
Graphics Ticks: Working with
IDEs

Eclipse and IntelliJ

Preliminary

In this document we detail how to set up your Eclipse or IntelliJ en-
vironment for the OpenGL graphics ticks. We will show you how to
correctly import your source files, and correctly set up your project so
that it can reference the Lightweight Java Games Library (LWJGL) and
the Java OpenGL Math Library (JOML) required for our OpenGL im-
plementation.

First, please download the relevant .zip file from Moodle and extract
it to your working directory.

Please refer to section 1 if you are using Eclipse, and section 2 if
you are using IntelliJ. Ensure that you have followed this guide correctly
and have a working OpenGL implementation before coming to any help
sessions.

1



1 Eclipse

Please download Eclipse from www.eclipse.org/downloads/packages/eclipse-ide-java-developers/

oxygenr, and install it. When you run it, you may be greeted with a dialogue
asking you to choose a workspace – the default is fine.

Creating your project and importing libraries

Figure 1: the Eclipse welcome screen.

On opening Eclipse, you should be see a welcome screen as shown in Figure 1.
From here, please do the following:

1. Click on Create a new Java Project (alternatively go to File→ New→ Java
Project).

2. In the Create a Java Project window (Figure 2):

• Give the project a name.

• Untick the Use default location option.

• Browse to the folder you extracted from the tick’s .zip file – this is
the one that contains the src folder.

• Click Next.

3. In the Java Settings window:

2

www.eclipse.org/downloads/packages/eclipse-ide-java-developers/oxygenr
www.eclipse.org/downloads/packages/eclipse-ide-java-developers/oxygenr


Figure 2: the Eclipse Create a Java Project window.

• Under the Source tab, ensure the source folders appear as in (Figure 3).

• Under the Libraries tab (Figure 4), you will see Eclipse has auto-
matically added all the .jar files in the lib directory. Ensure that
the lwjgl.jar, lwjgl-util.jar, and joml.jar appear.

• Click Finish.

1.1 Running your project

You should now be at a blank workspace, with the tick shown in the Package
Explorer in the left pane. Navigate to the Tick.java file which contains our
main() method and open it. You should then be able to run the project by
clicking the green play button in the top toolbar (Figure 5). This will give
an error: Exception in thread ”main” java.lang.UnsatisfiedLinkError: no lwjgl(64)
in java.library.path. This is because the JVM cannot locate the native libraries

3



Figure 3: the Eclipse source file selection.

required to use LWJGL. To correct this, please do the following:

1. Click on the dropdown menu next to the green play button, and click Run
Configurations... (Figure 6a).

2. In the window that appears, select the Tick run configuration. In the
Arguments tab, add the following to the VM Arguments field:

-Djava.library.path=lib/LWJGL/native/YOUR_OS

Where YOUR_OS should be windows, macosx, or linux depending on your
operating system (Figure 6b).

You should now be able to run your program without error. Ensure an OpenGL
window opens correctly as described in your tick.

You should now be ready to begin working on the tick.

4



Figure 4: the Eclipse library selection.

Figure 5: the Eclipse workspace.

5



(a) editing run configurations in Eclipse.

(b) changing VM options in Eclipse.

Figure 6: finding the native libraries in Eclipse.

6



2 IntelliJ

Please download IntelliJ from www.jetbrains.com/idea/download, and install
it.

2.1 Creating your project and importing libraries

Figure 7: the IntelliJ splash screen.

On opening IntelliJ, you should be see a splash screen as shown in Figure 7.
From here, please do the following:

1. Click on Import Project (alternatively go to File → New → Project from
Existing Sources...).

2. Select your folder you extracted from the tick’s .zip file – this is the one
that contains the src folder.

3. Select Create project from existing sources (Figure 8), then click Next.

4. Give the project a name, and ensure the project location is still set to the
folder you selected (Figure 9). Click Next.

5. Ensure the source files are as shown in Figure 10. Click Next.

6. Ensure the LWJGL and JOML libraries are selected as shown in (Figure 11).
The LWJGL libary should contain two .jar files (lwjgl.jar and lwjgl-util.jar),
and the joml library should contain a single .jar file (joml.jar). Click Next.

7. You should see a window as in Figure 12a – check that this is correct,
then click Next.

7

www.jetbrains.com/idea/download


Figure 8: the IntelliJ import project screen.

8. In the following window (Figure 12b), ensure that the SDK is correctly
selected – you should be using version 1.8. Click Next.

9. Click Finish.

2.2 Running your project

You should now be at a blank workspace, with the tick shown in the Project
pane on the left. Navigate to the Tick file which contains our main() method
and open it. You should then be able to run the project by clicking Run
→ Run... (Figure 13). This will give an error: Exception in thread ”main”
java.lang.UnsatisfiedLinkError: no lwjgl(64) in java.library.path. This is because
the JVM cannot locate the native libraries required to use LWJGL. To correct
this, please do the following:

1. Click on Run → Edit Configurations... (Figure 14a)

2. In the window that appears, add the following to the VM Options field:

-Djava.library.path=lib/LWJGL/native/YOUR_OS

8



Figure 9: naming your project in IntelliJ.

Where YOUR_OS should be windows, macosx, or linux depending on your
operating system (Figure 14b).

You should now be able to run your program without error. Ensure an OpenGL
window opens correctly as described in your tick.

You should now be ready to begin working on the tick.

9



Figure 10: the IntelliJ sources screen.

10



Figure 11: the library select screen in IntelliJ.

(a) the IntelliJ module selection. (b) the IntelliJ Java SDK selection.

Figure 12: selecting modules and the Java SDK in IntelliJ.

11



Figure 13: running the program in IntelliJ.

(a) editing run configurations in
IntelliJ.

(b) changing VM options in IntelliJ.

Figure 14: finding the native libraries in IntelliJ.

12


	Eclipse
	Running your project

	IntelliJ
	Creating your project and importing libraries
	Running your project


