
Computer Graphics Tick 1
Introduction to Ray Tracing

Figure 1: The image you will create in this exercise.

1 Introduction

In this exercise you will write code for a simple ray tracer. Ray tracing is a
method for rendering a 2D image from a 3D scene.

In real life, light sources (e.g. the sun) cast rays of light that bounce off 3D
objects and into our eyes. These light rays eventually enter our eyeballs and
form a 2D image on our retina. Ray tracing models this phenomenon efficiently
by tracing light rays backwards through a 3D scene. Each pixel in the 2D image
plane casts a ray into the scene through a camera. If a ray intersects with an
object in the scene, we colour its pixel according to the object’s colour and the
scene illumination.

1

2 Getting started

Download archive tick1.zip from Moodle area “Tick 1”. After extracting you will
see the following files:

tick1
src/gfx/tick1

Camera.java

PointLight.java

Ray.java

RaycastHit.java

Renderer.java

Scene.java

SceneLoader.java

Sphere.java

Tick1.java

Vector3.java

basic_scene.xml

The files you will modify and submit for this exercise have been highlighted .
Note that much of the code has already been written for you. You should not
modify the other files, though please look to see how they work.

The main method for this exercise is in Tick1.java. It takes two arguments:

-i, --input : the XML scene file to render.

-o, --output : the image file to write out.

Compile the source code, and run it with the following arguments:

--input basic_scene.xml --output output.png

As our 3D scene is currently empty, and our ray tracer un-implemented, this
will output a blank image output.png.

Vector3

You have been provided with a Vector3 class that you will use in this exercise.
It has three fields x, y, and z that represent the components of a vector in 3D
space. Vector3 also contains many useful methods that let you add, subtract,
and multiply vectors together. We also represent colour as a Vector3, with x, y, z

2

corresponding to r, g, b pixel values. You should make sure you are familiar with
this class before continuing.

3 Building a scene

A scene is a description of the virtual world that we want to render. Throughout
the graphics practicals you will use an XML-based scene format. For this first
exercise, scene files can contain the following elements:

sphere – 3D spheres specified by a position, radius, and colour.

ambient-light – a light colour that provides background illumination.

point-light – a light source that has a position, colour, and intensity.

Parameters are specified by setting attributes for each element. For example,
colour is set with colour="#FF0000" using hex colour codes.

You can preview scene files by dragging and dropping them into the web-based
previewer: http://www.cl.cam.ac.uk/teaching/1617/Graphics/previewer/previewer.
html. You will need a modern browser. This is a handy way to check your scene
files have been specified correctly. Note that both the ray-tracer and the pre-
viewer use the left-handed coordinate system, as shown in Figure 2.

Figure 2: Left: left-handed coordinate system. Right: right-handed coordinate
system. The ray-tracer you work on in this tick uses left-handed coordinate
system, in which objects further away from the camera have larger z coordinate
values. Note that right-handed coordinate system is used OpenGL, which you
will work with in Tick 3.

Example scene

Here is a basic example scene:

<scene>
<ambient-light colour="#333333"/>
<point-light x="3" y="3" z="3" colour="#FFFFFF" intensity

="100"/>
<sphere x="0" y="0" z="6" radius="1" colour="#FF0000"/>

</scene>

3

http://www.cl.cam.ac.uk/teaching/1617/Graphics/previewer/previewer.html
http://www.cl.cam.ac.uk/teaching/1617/Graphics/previewer/previewer.html

Figure 3: You can drag and drop scene files into the online scene previewer. The
camera is the white wireframe pyramid positioned at the origin. The bottom
right panel shows what the camera will render.

This scene contains a dark grey ambient light, a white point light at (3, 3, 3)
with intensity 100, and a unit-radius red sphere at (0, 0, 6).

Define a new scene

Your task is to build a scene according to our specification. Create a new scene
in the tick1.xml file to include the following:

• An ambient light with colour #555555.

• A point light source at (1, 3, 2) with colour #B3DDFF and intensity 120.

• A sphere at (0.55,−0.16, 3.5) with radius 0.5 and colour #0071BC.

• A sphere at (−0.55, 0, 5) with radius 0.9 and colour #FF1D25.

Use the online scene previewer to check that your scene is correct. It should
look like the scene shown in Figure 3.

4 Intersecting with spheres

Ray tracers cast rays through each image pixel. The formation and casting of
these rays has been written for you in the Camera and Renderer classes. The
camera is positioned at the origin, pointing along the positive z-axis.

At this stage, the renderer is outputting blank images with colour BACK-
GROUND_COLOUR as it does not include code for intersecting rays with spheres.
Your task is to modify the Sphere.intersectionWith() method to handle these in-
tersections correctly.

4

Ray-sphere intersection formula

Given:

• A ray defined as P (s) = O+sD, where O is a 3×1 vector with the origin, D
is the direction, and s ≥ 0 is some non-negative (scalar) distance travelled
by the ray.

• A sphere (P − C) · (P − C)− r2 = 0 with centre C and radius r. The “ ·”
symbol is a dot product of two vectors. Note that a dot-product of a vector
with itself gives a squared length of that vector: (P−C)·(P−C) = |P−C|2.

We can find where (and if) the ray intersects the sphere by plugging the ray
equation into the sphere equation, and solving the resulting quadratic equation
for ray parameter s.

((O + sD)− C) · ((O + sD)− C)− r2 = 0

((O − C) + sD) · ((O − C) + sD)− r2 = 0

s2 (D ·D)︸ ︷︷ ︸
a

+s (2D · (O − C))︸ ︷︷ ︸
b

+(O − C) · (O − C)− r2︸ ︷︷ ︸
c

= 0

Where a, b, and c are quadratic equation constants. Take care: if the discrimi-
nant is negative, solutions to s will be imaginary, signifying no intersection. In
general you will get two solutions for s – make sure you use the closest one to the
ray origin. Consult the lecture notes on how to do this if you get stuck.

5

Ray-sphere intersection code
The code you are given in the Sphere class is as follows:

public RaycastHit intersectionWith(Ray ray) {

Vector3 O = ray.getOrigin();
Vector3 D = ray.getDirection();
Vector3 C = position;
double r = radius;

// Determine quadratic equation constants
double a = D.dot(D);
double b = 2 * D.dot(O.subtract(C));
double c = (O.subtract(C)).dot(O.subtract(C))

- Math.pow(r,2);

TODO: Determine if ray and sphere intersect

TODO: Work out point of intersection

TODO: Return a RaycastHit that includes the object, ray
distance, point, and normal vector

// Currently returning empty RaycastHit for no intersection
return new RaycastHit();

}

You should modify the above code to implement the following algorithm:

1. Calculate the discriminant as
√
b2 − 4ac.

2. If the discriminant < 0, return an empty RaycastHit for no intersection.

3. Compute the two solutions for s, s1 and s2 using the quadratic formula.

4. If s1 > 0 and s1 < s2, return an RaycastHit at distance s1.

5. Else, if s2 > 0 and s2 < s1, return an RaycastHit at distance s2.

6. Finally, if neither s1 or s2 are positive (the sphere is behind the ray),
return an empty RaycastHit for no intersection.

To indicate that there is no intersection, simply return an empty RaycastHit:

return new RaycastHit();

However, once you have found an intersection, return a RaycastHit that refer-
ences the object hit (this sphere), the distance the ray travelled, the point hit,
and the normal of the object at that point:

6

Figure 4: The scene once ray-sphere intersection has been implemented.

Vector3 point = ray.evaluateAt(s);
Vector3 normal = this.getNormalAt(point);
return new RaycastHit(this, s, point, normal);

Now, compile and run your program with the scene you have built previously.
Figure 4 shows the desired output. Next, we will implement an illumination
model to shade the spheres.

5 Shading the spheres

At this point, your ray tracer is rendering the spheres without any illumination,
colouring the pixels according to the sphere’s colour only.

You will now implement the Phong illumination model in the Renderer.illuminate()
method to correctly shade them with the ambient and point light source.

The Phong illumination model

The Phong illumination model shades a point on an object’s surface with three
lighting components which are added together:

P = Cdiff Ia︸ ︷︷ ︸
Ambient

+Cdiff kd Imax(0, N · L)︸ ︷︷ ︸
Diffuse

+Cspecks Imax(0, R · V)n︸ ︷︷ ︸
Specular

P is the colour of the pixel. The other terms are described below.

Ambient lighting represents background illumination that is omnipresent in
the scene. Cdiff is the surface’s diffuse colour (set by the scene file), and
Ia the scene’s ambient lighting.

7

(a) Ambient illumination (b) +Diffuse lighting (c) +Specular highlights

Figure 5: The scene shaded with the Phong illumination model. (a) shows
the background ambient illumination, (b) adds the Lambertian term to include
diffuse illumination, and (c) finally adds specular highlights.

Diffuse lighting is based on the observation that the amount of energy from a
light source falling on a surface depends on the angle between the surface
and the light. kd is the surface’s diffuse coefficient, I the illumination from
the point light at the surface (that decreases over distance), N the surface
normal, and L the direction to the point light from the surface.

Specular lighting adds shiny highlights. The idea is that highlights are strongest
when V and L are symmetrically positioned across the surface normal. R
is the reflection of L in N , V the direction to the camera, and n the
specular exponent that controls how shiny the surface is.

Figure 5 shows the contribution of each illumination component in turn. Note
that N , L, R, and V should all be unit vectors. kd and ks have been set to
constants in this exercise.

8

Phong illumination code
The code you are given in the Renderer class is as follows:

private Vector3 illuminate(Scene scene, Sphere object, Vector3 P,
Vector3 N) {

PointLight light = scene.getPointLight();
double distanceToLight = light.getPosition().subtract(P).

magnitude();

Vector3 I_a = scene.getAmbientLighting();
Vector3 I = light.getIlluminationAt(distanceToLight);

Vector3 C_diff = object.getColour(); // Diffuse colour
Vector3 C_spec = new Vector3(1); // Specular colour

// Object’s Phong coefficients
double k_d = object.getPhong_kD();
double k_s = object.getPhong_kS();
double n = object.getPhong_n();

TODO: Calculate L, V, and R

TODO: Calculate NdotL and RdotV

TODO: Calculate Vector3 ambient, diffuse, and specular terms

TODO: return ambient+diffuse+specular

return object.getColour();
}

Your task is to modify the code to return the Phong illumination at point P
rather than just the object’s colour. Note that many of the parameters have
already been calculated for you.

Colours are represented as Vector3, with the three components corresponding
the red, green, and blue components of the colour.

You should implement the following:

1. Calculate L, V , and R. Remember that the camera is positioned at the
origin. You can use Vector3.reflectIn() to reflect vectors.1

2. Calculate the N · L factor for diffuse, and R · V for specular.
1Note: Vector3.reflectIn() computes the mirror-like reflection of a vector, not the bounce-

like reflection off an object off a surface.

9

(a) Make sure vectors L and
V are normalized.

(b) Make sure N · L is non-
negative: max(0, NdotL).

(c) Make sure R · V is non-
negative: max(0, RdotV).

Figure 6: Some mistakes you might make: (a) is too bright because direction
vectors are not normalized. In (b) the bottom of the blue sphere is too dark
because you are not using max(0, NdotL). (c) has incorrect secondary highlights
from not using max(0, RdotV).

3. Calculate the three lighting terms LAmb, LDiff, and LSpec. Take care that
each is represented by a Vector3.

4. Finally return their sum LAmb + LDiff + LSpec.

Now your renderer should produce the same image as Figure 1. Figure 6 shows
some common mistakes you might make, and explains how to avoid them.

Next time, you’ll extend your ray tracer to handle planes, multiple light sources,
reflection, and shadows.

6 Submission

Once you’re happy with your tick’s output, go to Moodle→ Tick 1 → Tick 1 Sub-
mission, switch to Submission tab, drag and drop two files: Renderer.java and
Sphere.java and click Submit. There is no need to put anything in the Comments
field. Then, you can switch to the tab Submission view and hit Evaluate.

If your code generates correct results, you should see the message “Congratula-
tions! Your code passed the tester.”. Note that this is a provisional mark and
you may still need to have and interview to get credit for your tick.

If your code does not compile or fails to produce correct results, you will see
an error message or a report from running the tests. Your code will be tested
on the same scene as the one you put in (tick1.xml) and one addition test scene
that is kept hidden. The tester will award a full mark only when correct images
are produced for both scenes.

Note that you can use Edit tab to make small changes to your code and run
evaluation again. But do not use this option for debugging or completing a
larger portion of work. Note that you cannot see images generated by your
program when you click Evaluate link.

10

There is a small chance that your program generates correct results but the
tester reports it fails the tests. If you have checked your code thoroughly and
suspect that this could be the problem with the tester, please let us know on
Help forum for Graphics 1a in Moodle or by e-mail rkm38@cam.ac.uk. Please
do not post your code on the open forum. If your code works correctly, you will
be awarded a full mark in the ticking session.

11

rkm38@cam.ac.uk

	Introduction
	Getting started
	Building a scene
	Intersecting with spheres
	Shading the spheres
	Submission

