
Further Graphics Tick

Ray-Marched Signed Distance Fields

(a) A sphere (b) Chains under a spotlight

Figure 1: In this exercise you will use Signed Distance Fields to render an
interactive ray-cast scene on the GPU.

1 Introduction

In this exercise you will render an interactive image using Signed Distance Fields.
Given the skeleton of a ray marcher, you will write code in GLSL, the OpenGL
Shader Language, and your code will run in a Java OpenGL framework designed
to capture images from preset points of view for marking.

The key idea of a ray marcher is that the color of each pixel is de�ned by the
ray from the camera eye through that pixel. We step along the ray at discrete
intervals, until the ray hits an object. The classical lighting equations determine
the pixel's color from the ray / object intersection.

The key idea of Signed Distance Fields is that the answer to the questions,
�does this ray hit this object?" and �how far can I safely advance along this ray
without worrying that I've missed hitting an object?" can be the same. As we
�re point p along ray r into the scene, the minimum of the distances from p to
all the objects in the scene is the distance along r which p can safely move; and
if a distance is zero, the ray has hit an object.

Signed Distance Fields, also sometimes called sphere tracing, were brilliantly
written up by John C. Hart in his 1996 paper, �Sphere tracing: a geometric
method for the antialiased ray tracing of implicit surfaces", available at
https://graphics.cs.illinois.edu/papers/zeno.

1

https://graphics.cs.illinois.edu/papers/zeno

Figure 2: If you have set the tick up correctly, you will see a cloudy blue
sky. Use the mouse to spin your point of view (but there's not much to see).
If you uncomment the line which calls sphere() in the raymarch() method
of fragment_shader.glsl, a sphere should appear. Press R to visualize the
number of raymarching steps per pixel of the sphere (black = min, white =
max).

2 Getting started

The practical materials are available online: https://www.vle.cam.ac.uk/course/
view.php?id=145061§ionid=2027981 / Starter code. It contains the fol-
lowing �les and directories:

tick

lib

JOML Java math library for OpenGL calculations

LWJGL Lightweight Java Game Library

resources

fragment_shader.glsl You will write your ray-marching renderer here

sky.jpg Background texture

vertex_shader.glsl Processes vertex data

src/uk/ac/cam/cl/furthergfx/crsid/tick

Camera.java Controls 3D camera position

Texture.java Utility to load texture data into OpenGL

Tick.java Main class

TickApp.java Quad geometry, camera, mouse, and keyboard

TickCanvas.java Base class - builds and shows a rendering canvas

2

https://www.vle.cam.ac.uk/course/view.php?id=145061§ionid=2027981
https://www.vle.cam.ac.uk/course/view.php?id=145061§ionid=2027981

You will modify and submit the �le highlighted above and a set of screenshots
captured from preset points of view.

Follow the instructions in the setup documentation to compile and run the
source code for this exercise.

When you �rst run the app, an OpenGL window will open and you will see a
cloudy blue sky. Using the mouse, you can spin your point of view and look at
the clouds texture map from other angles. If you uncomment the line

// d = sphere(camPos + t * rayDir);

of fragment_shader.glsl and save the �le with the app still running, the app
should pick up your changed fragment shader and automatically reload, ren-
dering the white sphere in Figure 2. If you modify fragment_shader.glsl and
introduce code which is not proper GLSL, an error will be printed to the Java
console.

Class TickApp.java sets up the following hotkeys for your use:

• 1 Move camera to the positive Z axis

• 2 Move camera to the positive Y axis

• 3 Move camera to an angled view

• R Toggle between visualization of realistic shading vs the number of ray-
marched steps per pixel

• S Capture a screenshot for submission (see below)

2.1 What you'll submit

2.1.1 Screenshots

You will submit a set of screenshots to prove the correctness of your work.

Reference camera positions for each screenshot are hardcoded into TickApp.java.
When you press S , you will be prompted to select a Task from the list below
(Figure 3). The camera will move to a preset position and capture a PNG
screenshot, named after the Task. Do not rename your screenshot �les. This
will help demonstrators verify that your outputs are correct.

2.1.2 Task �les

Your GLSL code is part of the Tick. You'll be asked to submit the GLSL code
for each Task separately, so when a Task is complete, copy its code to a �le
named "fragment_shader - Task<n>.glsl" before you move on.

3

Figure 3: The screenshot picker. The output of each Task is captured from a
preset position to ensure consistency.

3 Building and running the Tick

3.1 OpenGL

In this exercise we are using OpenGL to render a simple shape: a quadrilateral
which �lls the viewport. We then use GLSL, the OpenGL Shading Language,
to instruct the GPU to texture the OpenGL viewport with a rendered 3D im-
age.

You will need a computer that can run OpenGL 3.0. Most computers will
support OpenGL 3.0, but if your personal machine does not, you can use the
MCS machines instead.

We use OpenGL in this assignment because it should be a familiar API and the
LWJGL library gives easy-to-encapsulate support for OpenGL to Java. That
said, this is not an OpenGL assignment; this is a GLSL assignment.

The OpenGL app we provide is a framework in which your GLSL code is run,
but the OpenGL context is not strictly required to run GLSL. A host of We-
bGL enthusiast websites, such as shadertoy.com, o�er platforms to host GLSL
shaders which you can edit and run directly on the site. If you want to show
o� your work on a mobile device, consider porting your tick to OpenGL ES
for WebGL and uploading it to shadertoy (after you've completed the tick, of
course.)

For more information on OpenGL and GLSL, the OpenGL Programming Guide
8th Edition provides a good reference. Make sure to only consult up-to-date
documentation.

3.2 Compiling and running the code

The instructions below are for compiling and running the code from the com-
mand line. Refer to the document Working with IDEs for instructions for an
IDE.

4

shadertoy.com

When compiling the code, it is necessary to specify the classpath to the libraries
we will use. To compile, change the current directory to tick, then run:

javac -classpath lib/JOML/joml.jar:lib/LWJGL/lwjgl.jar:lib/LWJGL/
lwjgl-util.jar -d ./out src/uk/ac/cam/cl/furthergfx/crsid/tick
/*.java

The -d option speci�es where to put the compiled classes. It is good practice
not to mix source �les with compiled code.

Since the program needs to read a few �les from the resources directory, it
must be started from the tick directory. Moreover, LWJGL library consists of
both JAVA classes and a native library, which needs to be speci�ed at start-up
using -Djava.library.path argument. You can start the program with the
following command:

java -classpath lib/JOML/joml.jar:lib/LWJGL/lwjgl.jar:lib/LWJGL/
lwjgl-util.jar:./out -Djava.library.path=lib/LWJGL/native/
YOUR_OS uk.ac.cam.cl.furthergfx.crsid.tick.Tick

Where you should replace "YOUR_OS" with either windows, macosx, or linux
depending on your operating system.

On OSX you may need to add the argument -XstartOnFirstThread. Another
common issue on OSX is that the application window can open out of sight,
behind other windows. If this is the case, use Mission Control to �nd the
OpenGL window.

3.3 Debugging a raymarcher in GLSL

GLSL is notoriously di�cult to debug, because each pixel computes its value
in parallel to every other. This can make it di�cult to sample values and run
tests. However, a few tips and best practices can make the GLSL debugging
experience, if not enjoyable, then at least tolerable:

• Make frequent backups of checkpoints in your work. Online source control
repos like Github are ideal, but any system that you can use to retrieve
old versions of your code is a good idea.

• If an image doesn't match your expectations, look at your code and ask
yourself, �what values would have to be wrong for this to fail?" Then set
the color of the pixel itself to those values. Remember that X is Red, Y
is Green and Z is Blue.

• When in doubt, simplify. Comment out all but the minimal code and then
work your way back. `#if' works well too.

• Remember that GLSL can't throw numerical exceptions so errors like
divide-by-zero are swallowed silently.

5

• Always double-check that you've normalized all the vectors that you think
are unit vectors.

• Always double-check that you've clamped values to their expected ranges.

• Some internet sources recommend the project [GLSL-Debugger]. We haven't
tried it ourselves and can't say whether it's useful or not, but if you try it
please let us know.

• Don't be afraid to ask for help!

4 Assignment

Reference images for all tasks are in Figure 4.

4.1 Task 1

Replace the unit sphere with a unit cube (Figure 4a). Code for an SDF cube
is available online, in the course notes, or in Appendix A.

As you pivot around the cube, you'll notice that the initial RENDER_DEPTH setting
of 50 is insu�cient and we lose pixels from the backs of the sides of the cube
as the sides become oblique towards us. This is because the closer a plane is
to parallel to the ray-marched ray, the more steps the ray can advance without
drawing quite close enough to the plane to touch it. At only 50 steps, it's easy
for a ray that would actually hit the cube to run out of steps before it can make
contact.

To solve this problem, Signed Distance Fields o�er several clever solutions; but
for the purpose of this Tick, we'll simply apply brute force. Raise the value of
RENDER_DEPTH to 800.

4.2 Task 2

Demonstrate translation, union, di�erence, blending and intersection

(Figure 4b).

Place four cubes at (-3, 0, -3), (3, 0, -3), (-3, 0, 3), and (3, 0, 3). At +1 X-unit
and +1 Z-unit from the center of each cube, place four spheres. The center of
each sphere should be at (+1, +0, +1) from the center of its adjacent cube (see
Figure 4b and Figure 4c). Model the union, di�erence, blend and intersection
respectively of each cube/sphere pair.

For example, in Figure 4b, note how the front sphere and cube blend smoothly
together, whereas the back left pair are a discrete union without blending.

6

https://github.com/GLSL-Debugger/GLSL-Debugger

There are many functions available to you to perform a smooth blend between
two SDFs; you will �nd one in the course notes, which has been used with
k = 0.2 in �gure Figure 4b.

4.3 Task 3

Demonstrate procedural texturing based on the SDF (Figure 4c).

Add a ground plane beneath the cubes, a horizontal plane at Y = -1. Color the
plane, but not the cubes, with a regular pattern indicating the distance from
that point in the plane to the nearest geometry (excluding the plane itself).
This is an example of a procedural texture. The e�ect should be that points in
the plane which are equidistant from the cubes and spheres should always be
colored the same color, regardless of where in the plane they are.

Your texture will repeat itself over intervals of the signed distance:

• Every 1 unit of distance, your distance texture should shade from light
green (0.4, 1, 0.4) to light blue (0.4, 0.4, 1) - GLSL's mod() and
mix() methods will be helpful here

• Every 5 units of distance, your texture should show a clear black line, 0.25
units wide

Like so:

If your distance visualization doesn't quite match the reference image (Fig-
ure 4c) near the corners of your cubes, Figure 5 may be useful. And check out
Appendix A for more about what you can learn from visualizing the distance
function.

4.4 Task 4

Add a torus and specular lighting (Figure 4d).

Replace the spheres and cubes with a horizontal torus centered at vec3(0,3,0)
of major radius 3, minor radius 1.

Add specular lighting to your scene by modifying the method shade(). For
simplicity, assume that every element in your scene has ambient coe�cient 0.1,
di�use coe�cient 1.0, specular coe�cient 1.0, and `specular shininess' coe�cient
256.

4.5 Task 5

Implement soft shadows (Figure 4e).

7

Tip your torus up onto its side, placing it in the XY plane centered at the origin,
perpendicular to the Z axis.

Recall that hard-edged shadows can be computed quite easily with signed dis-
tance �elds: just as you would in raytracing, you can call your raymarching code
along the path towards the light from the point being illuminated. If the signed
distance �eld ever drops to zero or below, you'll know you've hit an obstruction.
The bene�t of an SDF implementation is that now you can also measure when
you get close to an intervening object and use that nearest distance to simulate
soft shadows.

The soft shadows used in the reference image were rendered with the sample
code given in lecture.

4.6 Task 6

Implement repetition (Figure 4f).

Create an in�nite �eld of interlocking rings as shown in Figure 4f. Each ring is
a torus with major radius 3 and minor radius 0.5, repeating in�nitely in the XZ
plane. The centers of the torii are separated by 8 units each.

5 Submission

Use the built-in screencapture feature (S) to export one image for each task
of the tick. The screencapture will automatically position the camera to ease
comparison against the reference images. Submit these six images and your
GLSL code.

Submit your GLSL code as six �les, one for each Task, compressed into a single
.zip �le. Name your GLSL �les "fragment_shader - Task<n>.glsl".

Your program will be checked in detail during the ticking session, and you
will be asked to make changes to your shader `on the �y' to demonstrate your
understanding of your ray marcher.

You will need to submit the following �les for this tick:

Separately for automated checking:

• Task1.png

• Task2.png

• Task3.png

• ...

In a single .zip �le:

• fragment_shader - Task1.glsl

8

(a) Cube (b) Geometric operations

(c) Signed distance texture (d) Torus and specular lighting

(e) Soft shadows (f) Repetition

Figure 4: Reference images
9

• fragment_shader - Task2.glsl

• fragment_shader - Task3.glsl

• ...

A Two di�erent ways to model a cube

The choice between seemingly-identical distance functions can actually have sig-
ni�cant impact on the performance of your ray marcher. Remember that

• your ray marcher takes the largest step it can based on how near the
nearest object could be to the current point

• a valid SDF need only return an upper bound on the signed distance, not
the minimum such upper bound

With that in mind, here are two equally viable ways to implement a cube as an
SDF:

Non-linear form:

float cube(vec3 p) {
return max(max(abs(p.x), abs(p.y)), abs(p.z)) - 1; // 1 = radius

}

Linear form:

float cube(vec3 p) {
vec3 d = abs(p) - vec3(1); // 1 = radius
return min(max(d.x, max(d.y, d.z)), 0.0) + length(max(d, 0.0));

}

Both methods return an upper bound of the distance from point p to the unit
cube. Where they di�er is in their treatment of points which due not fall directly
in front of one of the six faces of the cube. In the non-linear form, the upper
bound on the distance from the cube to the point is the maximum of the length
of the projection of the point along the three axes. In the linear form, the upper
bound is determined by the vector length of d. So when a point is out in space
past the corner of the cube, you can think of the non-linear form as returning
the biggest side of the triangles from the corner to the point; whereas the linear
form returns the hypotenuse of those triangles. The linear form will thus return
values which are larger than those of the non-linear form.

If we visualize the signed distance for these two functions side-by-side, one can
see that the linear version's distance �eld is `tighter' to the model than the non-
linear form (Figure 5). This means that a ray marcher using the linear form
will be able to take larger steps from nearer in, and thus take fewer iterations
overall to render the cube.

10

Figure 5: Side-by-side comparison of two implementations of the cube() dis-
tance function. On the left, by choosing the absolute maximum distance along
each axis, we return unnecessarily far distances along the axes |X|=|Z|. On the
right, by choosing length(p), we achieve a tighter upper bound on the distance
function along the |X|=|Z| lines.

A second bene�t to the linear form is that its gradient varies continuously. This
is a nice trait when blending primitives together into more complex shapes; we
avoid introducing regions where the gradient to the surface changes discontinu-
ously, which could cause rendering artifacts.

Since the linear form has continuous gradient, what happens when we increase
the radius of the function? Try increasing the radius by subtracting 0.5 from
the �nal SDF (Figure 6).

B Twists and other nonlinear transformations

Let's say that you want to model a box of height 4, which twists along the Y
axis and which tapers inwards (becomes skinnier) as it rises. The result would
look a bit like a unicorn horn, if unicorn horns were square at the top instead
of pointy (Figure 7).

B.1 Twist

A twist deformation is a nonlinear spatial transform which rotates geometry by
a variable amount. Given an axis, geometry in the plane perpendicular to that
axis is rotated as a function of how far along the axis the plane lies. Your goal

11

Figure 6: Using the linear version, cube() - 0.5 creates a box with rounded
edges and corners

is a twist along the Y axis, so you'll be rotating the X and Z coordinates of your
points.

float twistedBox(vec3 pt) {
float t = pt.y * PI;
return box(vec3(

pt.x * cos(t) + pt.z * sin(t),
pt.y,
-pt.x * sin(t) + pt.z * cos(t))) / (2 * sqrt(2));

}

which implements the classic rotation matrix,

R =

[
cosθ −sinθ
sinθ cosθ

]
Remember that you're not actually twisting geometry with this rotation: in-
stead, you're twisting the space that your geometry occupies. This can lead
to complications in ray marching, because sometimes the estimate of `nearest
distance' to a twisted surface will underestimate the distortion of space. If you
see glitches and visual artifacts in your rendering�missing pixels�try dividing
your distance function by the greatest distance that a point could travel during
a rotation. In this case, since you're twisting a unit cube, that distance is 2

√
2

12

Figure 7: A twisted, tapering cube, which demonstrates the utility of the Lip-

shultz constant.

13

(twice the distance from the corner of the cube to the axis of rotation). This is
an example of a Lipschultz constant.

For more on the Lipschultz constant (and many other tips and tricks for signed
distance �eld modeling), check out Hart's 1996 paper.

B.2 Taper

A taper deformation is a nonlinear spatial transform with reduces the radius of
geometry along an axis. This is accomplished by increasing the values of the X
and Z coordinates of the point as a function of increasing Y. For ease of reading,
we've separated the taper from the Y scaling:

float taperedTwist(vec3 pt) {
pt.x *= (pt.y + 2);
pt.z *= (pt.y + 2);
return twistedBox(pt) / 1.25;

}

float tallTaperedTwist(vec3 pt) {
return taperedTwist(vec3(pt.x, (pt.y - 3) * 0.25, pt.z));

}

Like the twist, a taper can create situations where a ray near your geometry
will be given an overestimate of the distance to the nearest geometry, causing
the ray to skip the surface. Here again we divide by a small constant to ensure
that the ray does not overshoot. 1.25 is su�cient here.

C Gratuitous torus abuse

Frustrated by the �nal task? Want to vent your anger on a defenseless torus?
Try this:

float twistedTorus(vec3 pt, float R, float r) {
float t = sin(currentTime) * ((R+r)*(R+r) - pt.x*pt.x) * PI/8;
pt = vec3(

pt.x,
pt.y * cos(t) + pt.z * sin(t),
-pt.y * sin(t) + pt.z * cos(t));

return torus(pt, R, r) / 5;
}

14

	Introduction
	Getting started
	What you'll submit
	Screenshots
	Task files

	Building and running the Tick
	OpenGL
	Compiling and running the code
	Debugging a raymarcher in GLSL

	Assignment
	Task 1
	Task 2
	Task 3
	Task 4
	Task 5
	Task 6

	Submission
	Two different ways to model a cube
	Twists and other nonlinear transformations
	Twist
	Taper

	Gratuitous torus abuse

