
Computer Graphics Tick 2
Advanced Ray Tracing Effects

Figure 1: The image you will create in this exercise.

1 Introduction

In this exercise you will extend the ray tracer to handle a new shape and ad-
ditional effects. The new shape you will render is a plane with which you can
represent the ground. The additional effects you will implement are multiple
light sources, hard shadows, and reflective surfaces.

1

2 Getting started

Download archive tick2.zip from Moodle area “Tick 2”. After extracting you will
see the following files:

tick2
gfx/tick2

Camera.java

Plane.java

PointLight.java

Ray.java

RaycastHit.java

Renderer.java

Scene.java

SceneLoader.java

SceneObject.java

Sphere.java

Tick2.java

Vector3.java

tick2.xml

The files you will modify and submit for this exercise have been highlighted .
You will modify Plane.java to implement ray-plane intersection, and you will
modify Renderer.java to shade with multiple lights, shadows, and reflections.

Tick2.java contains the main method. Along with the --input and --output ar-
guments from the last tick, it can also take a --bounces argument that specifies
the number of times rays can bounce when calculating reflections.

3 Intersecting with planes

We often want to render planes in graphics as they can simulate the ground
or walls in a scene. The Tick 2 scene file tick2.xml now can contain plane
elements specified like so:

<plane x="0.0" y="0" z="2" nx="1" ny="0" nz="0" colour="#222222"/>

Where the plane is specified by a point (x, y, z) and normal vector (nx, ny, nz).

2

Your task is to implement Plane.intersectionWith() so we can render planes as
well as spheres.

Ray-plane intersection formula

Given:

• A ray defined as P (s) = O + sD.

• A plane defined as (P −Q) ·N = 0, where N is the normal to the plane,
Q is a point on the plane and “·” is a dot product.

We can find where the ray intersects the plane by plugging the ray equation
into the plane equation, and solving for resulting ray parameter s.

(O + sD −Q) ·N = 0

s =
(Q−O) ·N

D ·N

If s < 0, the plane is behind the ray origin so there is no intersection.

Ray-plane intersection code

The current ray-intersection code in Plane.java looks like this:

public RaycastHit intersectionWith(Ray ray) {
Vector3 O = ray.getOrigin();
Vector3 D = ray.getDirection();
Vector3 Q = this.point;
Vector3 N = this.normal;

TODO: Calculate ray parameter s at intersection

TODO: If s < 0, return empty RaycastHit, otherwise return
RaycastHit describing point of intersection

return new RaycastHit();
}

Your task is to modify this code to calculate ray parameter s. If s is not negative,
return a RaycastHit corresponding to the point of intersection:

return new RaycastHit(this, s, ray.evaluate(s), N);

Your renderer should now be able to render planes.

3

Ambient light only One point light Two point lights

Figure 2: The effect of multiple lights: here is the Tick 2 scene shaded with
zero, one, and two point light sources (from left to right).

4 Multiple light sources

In the previous exercise, scenes contained only a single point light. In graphics,
we want to simulate multiple light sources. Figure 2 shows the Tick 2 scene
shaded with varying numbers of lights (without shadows for now).

To handle multiple lights we modify the equation for calculating pixel’s colour
to sum over a set of n lights:

P = Cdiff Ia︸ ︷︷ ︸
Ambient

+

n∑
i=0

Cdiff kd Ii max(0, N · Li)︸ ︷︷ ︸
Diffuse

+

n∑
i=0

Cspecks Ii max(0, Ri · V)n︸ ︷︷ ︸
Specular

Ii, Li, and Ri are the intensity, light vector, and reflection vector for the ith
light source. Like before, we have a single ambient light term. However, we now
sum over lights in a scene, adding the contribution of each light source to the
pixel P. We do this because light is additive.

4

Implementing multiple light sources
You will modify Renderer.illuminate() to add a diffuse and specular component
for each light source.

private Vector3 illuminate(Scene scene, SceneObject object, Vector3
P, Vector3 N) {

Vector3 colourToReturn = new Vector3(0);

...

// Add ambient light term to start with
colourToReturn = colourToReturn.add(I_a.scale(C_diff));

// Loop over each point light source
List<PointLight> pointLights = scene.getPointLights();
for (int i = 0; i < pointLights.size(); i++) {

PointLight light = pointLights.get(i);
double distanceToLight = light.getPosition().subtract(P).

magnitude();
Vector3 I = light.getIlluminationAt(distanceToLight);

TODO: Calculate L, V, R, NdotL, and RdotV

TODO: Calculate diffuse and specular terms

TODO: Add diffuse and specular terms to colourToReturn

}

return colourToReturn;
}

The loop over the light sources in the scene has already been implemented
for you. Your task is to compute diffuse and specular illumination terms for
each light in the same way you did for Tick 1, and accumulate them in the
colourToReturn variable.

5 Shadows

Shadows are an important visual cue so we can tell where objects are in relation
to each other. Implementing shadows in a ray tracer is simple: when calculating
the illumination of a point by a certain light source, we must first check if that

5

(a) Shadows cast by light 1 (b) Shadows cast by light 2 (c) The scene with shadows

Figure 3: The black pixels in (3a) and (3b) correspond to pixels in shadow for
the corresponding light source. (3c) shows how shadows provide an important
visual cue: we can now see the spheres and plane are touching.

point can “see” the light source. If it cannot, then we do not accumulate that
light’s diffuse and specular contributions for that point.

5.1 Implementing shadows

You will modify Renderer.illuminate() once more to consider shadows before
adding the diffuse and specular component for each light source.

private Vector3 illuminate(Scene scene, SceneObject object, Vector3
P, Vector3 N) {
...

for (int i = 0; i < pointLights.size(); i++) {

FROM BEFORE: Calculate diffuse and specular terms

// Check if point P is in shadow from that light or not
Ray shadowRay = new Ray(P.add(L.scale(EPSILON)), L);
boolean inShadow = false;

TODO: Cast the shadowRay with findClosestIntersection to
determine if P is in shadow or not, and set inShadow

TODO: if not inShadow, add diffuse and specular to
colourToReturn

}

return colourToReturn;
}

6

No reflection One reflection bounce Two reflection bounces

Figure 4: We can render reflections by “bouncing” our traced rays off objects
in the scene. To ensure our renderer terminates, we must limit the number of
times a ray can bounce. Here is the scene with 0, 1, and 2 bounces.

The idea is to only add the contribution for the ith light source to colourToReturn
if the path from P to that light source is clear. This is determined by casting a
shadow ray from P towards the light source. If the shadow ray hits any object
before reaching the light, then point P is in shadow. Otherwise, point P is
directly illuminated by the light.

Note the shadow ray has already been created for you. Its starting position
has been slightly adjusted by a small bias factor EPSILON. This prevents the
shadow ray immediately intersecting the same object it started from.

For each point light source, implement the following:

1. Cast the shadow ray using scene.findClosestIntersection(shadowRay) to get
a RaycastHit object.

2. If the RaycastHit’s distance is less than the distance to the point light, set
inShadow to true.

3. If inShadow is false, add the diffuse and specular terms for that light source
to colourToReturn, otherwise do nothing.

Your renderer should now render shadows cast by the spheres onto the plane
and each other. The output should look like Figure 3c.

7

6 Reflection

Aside from shadows, another effect that is easy to implement in ray tracing is
reflection. Figure 4 shows the result of adding reflections to our scene. Your
final task is to implement reflection using recursion in Renderer.trace().

Currently, the trace() method returns the direct illumination at a point P . To
render reflection, we additionally calculate the reflected illumination by “bounc-
ing” the traced ray off the surface.

Implementing reflection

You can see the Renderer.trace() method now includes a parameter bouncesLeft.
bouncesLeft corresponds to the number of times the ray will bounce before re-
turning the direct illumination.

protected Vector3 trace(Scene scene, Ray ray, int bouncesLeft) {
...

// Calculate direct illumination at that point
Vector3 directIllum = this.illuminate(scene, object, P, N);

double reflectivity = object.getReflectivity()

// If no bounces or reflection, return direct illumination
if (bouncesLeft == 0 || reflectivity == 0) {

return directIllum;

} else {

TODO: Calculate the direction R of the bounced ray

TODO: Spawn a reflectedRay with bias

TODO: Calculate reflectedIllum by tracing reflectedRay

// Scale direct and reflective illum. to conserve light
directIllum = directIllum.scale(1.0 - reflectivity);
reflectedIllum = reflectedIllum.scale(reflectivity);

return directIllum.add(reflectedIllum);
}

}

The direct illumination at P (directIllum) is calculated using Renderer.illuminate().

8

For reflection you must implement the following:

1. Calculate the direction of the bounced ray R by reflecting the original
ray’s direction D in N . Remember, Vector3.reflectIn() computes a mirror-
like reflection, so you should negate D before reflecting it. Make sure R
and N are unit vectors.

2. Spawn a new ray reflectedRay with origin (P + εR) and direction R. Make
sure to adjust the origin by bias ε to prevent immediate self-intersection.

3. Calculate the reflected illumination colour using trace(scene, reflectedRay,
bouncesLeft-1). We decrement bouncesLeft to make sure rays don’t bounce
around the scene forever.

Your renderer should now produce the same image as Figure 1.

Next time you’ll explore rasterization: an alternative approach for rendering
images that is faster than ray tracing, but less realistic.

7 Submission

The instruction for this submission is identical as for Tick 1.

Once you’re happy with your tick’s output, go to Moodle→ Tick 2 → Tick 2 Sub-
mission, switch to Submission tab, drag and drop two files: Plane.java and Ren-
derer.java and click Submit. There is no need to put anything in the Comments
field. Then, you can switch to the tab Submission view and hit Evaluate.

If your code generates correct results, you should see the message “Congratula-
tions! Your code passed the tester.”. Note that this is a provisional mark and
you may still need to have and interview to get credit for your tick.

If your code does not compile or fails to produce correct results, you will see an
error message or a report from running the tests. Your code will be tested on
the sample scene bundled in the zip file (tick2.xml) and one addition test scene
that is kept hidden. The tester will award a full mark only when correct images
are produced for both scenes.

Note that you can use Edit tab to make small changes to your code and run
evaluation again. But do not use this option for debugging or completing a
larger portion of work. Note that you cannot see images generated by your
program when you click Evaluate link.

There is a small chance that your program generates correct results but the
tester reports it fails the tests. If you have checked your code thoroughly and
suspect that this could be the problem with the tester, please let us know on
Help forum for Graphics 1a in Moodle or by e-mail rkm38@cam.ac.uk. Please
do not post your code on the open forum. If your code works correctly, you will
be awarded a full mark in the ticking session.

9

rkm38@cam.ac.uk

	Introduction
	Getting started
	Intersecting with planes
	Multiple light sources
	Shadows
	Implementing shadows

	Reflection
	Submission

