

nelwdl nelwdl nelwdl elwdlREST REST REST

t t t

FIR
ST

FIR
ST

FIR
ST

dl dl dl dl

R
E
SU
LT

R
E
SU
LT

R
E
SU
LT

R
E
SU
LT
nel nel nel lREST REST REST

LIST

LIST

LIST

LIST

L
A
ST

FI
RS
T

FI
RS
T

FI
RS
T

LAST
LAST

LAST

Figure 33:
Illustration of
list-with-diff-list.
Type names are
abbreviated. The
new list starts at
RESULT|LIST,
and finishes with
an open end at
RESULT|LAST.

5.4.5Application: Multiple Extraction

TODO! expand
SLASH list. Important to know if empty (not specified with a diff-

list, although technically possible to use a constraint to check, creating
a cycle if the list is empty).

Zamaraeva and Emerson (2020).
5.4.6Application: Valence Changes

TODO! expand
Explain typical HPSG feature geometry for valence. Valence

changing in the Grammar Matrix Curtis (2019)... Appending to be-
ginning is easy, appending to end is difficult.

Introducing additional layer of wrapping would allow immediate
use of list operations.

Alternatively, the valence type can be seen as a wrapper type, si-
multaneously wrapping multiple lists. For any operation for any of the
valence lists, we can define an appropriate subtype of valence. Com-
binations of these operations (e.g. one operation for each list) can be
defined as further subtypes (with no additional constraints). In terms
of the number of types and features required, this is more verbose than
introducing a wrapper for each valence list, but it would mean that
the feature geometry is backwards-compatible with existing work.

5.5Nondeterministic Computation

In §5.2, we explained how we can implement relational constraints
with wrapper types. However, this only works for relational con-

[41]

Anonymous

straints which correspond to deterministic functions (the value on the
mother is determined by the values of the daughters).

A nondeterministic relational constraint allows multiple possible
values on the mother. While multiple possibilities can often be ex-
pressed through underspecification, this is not always the case. For
example, given a list, we may want to remove exactly one item, but
not specify which. For a list of length n, there are n possible results.
With our encoding of lists, an underspecified list that subsumes all n
of these lists would also subsume other lists too.

Since we have a Turing-complete formalism, we could in principle
come up with a canonical encoding of the set of possible values, and
define a deterministic function that maps to this encoding. However,
such encodings would be cumbersome in practical applications.

On the other hand, the phrase structure formalism described
in §5.1 does provide nondeterminism outside of the type system: the
application of phrase structure rules is nondeterministic, since dif-
ferent possible rules can apply at the some point. The aim of this
section is to exploit this fact, so that the grammar will generate one
edge in the parse chart for each possible result of the nondeterministic
computation.

This is illustrated in Fig. 35, which invokes a nondeterministic
computation via the feature NDET (unlike a wrapper type, the com-
putation is specified at the top level, rather than adjacent to the data
type). The ambiguity inherent to the nondeterministic computation is
expressed via unary rules, as illustrated in Fig. 36.

We will explain how to define nondeterministic computation
types in §5.5.1, explain how the computation can be carried out via
unary rules in §5.5.2, suggest best practices in §5.5.3, and then apply
this to modelling flexible word order in §5.5.4.

5.5.1 Underspecified Computation

As in previous sections, we will use computation types to define
steps in a computation. However, unlike the constraints we have seen
that propagate recursively (along a list or Peano numeral), the con-
straints in this section will “stop”.

For example, types for nondeterministically popping one item
from a list are shown in Fig. 37. The result has two parts: the list with

[42]

Computation as Subtyping

head-1st-comp-phrase
SYNSEM|L|CAT|VAL|COMPS 2

HEAD-DTR|SYNSEM|L|CAT|VAL|COMPS
�
FIRST 1
REST 2

�
NON-HEAD-DTR|SYNSEM 1

head-2nd-comp-phrase
SYNSEM|L|CAT|VAL|COMPS

�
FIRST 1
REST 3

�
HEAD-DTR|SYNSEM|L|CAT|VAL|COMPS

FIRST 1

REST
�
FIRST 2
REST 3

�
NON-HEAD-DTR|SYNSEM 2

Figure 34:
Deterministic
head-comp rules,
for the first or
second element
on the COMPS
list, respectively.

head-any-comp-phrase
SYNSEM|L|CAT|VAL|COMPS 2
HEAD-DTR|SYNSEM|L|CAT|VAL|COMPS 1
NON-HEAD-DTR|SYNSEM 3

NDET

POP-INPUT 1
POP-OUTPUT-LIST 2
POP-OUTPUT-ITEM 3

Figure 35:
Nondeterministic
head-comp rule,
for any element
on the COMPS
list, generalising
the rules in
Fig. 34.

[ndet-pop-select-phrase]

[head-any-comp-phrase]

[ndet-pop-select-phrase] [noun]

[head-any-comp-phrase]

[verb] [noun]

[ndet-pop-select-phrase]

[head-any-comp-phrase]

[ndet-pop-select-phrase] [noun]

[ndet-pop-continue-phrase]

[head-any-comp-phrase]

[verb] [noun]

Figure 36:
Phrase structure
trees illustrating
how word order
ambiguity can be
captured using
nondeterministic
computation
types. The
right-hand tree
takes the second
element on the
COMPS list
before the first.

[43]

Anonymous

Figure 37:
Computation

types for nonde-
terministically

popping an
element from a

list. The
computation

subtypes …-select
and …-continue
do not inherit

from further data
subtypes of

nonempty-list, so
they are not

deterministically
triggered by

unifying
nonempty-list-
with-ndet-pop
with a list.

list

empty-list nonempty-list

nonempty-list-with-ndet-pop

nonempty-list-with-ndet-pop-select nonempty-list-with-ndet-pop-continue�nonempty-list-with-ndet-pop
RESULT

list, top� �

nonempty-list-with-ndet-pop-select
FIRST 1
REST 2
RESULT

2 , 1
�

nonempty-list-with-ndet-pop-continue
FIRST 1

REST
�nonempty-list-with-ndet-pop
RESULT

2 , 3
� �

RESULT
®�

FIRST 1
REST 2

�
, 3
¸

one item popped, and the popped item. Unification fails on an empty
list (there is no common subtype). For a nonempty list, we could either
select the current element, or continue looking at the rest of the list.
We therefore have two further subtypes. If we continue, we have the
same two choices again, hence the recursive constraint on REST. How-
ever, unifying with the more general type (nonempty-list-with-ndet-pop)
does not force either of the two more specific subtypes. In other words,
recursion is underspecified.

Fig. 38 shows how a succession of unifications can give a specified
result; in this case, the third element of 1 is popped, which would yield�RESULT 〈〈false, true〉, false〉�.

5.5.2 Unary Rules for Specifying Computation

In Fig. 38, the sequence of unifications is defined by a sequence of
unary rules. Each step specifies a subtype on a particular feature path.

[44]

Computation as Subtyping

...�ndet-pop-select-phrase
MY-PATH 1
�REST|REST nonempty-list-with-ndet-pop-select��

|�ndet-pop-continue-phrase
MY-PATH 1
�REST nonempty-list-with-ndet-pop-continue��

|�
ndet-pop-continue-phrase
MY-PATH 1 nonempty-list-with-ndet-pop-continue

�
|�my-ndet-phrase

MY-PATH 1

false, true, false��
...

Figure 38:
Sketch of how a
sequence of
unary rules can
together specify
a computation.
The “input” at
the bottom is
unified with a
succession of
computation
types, at
different points
along the list.

Effectively, the unary rules force the feature path to be sort-resolved,
similarly to using junk slots (see §5.4.3).

However, because the specified subtypes are on different feature
paths, some extra bookkeeping is necessary. In order to define unary
rules that can specify subtypes in the appropriate places, we need to
introduce a feature to track which feature path requires its type to be
specified.

Because of this bookkeeping, nondeterministic computation re-
quires a more complicated type system. However, once the type sys-
tem has been defined, nondeterministic computation can be straight-
forwardly used in multiple places in a grammar. In the following sec-
tion (§5.5.3), we suggest best practices for this bookkeeping. There is
no formal status to these best practices (s in §5.2.1); rather, the aim is
ease of use.

5.5.3Suggested Best Practices

To encapsulate nondeterministic computation, we suggest using NDET
as a top-level feature, with value ndet. The ndet type has subtypes ndet-
pending and ndet-satisfied, indicating that a nondeterministic compu-
tation rule is expected or not expected, respectively. The ndet-pending
type also introduces the POINTER feature, which is intended to be
re-entrant with the feature path where a computation subtype needs

[45]

Anonymous

Figure 39:
Feature

geometry with
bookkeeping for
nondeterministic

computation.

sign
PHON phon
SYNSEM synsem
NDET ndet
DTRS list

�
ndet-pending
POINTER with-computation

�

Figure 40:
A subtype of

ndet-pending, for
popping some

element of a list,
to be invoked as

illustrated in
Fig. 35.

ndet-pop
POINTER 1

POP-INPUT 1
�nonempty-list-with-ndet-pop
RESULT

2 , 3
� �

POP-OUTPUT-LIST 2
POP-OUTPUT-ITEM 3

to be further specified.27 This is shown in Fig. 39. Each subtype of
ndet-pending defines a particular operation (such as ndet-pop, shown
in Fig. 40), and should introduce one or more unique features (so that
it can be invoked via the features, as illustrated in Fig. 35).

All lexical entries and all roots should specify NDET to be ndet-
satisfied. All normal rules should specify this on all daughters, by inher-
iting from basic-unary-phrase or basic-binary-phrase, shown in Fig. 41.

Normal rules that do not invoke nondeterministic computation
should specify NDET to be ndet-satisfied, by inheriting from deterministic-
phrase, shown in Fig. 41. Normal rules can invoke a nondeterminis-
tic operation by specifying features of NDET with appropriate re-
entrancies (as illustrated in Fig. 35).

Each subtype of ndet-pending should be associated with two or
more nondeterministic computation rules. Each such rule should in-
herit from ndet-computation-phrase, shown in Fig. 42, and specify its
daughter’s NDET|POINTER with a subtype. Depending on whether fur-
ther nondeterministic decisions are necessary, each rule should ei-
ther specify NDET to be ndet-satisfied, or specify a re-entrancy for
NDET|POINTER.

27This approach only allows one nondeterministic operation per phrase. If
more operations are needed, we could have a list of pointers, but this could
become difficult to maintain, particularly if there is multiple inheritance of non-
deterministic rules. We do not anticipate such a need in practical grammars.

[46]

Computation as Subtyping�
deterministic-phrase
NDET ndet-satisfied

� �basic-unary-phrase
DTRS
¬�NDET ndet-satisfied�¶

�
�basic-binary-phrase
DTRS
¬�NDET ndet-satisfied�, �NDET ndet-satisfied�¶

�
Figure 41:
Supertypes
specifying that
ndet unary rules
are not needed,
for a rule and for
its daughters.

ndet-computation-phrase
PHON 1
SYNSEM 2

DTRS
*PHON 1

SYNSEM 2
NDET ndet-pending

+

ndet-pop-select-phraseNDET ndet-satisfied
DTRS
¬�NDET|POINTER nonempty-list-with-ndet-pop-select�¶

ndet-pop-continue-phrase
NDET|POINTER 1

DTRS
®�

NDET|POINTER
�
nonempty-list-with-ndet-pop-continue
REST 1

��¸

Figure 42:
Supertype for
ndet unary rules
that continue a
nondeterministic
computation,
and two subtypes
which together
implement the
nondeterministic
pop operation.
Their use is
illustrated in
Fig. 36.

5.5.4Application: Flexible Word Order

TODO! expand
Bender (2008a,b, 2010). COMPS list, have to take off in specific

order. Can use multiple head-comp rules, as in Fig. 34. This works as
long as lists are limited in size, so that we can define enough rules to
cover the longest possible list. If lists can be dynamically constructed
(with no upper bound), then a different mechanism is necessary.

Instead, nondeterministic pop operation, where the head-comp
rule can combine with any item on the COMPS list, as we saw in Fig. 35.
Single rule that can work with arbitrarily long lists.

For example, with two elements on the COMPS list, there are two
parses, as shown in Fig. 36.

[47]

Anonymous

6 CONCLUSION

We have shown how the formalism presented by Copestake (2000)
allows functions to be encoded as subtypes. We have proven that one-
feature type systems are finite-state, and two-feature type systems
are Turing-complete. We have developed the notions of “computa-
tion type” and “wrapper type”, and given best practices for working
with them in large-scale grammars, in a way that mimics relational
constraints. Finally, we have given several examples of how wrapper
types can be used to analyse syntactic phenomena.

REFERENCES

Gabriel AGUILA-MULTNER and Berthold CRYSMANN (2018), Feature
Resolution by Lists: The Case of French Coordination, in Annie FORET, Greg
KOBELE, and Sylvain POGODALLA, editors, Proceedings of the 23rd International
Conference on Formal Grammar, number 10950 in Lecture Notes in Computer
Science, pp. 1–15, Springer.
Hassan AÏT-KACI (1984), A lattice-theoretic approach to computation based on a
calculus of partially-ordered type structures (property inheritance, semantic nets,
graph unification), Ph.D. thesis, University of Pennsylvania.
Emily M. BENDER (2008a), Evaluating a Crosslinguistic Grammar Resource: A
Case Study of Wambaya, in Proceedings of ACL-08: HLT, pp. 977–985,
Association for Computational Linguistics,
https://aclanthology.org/P08-1111.
Emily M. BENDER (2008b), Radical Non-Configurationality without Shuffle
Operators: An Analysis of Wambaya, in Stefan MÜLLER, editor, Proceedings of
the 15th International Conference on Head-Driven Phrase Structure Grammar,
pp. 6–24, CSLI Publications, https://doi.org/10.21248/hpsg.2008.1.
Emily M. BENDER (2010), Reweaving a grammar for Wambaya, Linguistic Issues
in Language Technology, 3(1).
Emily M. BENDER, Scott DRELLISHAK, Antske FOKKENS, Michael Wayne
GOODMAN, Daniel P. MILLS, Laurie POULSON, and Safiyyah SALEEM (2010),
Grammar Prototyping and Testing with the LinGO Grammar Matrix
Customization System, in Proceedings of the ACL 2010 System Demonstrations,
pp. 1–6, Association for Computational Linguistics,
https://aclanthology.org/P10-4001.

[48]

https://aclanthology.org/P08-1111
https://doi.org/10.21248/hpsg.2008.1
https://aclanthology.org/P10-4001

Computation as Subtyping

Emily M. BENDER and Guy EMERSON (2021), Computational linguistics and
grammar engineering, in Stefan MÜLLER, Anne ABEILLÉ, Robert D. BORSLEY,
and Jean-Pierre KOENIG, editors, Head-Driven Phrase Structure Grammar: The
handbook, number 9 in Empirically Oriented Theoretical Morphology and
Syntax, chapter 25, pp. 1105–1153, https://zenodo.org/record/5599868/
files/259-M%C3%BCllerEtAl-2021-25.pdf.
Gosse BOUMA, Robert MALOUF, and Ivan A SAG (2001), Satisfying constraints
on extraction and adjunction, Natural Language & Linguistic Theory, 19(1):1–65,
doi:10.1023/A:1006473306778.
Ulrich CALLMEIER (2000), PET – A platform for experimentation with efficient
HPSG processing techniques, Natural Language Engineering, 6:99–108.
Bob CARPENTER (1992), The Logic of Typed Feature Structures, with Applications
to Unification-based Grammars, Logic Programming and Constraint Resolution,
volume 32 of Cambridge Tracts in Theoretical Computer Science, Cambridge
University Press.
Ann COPESTAKE (2000), Definitions of Typed Feature Structures, Natural
Language Engineering, 6(1):109–112, reprinted in Stephan OEPEN, Daniel
FLICKINGER, Hans USZKOREIT and Jun’ichi TSUJII (2002), editors,
Collaborative Language Engineering: A Case Study in Efficient Grammar-based
Processing, pp. 227–230, CSLI Publications.
Ann COPESTAKE (2002), Implementing typed feature structure grammars, volume
110 of CSLI Lecture Notes, CSLI Publications.
Berthold CRYSMANN and Woodley PACKARD (2012), Towards efficient HPSG
generation for German, a non-configurational language, in Martin KAY and
Christian BOITET, editors, Proceedings of the 24th International Conference on
Computational Linguistics, pp. 695–710, Mumbai,
http://www.aclweb.org/anthology/C12-1043.
Christian CURTIS (2019), A Parametric Approach to Implemented Analyses:
Valence-changing Morphology in the LinGO Grammar Matrix, in Proceedings of
the Second International Workshop on Resources and Tools for Derivational
Morphology, pp. 111–120, Charles University, Faculty of Mathematics and
Physics, Institute of Formal and Applied Linguistics, Prague, Czechia,
https://aclanthology.org/W19-8513.
Scott DRELLISHAK and Emily M. BENDER (2005), A coordination module for a
crosslinguistic grammar resource, in Stefan MÜLLER, editor, Proceedings of the
12th International Conference on Head-driven Phrase Structure Grammar,
pp. 108–128, CSLI Publications, Stanford, CA, doi:10.21248/hpsg.2005.6.
Dan FLICKINGER, Carl POLLARD, and Thomas WASOW (2021), The evolution
of HPSG, in Stefan MÜLLER, Anne ABEILLÉ, Robert D. BORSLEY, and
Jean-Pierre KOENIG, editors, Head-Driven Phrase Structure Grammar: The

[49]

https://zenodo.org/record/5599868/files/259-M%C3%BCllerEtAl-2021-25.pdf
https://zenodo.org/record/5599868/files/259-M%C3%BCllerEtAl-2021-25.pdf
http://www.aclweb.org/anthology/C12-1043
https://aclanthology.org/W19-8513

Anonymous

handbook, number 9 in Empirically Oriented Theoretical Morphology and
Syntax, chapter 2, pp. 47–87, doi:10.5281/zenodo.5599820, https://
zenodo.org/record/5599820/files/259-M%C3%BCllerEtAl-2021-2.pdf.
Antske FOKKENS, Yi ZHANG, and Emily M. BENDER (2011), Spring Cleaning
and Grammar Compression: Two Techniques for Detection of Redundancy in
HPSG Grammars, in Proceedings of the 25th Pacific Asia Conference on Language,
Information and Computation, pp. 236–244,
https://aclanthology.org/Y11-1025.
Nissim FRANCEZ and Shuly WINTNER (2011), Unification grammars, Cambridge
University Press.
Ulrich GESKE and Hans-Joachim GOLTZ (2007), A guide for manual
construction of difference-list procedures, in Applications of Declarative
Programming and Knowledge Management, pp. 1–20, Springer.
Thilo GÖTZ and Walt Detmar MEURERS (1996), The importance of being lazy –
Using lazy evaluation to process queries to HPSG grammars, in Actes de la
conférence Traitement Automatique de la Langue Naturelle (TALN).
John E. HOPCROFT and Jeffrey D. ULLMAN (1979), Introduction to Automata
Theory, Languages, and Computation, Addison-Wesley.
Dakotah Jay LAMBERT (2022), Unifying Classification Schemes for Languages and
Processes With Attention to Locality and Relativizations Thereof, Ph.D. thesis,
Stony Brook University.
Sylvain LOMBARDY and Jacques SAKAROVITCH (2006), Sequential?,
Theoretical Computer Science, 356(1–2):224–244.
M. LOTHAIRE (2005), Applied combinatorics on words, volume 105 of
Encyclopedia of Mathematics and its Applications, Cambridge University Press.
Per MARTIN-LÖF (1984), Intuitionistic type theory, number 1 in Studies in Proof
Theory, Bibliopolis.
Nurit MELNIK (2007), From “Hand-Written” to Computationally Implemented
HPSG Theories, Research on Language and Computation, 5(2):199–236,
http://dx.doi.org/10.1007/s11168-007-9028-0.
Walt Detmar MEURERS, Kordula DE KUTHY, and Vanessa METCALF (2003),
Modularity of grammatical constraints in HPSG-based grammar
implementations, in Proceedings of the ESSLLI 2003 Workshop on Ideas and
Strategies for Multilingual Grammar Development, pp. 83–90.
Walt Detmar MEURERS, Gerald PENN, and Frank RICHTER (2002), A
Web-based Instructional Platform for Constraint-Based Grammar Formalisms
and Parsing, in Dragomir RADEV and Chris BREW, editors, Proceedings of the
Workshop on Effective Tools and Methodologies for Teaching Natural Language
Processing and Computational Linguistics, pp. 18–25, The Association for
Computational Linguistics, doi:10.3115/1118108.1118111,
https://aclanthology.org/W02-0103/.

[50]

https://zenodo.org/record/5599820/files/259-M%C3%BCllerEtAl-2021-2.pdf
https://zenodo.org/record/5599820/files/259-M%C3%BCllerEtAl-2021-2.pdf
https://aclanthology.org/Y11-1025
http://dx.doi.org/10.1007/s11168-007-9028-0
https://aclanthology.org/W02-0103/

Computation as Subtyping

Stefan MÜLLER (2015), HPSG – A Synopsis, in Artemis ALEXIADOU and Tibor
KISS, editors, Syntax – Theory and Analysis: An International Handbook,
volume 2, pp. 937–973, De Gruyter Mouton, doi:10.1515/9783110363708-004.
Gerald PENN (2004), Balancing Clarity and Efficiency in Typed Feature Logic
Through Delaying, in Proceedings of the 42nd Annual Meeting of the Association
for Computational Linguistics (ACL-04), pp. 239–246,
doi:10.3115/1218955.1218986, https://aclanthology.org/P04-1031.
Carl J. POLLARD and M. Andrew MOSHIER (1990), Unifying partial
descriptions of sets, in Philip P. HANSON, editor, Information, Language, and
Cognition, number 1 in Vancouver Studies in Cognitive Science, pp. 285–322,
University of British Columbia Press.
Carl J. POLLARD and Ivan A SAG (1994), Head-Driven Phrase Structure
Grammar, University of Chicago Press.
James PUSTEJOVSKY (1995), The Generative Lexicon, MIT Press.
Marcel-Paul SCHÜTZENBERGER (1977), Sur une variante des fonctions
séquentielles, Theoretical Computer Science, 4(1):47–57.
Glenn C. SLAYDEN (2012), Array TFS storage for unification grammars, Master’s
thesis, University of Washington.
Gabriele VANONI (2022), On Reasonable Space and Time Cost Models for the
λ-Calculus, Ph.D. thesis, University of Bologna.
Olga ZAMARAEVA, Chris CURTIS, Guy EMERSON, Antske FOKKENS,
Michael Wayne GOODMAN, Kristen HOWELL, TJ TRIMBLE, and Emily M.
BENDER (2022), 20 years of the Grammar Matrix: cross-linguistic hypothesis
testing of increasingly complex interactions, Journal of Language Modelling Vol,
10(1):49–137.
Olga ZAMARAEVA and Guy EMERSON (2020), Multiple Question Fronting
without Relational Constraints: An Analysis of Russian as a Basis for
Cross-Linguistic Modeling, in Proceedings of the 27th International Conference on
Head-Driven Phrase Structure Grammar, pp. 157–177, CSLI Publications.

This work is licensed under the Creative Commons Attribution 4.0 Public License.
 http://creativecommons.org/licenses/by/4.0/

[51]

https://aclanthology.org/P04-1031
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Formal Framework
	Relational Constraints
	Recursion: Pathological Counterexample

	Computation as Subtyping
	Functions with a Finite Domain
	Functions with an Infinite Domain
	Natural Numbers
	Lists

	Turing Completeness
	Encoding an Arbitrary Turing Machine as a Type System
	One-Feature Type Systems are Finite-State
	Two-Feature Type Systems are Turing-Complete

	Linguistic Applications
	Formal Framework
	Wrapper Types: Relational Constraintswithout Relational Constraints
	Suggested Best Practices
	``Clean'' Data and Pitfalls to Avoid
	Computation History

	Boolean Operations
	Encapsulated Currying
	Application: Coordination

	List Operations
	Functions with Flexible Arity
	Appending with Difference Lists
	Appending with Junk Slots
	Appending with Subtyping
	Application: Multiple Extraction
	Application: Valence Changes

	Nondeterministic Computation
	Underspecified Computation
	Unary Rules for Specifying Computation
	Suggested Best Practices
	Application: Flexible Word Order

	Conclusion

