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Abstract

Path from Photorealism to Perceptual Realism

Fangcheng Zhong

Photorealism in computer graphics — rendering images that appear as realistic as
photographs — has matured to the point that it is now widely used in industry. With
emerging 3D display technologies, the next big challenge in graphics is to achieve Perceptual

Realism — producing virtual imagery that is perceptually indistinguishable from real-world

3D scenes. Such a significant upgrade in the level of realism offers highly immersive and
engaging experiences that have the potential to revolutionise numerous aspects of life and
society, including entertainment, social connections, education, business, scientific research,
engineering, and design.

While perceptual realism puts strict requirements on the quality of reproduction, the
virtual scene does not have to be identical in light distributions to its physical counterpart
to be perceptually realistic, providing that it is visually indistinguishable to human eyes.
Due to the limitations of human vision, a significant improvement in perceptual realism
can, in principle, be achieved by fulfilling the essential visual requirements with sufficient
qualities and without having to reconstruct the physically accurate distribution of light.
In this dissertation, we start by discussing the capabilities and limits of the human visual
system, which serves as a basis for the analysis of the essential visual requirements for
perceptual realism. Next, we introduce a Perceptually Realistic Graphics (PRG) pipeline
consisting of the acquisition, representation, and reproduction of the plenoptic function of
a 3D scene. Finally, we demonstrate that taking advantage of the limits and mechanisms
of the human visual system can significantly improve this pipeline.

Specifically, we present three approaches to push the quality of virtual imagery towards
perceptual realism. First, we introduce DiCFE, a real-time rendering algorithm that exploits
the binocular fusion mechanism of the human visual system to boost the perceived local
contrast of stereoscopic displays. The method was inspired by an established model of
binocular contrast fusion. To optimise the experience of binocular fusion, we proposed
and empirically validated a rivalry-prediction model that better controls rivalry. Next,

we introduce Dark Stereo, another real-time rendering algorithm that facilitates depth



perception from binocular depth cues for stereoscopic displays, especially those under low
luminance. The algorithm was designed based on a proposed model of stereo constancy
that predicts the precision of binocular depth cues for a given contrast and luminance. Both
DiCE and Dark Stereo have been experimentally demonstrated to be effective in improving
realism. Their real-time performance also makes them readily integrable into any existing
VR rendering pipeline. Nonetheless, only improving rendering is not sufficient to meet all
the visual requirements for perceptual realism. The overall fidelity of a typical stereoscopic
VR display is still confined by its limited dynamic range, low spatial resolution, optical
aberrations, and vergence-accommodation conflicts. To push the limits of the overall
fidelity, we present a High-Dynamic-Range Multi-Focal Stereo display (HDR-MF-S display)
with an end-to-end imaging and rendering system. The system can visually reproduce
real-world 3D objects with high resolution, accurate colour, a wide dynamic range and
contrast, and most depth cues, including binocular disparity and focal depth cues, and
permits a direct comparison between real and virtual scenes. It is the first work that
achieves a close perceptual match between a physical 3D object and its virtual counterpart.
The fidelity of reproduction has been confirmed by a Visual Turing Test (VT'T) where
naive participants failed to discern any difference between the real and virtual objects in
more than half of the trials. The test provides insights to better understand the conditions
necessary to achieve perceptual realism. In the long term, we foresee this system as a
crucial step in the development of perceptually realistic graphics, for not only a quality
unprecedentedly achieved but also a fundamental approach that can effectively identify

bottlenecks and direct future studies for perceptually realistic graphics.
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Glossary

3IFC Three-interval forced choice.
ADC Analogue-to-digital converter.
BRDF Bidirectional reflectance distribution function.

CFA Colour filter array.

CFF Critical flicker frequency.

CGH Computer-generated holography.

CIE International Commission on Illumination.
cpd Cycles per degree.

CSF Contrast sensitivity function.

DiCE Dichoptic contrast enhancement.
DoF Depth of field.
DR Differentiable rendering.

DSLR camera Digital single-lens reflex camera.
FoV Field of view.

HDR High dynamic range.
HDR-MF-S display High-dynamic-range multi-focal stereo display.
HMD Head-mounted display.

HVS Human visual system.

IPD Inter-pupillary distance.



MAP Maximum a posteriori.
OLED Organic light-emitting diode.

ppd Pixels per degree.
ppi Pixels per inch.

PRG Perceptually realistic graphics.

SLM Spatial light modulator.

SPD Spectral power distribution.
ToF camera Time-of-flight camera.

VA conflict Vergence-accommodation conflict.
VR Virtual reality.

VTT Visual Turing test.



Chapter 1

Introduction

1.1 Overview

Realism is an everlasting and primary pursuit in the field of computer graphics. Well-
established physically-based rendering techniques can generate images that are as realistic
as photographs. Nowadays, photorealistic rendering has matured to the point that it is
widely applied in the industry. From natural substances of multitudinous forms to intricate
human facial expressions, artists and engineers can synthesise images of virtual scenes with
complex geometry, materials, and illumination, especially in cinematography where most
cutting-edge graphics algorithms in nearly all sub-fields are practised. Yet, photorealistic
rendering places an upper limit on the realism achieved by a photograph. Emerging
display technologies can deliver high dynamic range (HDR) and contrast, accurate colour
reproduction, and a close approximation to a full set of real-world cues of 3D structure.
Together, such displays can potentially exceed the realism of photographs and bring
us closer to what we define as perceptual realism — displaying virtual scenes that are

perceptually indistinguishable from real-world 3D scenes.

The increasing level of realism has the potential to significantly impact numerous aspects of
life and society. For instance, in the entertainment sector such as gaming and filmmaking,
perceptually realistic graphics (PRG) enhances the overall experience by creating a more
believable and engaging environment for players and viewers. In live streaming, PRG
transcends the experience of traditional media by enabling the audience to freely immerse
themselves in every detail of the event. In other domains such as education, business,
science, engineering, and design, incorporating PRG and 3D displays offers a valuable tool
for complex concepts and ideas to be demonstrated through vivid visual aids and realistic

simulation. Furthermore, PRG provides an opportunity for individuals to better connect
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with friends, family, and colleagues as if they were physically present. People can also
explore places from afar, such as outer space, natural wonders, museums, and historical

sites, without the need for long-distance travel.

From the physics perspective, the ultimate objective of perceptually realistic graphics is to
reproduce a virtual scene that faithfully approximates the true light field of the real world.
Unfortunately, this entails an unreasonable requirement for storage, computing power, and
physical control of light, which is currently unrealisable for any display system. However,
the capability of the human visual system is limited in perceiving minor inaccuracies
in the light field. The virtual reproduction of light does not have to be identical in
distribution to its physical counterpart to be perceptually realistic, provided that it is

visually indistinguishable to human eyes.

Limits of human vision have been widely exploited in photorealistic graphics such as
level of detail, tone mapping, and colour coding. We continue this endeavour. In this
dissertation, we investigate the essential visual requirements for perceptual realism and
propose practical solutions that exploit the limits and mechanisms of human vision to push
the quality of computer-generated 3D imagery towards perceptual realism. Throughout
this dissertation, we argue that both the physical and perceptual perspectives are equally

paramount in the evaluation and advancement of perceptually realistic graphics.

With this approach, we start this dissertation with a background on the human visual
system (HVS), providing a theoretical basis for the analysis of essential visual requirements
for perceptual realism from the geometric, spectral, and temporal aspects. The most
relevant visual requirements that we identify as essential and fundamental for perceptual

realism are retinal image, spatial resolution, depth perception, dynamic range, contrast,

colour (gamut and accuracy), and temporal resolution. Such requirements provide concrete

objectives for the aimed displayed qualities of perceptually realistic graphics. Next, we
introduce a perceptually realistic graphics (PRG) pipeline consisting of the acquisition,
representation, and reproduction of the plenoptic function of a 3D scene. We examine both
the physical and perceptual perspectives in the evaluation and advancement of this pipeline.
As many integral parts across the pipeline share the same techniques with photorealistic
graphics, we focus on aspects that are unique or substantial to perceptual realism, such
as computational 3D displays and depth reproduction, high-dynamic-range imaging, and
scene representations for view synthesis with megapixel images. Finally, we present three
approaches to push forward the quality of perceptually realistic graphics by exploiting
the limits and mechanisms of human vision. First, we introduce DiCE, a dichoptic
contrast enhancement method that exploits the binocular fusion mechanism of the human

visual system to boost the perceived local contrast for stereoscopic displays. Next, we
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introduce Dark Stereo, an algorithm manipulating contrast to facilitate depth perception
for stereoscopic displays under low luminance. Finally, we introduce a High-Dynamic-
Range Multi-Focal Stereo display (HDR-MF-S display) with an end-to-end imaging and
rendering system that can reproduce virtual 3D objects with high fidelity to the point that
they can be confused with physical ones. Overall, we position our work throughout this
dissertation within a general framework such that each sub-work is dedicated to advancing
certain aspects of the PRG pipeline to improve the quality for certain visual requirements

for perceptual realism, as shown in Figure 1.1.
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Figure 1.1: Ilustration of the dissertation structure. We start with a background (Chap-
ter 2) discussing the perception (Section 2.1), acquisition (Section 2.2), representation
(Section 2.3), and reproduction (Section 2.4) of the plenoptic function. In particular,
Section 2.1 identifies the essential visual requirements for perceptual realism. Sections 2.2 -
2.4 constitute a perceptually realistic graphics (PRG) pipeline. Our main work (Chap-
ters 3 and 4 ) is positioned such that each sub-work focuses on improving specific aspects
of the PRG pipeline to meet specific visual requirements for achieving perceptual realism.
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Figure 1.2: Comparison of standard stereo images and the images with enhanced perceived
contrast using DiCE [202].

1.2 Apparent enhancement rendering

The quality of visual content depends not only on the physical light distribution of the
content, but also on the latent processing of it by the human visual system. As such, we
can leverage particular characteristics of the HVS to improve the perceived quality of 3D
scenes, transcending the limits of the display device. These approaches are referred to as

apparent enhancement techniques.

In Chapter 3, we propose two apparent enhancement rendering algorithms designed to
boost the perceived quality of contrast and depth for stereoscopic displays. In Section 3.1,
we present DiCFE [202], a dichoptic contrast enhancing method that exploits the HVS
binocular fusion mechanisms to boost the perceived local contrast and visual quality of
images (Figure 1.2). While this method was inspired by an established model of binocular
contrast fusion, we proposed and empirically validated a rivalry-prediction model to better
explain the main factors contributing to binocular rivalry when two images of different
contrasts are displayed. This way we can effectively control the contrast enhancement while
maintaining rivalry at a moderate level. Since the method is based on fixed tone curves, it
has a negligible computational cost, and therefore, is well suited for real-time applications
such as VR rendering. In Section 3.2, we present Dark Stereo [182], a depth-enhancing

method that compensates for the deteriorated depth perception from stereo cues under
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Standard rendering

Proposed stereo constancy method

Figure 1.3: Comparison of standard stereo images and the images after stereo constancy
processing using Dark Stereo [182].

low luminance (Figure 1.3). The algorithm was designed upon a proposed model of stereo
constancy that predicts the precision of binocular depth cues for a given contrast and
luminance. We applied the model of stereo constancy to develop a multi-scale contrast
compensation method to preserve the precision of binocular depth cues at various display
luminance levels. The method has been implemented in GPU shaders and thus is also well-
suited for real-time applications. Both DiCE and Dark Stereo have been experimentally

demonstrated to be effective in improving realism and overall visual quality.
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Figure 1.4: Photographs of virtual objects rendered by our High-Dynamic-Range Multi-
Focal Stereo (HDR-MF-S) display [203] in comparison with real objects.

1.3 Reproducing reality

Imagine a black box containing either a physical 3D object or one virtually rendered by a
3D display. If an observer, without prior knowledge, is unable to discern the difference
between these two scenarios, the display system can be said to have passed a Visual Turing
Test (VTT) [5]. Passing a visual Turing test for arbitrarily complex scenes is the holy grail
of perceptually realistic graphics. Only improving rendering as introduced in Chapter 3 is
insufficient to fulfil all the visual requirements to pass a visual Turing test. The overall
fidelity of a typical stereoscopic VR display is confined by limited dynamic range, low
spatial resolution, lens distortions, and vergence-accommodation conflicts. Volumetric
displays such as light-field or holographic displays also cannot achieve the resolution, colour

accuracy, gamut, and dynamic range required for perceptual realism.

To push the limits of overall fidelity and maximise the quality of all the essential visual
cues for perceptual realism, in Chapter 4, we introduce a High-Dynamic-Range Multi-Focal
Stereo display (HDR-MF-S display) [203] with an end-to-end imaging and rendering system
that can reproduce virtual 3D objects with high fidelity so that they can be confused with
physical ones (Figure 1.4). By combining four custom-built HDR displays into a single-
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viewer two-focal plane stereoscopic display and integrating differentiable rendering with
lumigraph view synthesis and linear depth filtering, the system can acquire a real-world
3D object and reproduce it with high resolution, accurate colour, a wide dynamic range
and contrast, and most depth cues, including binocular disparity and focal depth cues.
Moreover, the system supports a direct comparison between the real and virtual scenes.
This allows us to perform a visual Turing test to evaluate the quality of the display. We
propose a strict three-interval-forced-choice (3IFC) visual Turing test to ensure that the
virtual scene must not be visually different in any respect from the real scene. The results
indicate that naive observers can only detect a discrepancy between real and displayed 3D
objects with a probability of 0.44. With such a level of realism, our system can function
as a testbed to facilitate a variety of studies in perceptually realistic graphics where both

faithful reproductions of all visual cues and comparison to reality are paramount.
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1.4 Contributions

In this dissertation, we provide a unified background for the study of perceptually re-
alistic graphics from the perspectives of the acquisition, representation, reproduction,
and perception of the plenoptic function. Next, we identify the essential visual require-
ments for perceptual realism and propose several approaches to push the quality of
computer-generated imagery towards such requirements. Finally, we demonstrate that
taking advantage of the HVS can significantly improve the perceptually realistic graphics
pipeline. Specifically, we propose two apparent enhancement rendering algorithms to boost
the perceived quality of contrast and depth for stereoscopic displays, without having to
expand the display contrast ratio or manipulate disparity. Both algorithms have been
experimentally demonstrated to improve realism and can be readily integrated with any
existing VR rendering pipeline with their real-time performance. We also introduce an
HDR-MF-S display apparatus with an end-to-end imaging and rendering system. The
system can achieve a close perceptual match between the real and virtual objects by
maximising the quality of essential visual cues, and without having to reconstruct the
physically accurate light fields. This is the first work that passed a visual Turing test with
a strict 3IFC criterion. We believe that this is a significant step in computer graphics
that combines all different aspects towards the holy-grail goal of digitising and visually
reproducing a physical 3D object. We also believe that our proposed 3IFC visual Turing
test on a display apparatus allowing for a direct comparison between real and displayed
scenes is a fundamental approach for the future studies of perceptually realistic graphics.
Such studies not only provide insights to better understand the conditions necessary to
achieve perceptual realism, but also help identify the most salient artefacts and bottlenecks
of existing display technologies, which is crucial in directing the future designs of the PRG

pipeline and 3D displays towards where the HVS is most sensitive.

In summary, this dissertation made the following contributions:

Identification of the essential visual requirements for perceptual realism analysing

the visual perception of the plenoptic function.

A unified overview of the perceptually realistic graphics pipeline.

A real-time dichoptic contrast enhancement method that improves the perceived
contrast based on the binocular fusion mechanism of the human visual system, while
controlling the level of rivalry based on a proposed model explaining the main factor

causing the rivalry.

A stereo constancy method that improves depth perception on dimmed displays
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based on a proposed model of stereoscopic constancy on various luminance and

contrast.

A novel display apparatus with an end-to-end system capable of capturing and
reproducing all the essential visual cues for a static scene of moderate size to reach

a close perceptual match between the real and virtual scenes.

A fundamental approach to study the necessary conditions for perceptual realism
and evaluate the qualities of 3D displays, including a 3IFC visual Turing test and
display architecture that permits a direct comparison between the real and virtual

scenes.

The first work that passed a strict 3IFC visual Turing test with a near-eye and

binocular presentation of a 3D object and without any degradation of the real scene.
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Chapter 2

Background

Restricting our considerations to geometric optics!, the light distribution of a 3D scene

can be fully described by a light field, expressed as a 7D plenoptic function:
b =F(x,y,2,0,0,\1), (2.1)

which indicates the spectral radiance ® (W sr™' m™3) in wavelength \ of a ray traversing
the spatial coordinates (z,y, z) along the direction (6, ¢) at time ¢. The plenoptic function
plays a significant role in the study of photorealistic graphics, as it can be used to synthesise
photorealistic images of a 3D scene at an arbitrary viewing position, orientation, and
time. The same criticality of the plenoptic function, if not greater, applies to the study of
perceptually realistic graphics, as the objective is to synthesise an entire virtual light field.
Therefore, in this chapter, we provide a unified background for the study of perceptually
realistic graphics from the perspectives of the acquisition, representation, reproduction,

and perception of the plenoptic function.

We start by formulating visual perception as the visual sampling of the plenoptic function
(Section 2.1), relating the capabilities of the human vision system (HVS) to the required
precision of the virtual light fields. Next, we introduce a perceptually realistic graphics
pipeline consisting of the acquisition (Section 2.2), representation (Section 2.3), and
reproduction (Section 2.4) of the light fields. We discuss the advancement and challenges
of this pipeline from both the physical and perceptual perspectives. As this background
reviews the entire pipeline, it is impossible to cover all the details. We focus on aspects
that are unique or substantial to perceptual realism and refer to other references for further
details.

lincoherent light and objects larger than the wavelength of light.
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2.1 Visual requirements for perceptual realism

Although the plenoptic function (Equation 2.1) is a seven-dimensional continuous function,
the human vision system (HVS) is limited in perceiving minor inaccuracies in the light
fields. The virtual reproduction of light does not have to be identical to its physical
counterpart, restoring the redundant information that exceeds the limits of human vision,
to be perceptually realistic. For example, we do not directly perceive the spectral radiance
of individual rays but the irradiance (projection) of rays coming from all directions on
the retina. Spectral irradiance is further integrated over various ranges of wavelengths by
the photoreceptors leading to colour vision. The spatial and temporal resolution that the
HVS can resolve is also limited. These significantly simplify the visual requirements for
perceptual realism. By leveraging the limitations of the HVS, it is possible to reduce the
precision of the virtual light fields rendered by a 3D display while maintaining identical

visual perceptions.

In this section, we explain the basics of the HVS, identifying the relevant visual requirements
for perceptual realism by analysing the capabilities and limitations of the HVS in terms of
its perception of the plenoptic function. We discuss such requirements from the geometric,
spectral, and temporal aspects, each pertaining to the parameters (x,y, 2,0, ¢), (A), and
(t) of the plenoptic function. We argue that, from the geometric aspect, the most relevant

visual cues for perceptual realism are retinal image, spatial resolution, and depth percep-

tion; from the spectral aspect, the most relevant visual cues are dynamic range, contrast,

and colour (gamut and accuracy). We do not prioritise considerations on the temporal
aspect in this dissertation. Qualitative and quantitative requirements on such visual cues
direct the designs of the perceptually realistic graphics pipeline with concrete objectives,
optimising the distribution of limited resources in computation, data transmission, and
display hardware to where the HVS is most sensitive. In general, it is a great challenge
for a display system and its associated imaging and rendering algorithms to reproduce a
virtual 3D scene that collectively meets all the visual requirements without artefacts and
trade-offs.

2.1.1 Geometric considerations

We first consider the geometric parameters (z,y, z, 0, ¢) of the plenoptic function (Equa-
tion 2.1), which specifies the origin and direction of rays. The HVS does not directly
perceive the radiance of individual rays specified by these geometric parameters but their

irradiance (projection) on the retina with a finite resolution. This greatly reduces the
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number of rays needed to be controlled in a virtual reproduction. Such reduction is
three-folded. First, due to the limited pupil size and field of view (FoV) of human eyes,
only a fraction of light from the scene can reach the retina through the pupil, which
has a diameter varying from 2 to 4 mm in daylight and 4 to 8 mm in the dark [166]. As
shown in Figure 2.1, the maximum FoV for both eyes combined is approximately 100°
vertically and 200° horizontally, with a binocular FoV (i.e. overlapped FoV seen by both
eyes) of 120° [29]. An individual eye has a horizontal FoV of approximately 160°. The
FoV contributes significantly to the sense of immersion but is not an essential visual cue
for realism, as reducing the FoV does not necessarily degrade fidelity. Second, the visual
system does not directly perceive the radiance of individual rays but a retinal image, the
irradiance (projection) of rays onto the retina. Therefore, accurate control of individual
rays is not a necessary precondition for correct image formation on the retina. Finally,
human vision has a limited acuity, ability to distinguish small details on the retina. This
is mainly determined by the density of photoreceptors on the retina and diffraction and
aberration throughout the lens [155], with other factors including luminance, contrast,
and colour, as can be explained by a contrast sensitivity function (Section 2.1.2). Visual
acuity reaches its peak at the fovea, an area on the retina with the highest density of cone
photoreceptors. It has a resolving power of approximately 120 cycles per degree (cpd)
of visual angle [120], corresponding to a spatial resolution of 240 pixels per degree (ppd)
for a display. To match this level of acuity, the required spatial resolution R of a display
(measured by pixels per unit length (e.g. m, cm, mm)) at viewing distance d (measured

by the same unit length) can be calculated as:

240

2d tan 555

(2.2)

Although the retina only perceives the projected images of incoming rays, the HVS can
acquire additional depth information of a 3D scene which is not preserved in a retinal
image. Depth perception refers to the visual ability to perceive objects in three dimensions
and infer their relative or absolute distances. It arises from a variety of depth cues that can
be classified into pictorial cues, where retinal images provide the depth information, and
oculomotor cues, where depth judgment is based on eye movements. Depth perception can
also be categorised as binocular cues or monocular cues, depending on whether sensory

information is observed by both eyes or a single eye.

Conventional 2D displays can provide a variety of depth cues such as shading, relative size,
occlusion, and perspectives, but there are other cues unique to 3D displays. For example,
binocular disparity, or stereopsis, is a binocular pictorial cue where two retinal images

of the same scene are formed from disparate viewpoints of two eyes. When an object
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200°

Figure 2.1: Illustration of the bonocular FoV. Each eye sees a FoV of 160°, resulting in a
200° combined horizontal FoV, 120° of which are overlapping.

is closer, the disparity between its left and right retinal images is larger, and vice versa.
Inaccurate disparity causes distortions in perceived depth [63, 184]. Binocular disparity
is one of the most important depth cues [28] that is commonly employed in VR and
cinematographic applications to evoke stereo 3D scene appearance. Vergence is a binocular
oculomotor cue where the optical axes of the two eyes rotate and converge towards the
location of the object in focus. Kinaesthetic sensations from extraocular muscles provide
information for depth perception as the depth of an object is inversely related to the angle
of vergence [136]. Disparity and vergence together are referred to as stereo cues. Defocus
blur is a monocular pictorial cue where objects outside the depth of field of the eyes appear
blurry on the retina. Evidence has shown that focus cues affect both 3D shape perception
and the apparent scale of the scene [11, 50, 173]. Accommodation is the mechanism that
modulates the ciliary muscles to stretch or relax the lens and change the curvature of
the cornea to focus on objects close or distant. Such muscle movement provides feedback
to the HVS as a monocular oculomotor depth cue. As a cue weaker than defocus blur,
accommodation is mainly effective within two metres [42]. Accommodation and defocus
blur together are referred to as focus cues. A regular stereo display where the disparity is
provided by presenting two separate planar images to the left and right eyes does not drive
the accommodation to the correct depth. Both eyes accommodate to a fixed but incorrect
distance, since all the rays are originated from the screen rather than the actual depth of
the virtual object. Such incorrect accommodation cues lead to vergence-accommodation
conflict (VA conflict) since accommodation and vergence are coupled mechanisms [66].
Their decoupling may cause an unnatural visual experience that results in discomfort [185].
Finally, motion parallax is a monocular pictorial cue in which the viewers consider closer

objects to be moving faster than further objects.
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Figure 2.2: The normalised spectral responsivity of each type of cone cells, as reported by
the International Commission on Illumination (CIE) in 2006 [25].

While various 3D display architectures have employed distinct approaches to support the
aforementioned depth cues, it remains challenging to reproduce all the depth cues correctly

and collectively without introducing spatial or temporal artefacts.

2.1.2 Spectral considerations

Now we consider the spectral parameter (\) of the plenoptic function (Equation 2.1).
Although Equation 2.1 is a function of wavelength (\), the HVS does not perceive the
spectral radiance (or irradiance) per wavelength. Instead, it integrates the spectral irradi-
ance over the visible light spectrum, approximately ranging from 380 to 750 nanometres
in wavelength, via multiple types of photoreceptors on the retina. Cones and rods are
the photoreceptors responsible for the perception of spectral integration of light waves,
with cones predominantly sensitive to photopic (daylight, typically over 1cd/m?) vision
and rods to scotopic (nocturnal light, typically below 1073 cd/m?) vision. There are three
types of cones — L, M, and S cones, each peaking at a distinct wavelength in responsivity.
A multi-stage neural-circuity process of the signals received by each type of photoreceptor

contributes to the perception of colour.

For daylight conditions, colour is the result of LMS cone responses. The LMS cones

integrate the light spectrum weighted by the responsivity function of the L, M, and S
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cones:

L— /CD(/\)L()\) dx,

/ BO)YM(N) d, (2.3)
(0]

-,

where L, M, and S are the cone responses of a light spectrum with spectral radiance ®(\)

M =
S= [ ®(\)S(\)dA,
per wavelength A; L(X), M (), and S(X) are the spectral responsivity of cone cells of long,

medium, and short wavelength, as shown in Figure 2.2. If two nonidentical light spectra,

® and ®, result in the same LMS responses:

/ B(AVL(N) dA = / AL dA,

/ SO M(N) dA = / TOVM(N) d), (2.4)
/ BN)S(N) dA / TSN dA,

the HVS perceive them as equivalent despite non-matching spectral power distributions
(SPD). Such colours are referred to as metamers. Due to metamerism, displays do not
have to generate light waves with physically correct spectra but a metameric match to
reproduce a target colour. Therefore, it suffices to simplify Equation 2.5 from a function of
wavelengths A to a function of tristimulus colour channels ¢ (such as LMS) for a perceptual

match, reducing ® from spectral radiance to tristimulus colour values:
qD:F(I‘,y,Z,Q,(ﬁ,C,t). (25)

LMS can also be transformed into other tristimulus colour spaces such as XYZ and RGB
for specific applications. The set of all possible colours up to a metameric match can
be represented by a three-dimensional gamut of natural colours, such as one shown in
Figure 2.3.

The quality of colour can be further depicted by its chromaticity — the relative SPD
of the light waves regardless of its absolute intensities, and luminance — a photometric
measure of the intensity. For daylight vision, luminance can be calculated by integrating

the light spectrum weighted by a photopic luminous efficiency function:
Y = 683.002 lm/W/q)()\)y()\) dA. (2.6)
A

where Y is the absolute luminance (cd/m?) of a light spectrum with spectral radiance ®(\)

per wavelength A; y(\) is the photopic luminous efficiency function, as shown in Figure 2.4,
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0.8

Figure 2.3: The gamut of natural colour in the CIELUV [24] colour space, where (u/,v') is
the chromaticity coordinate and L is a perceptual measurement of luminance.

corresponding to a weighted sum of the three cone responsivity functions according to

their relative population on the retina.

The dynamic range of a scene, natural or displayed, refers to the ratio of its largest and
smallest luminance value: Yjax/Ymin. The largest dynamic range that a display device
can reproduce is also known as its contrast ratio. A more perceptually uniform measure
of dynamic range is given by the difference of log luminance, log;y(Ymax) — 10g10(Yinin)-
In natural scenes, the dynamic range spans approximately 12 to 14 orders of magnitude.
While human eyes do not perceive such a large dynamic range simultaneously [186],
they can adapt dynamically to shift the effective range in response to varying lighting
conditions [114].

A closely related quantity to dynamic range and luminance is luminance contrast, the local
difference in luminance of an object from its surroundings. Contrast can be measured in
several ways subject to the spatial configuration of the stimuli. For example, the contrast

of a periodic pattern such as sinusoidal gratings can be measured by Michelson contrast:

Ymax - Ymin

C(Michelson = 3~
Ymax + Ymin

(2.7)

where Y. and Y, are the maximum and minimum luminances in the grating. Alter-

natively, Weber contrast can be applied to measure the contrast of patches with small
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Figure 2.4: The CIE 1931 photopic luminous efficiency function [26].

foreground features superimposed on a large uniform background:

C - eroreground - Ybackground 92
‘Weber — Y. 5 ( 8)
background

where Yireground @nd Ypackground are the luminances of the foreground and background

patches.

The HVS has limited sensitivity to contrast — if the contrast of a pattern is below a
certain threshold, it is not detectable by human eyes. Due to such limitations, we can
safely quantise the output of the plenoptic function to a certain level without resulting
in a perceptual difference. Contrast sensitivity is defined as the inverse of the threshold
detectable contrast. As contrast sensitivity varies with many factors such as the background
luminance, frequency, orientation, eccentricity, and size of the stimuli, ample literature
has attempted to experimentally establish a contrast sensitivity function (CSF) to model
such variations [118]. Due to the inherent complexity of the CSF, it is typical to use
Gabor patches — sinusoidal gratings modulated by a Gaussian envelope — as the stimuli
to measure the CSF. For Gabor patches, Michelson contrast and Weber contrast are
equivalent. However, although the CSF provides a reasonably accurate measurement of
contrast sensitivity for Gabor patches, the detection threshold is in general higher for real
images composed of numerous texture patterns that can reduce the visibility of the main

feature. This phenomenon is referred to as contrast masking [93].
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2.1.3 Temporal considerations

We also consider the temporal parameter (t) of the plenoptic function (Equation 2.1).
There is a consensus that a high display refresh rate is essential to maintain a high visual
quality for higher velocities of motion [87, 113]. Motion artefacts such as judder, ghosting,
motion blur, and flicker can all be reduced with a higher refresh rate. However, it is
difficult to determine a single threshold refresh rate above which any motion artefacts are
not perceivable, as it depends on a multitude of factors such as the persistence and spatial
resolution of the display, and the velocity, luminance, and contrast of the stimuli. For
example, most AR/VR displays present images with low persistence, where an image is
displayed at a higher intensity for a fraction of a frame duration and the display remains
blank for the rest of the frame. Low persistence significantly reduces the motion blur
caused by eye gaze moving over a discretely moving image, which is stationary on the
display over the duration of a frame for a fixed refresh rate. However, while low persistence
attenuates the required refresh rate to prohibit motion blur, it can introduce visible flicker
artefacts — the perception of visual fluctuations in intensity and unsteadiness in the
presence of a light stimulus — if the refresh rate is under a certain threshold [64]. Critical
flicker frequency (CFF) measures the frequency at which an intermittent light stimulus
appears to be steady without flicker artefacts. Low persistence requires a higher CFF
for a steady flicker fusion. Therefore, it is difficult to determine a threshold refresh rate
required for perceptually realistic motion quality for an average scenario, although studies
showed that the marginal gain with a higher refresh rate significantly drops as the refresh

rate rises to 300 frames per second and beyond [113].

In this dissertation, we do not prioritise temporal considerations and focus on improving

realism for static scenes.
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2.2 High-fidelity 3D scene acquisition

3D scene acquisition is the process of sampling the plenoptic function ® = F(z,y, 2,0, ¢, ¢)
(Equation 2.5) of a 3D scene. Since perceptual realism requires the highest quality of
acquisition, we focus on scene acquisition using digital single-lens reflex cameras (DSLR
cameras) or mirror-less cameras which provide better control and quality compared to
other types of capture devices (such as light-field cameras, web cameras, and phone
cameras), although some can be jointly employed with a mirror-less or DSLR camera to
facilitate the acquisition process. For instance, time-of-flight cameras (ToF cameras) [75]
can facilitate 3D reconstruction by applying time-of-flight techniques to resolve the distance

between the camera and the scene.

Similar to Section 2.1, we consider the geometric (Section 2.2.1) and photometric (Sec-
tion 2.2.2) aspects of scene acquisition, each pertaining to the parameters (z,y, 2,6, ¢)

and (c) of the plenoptic function (Equation 2.5) of the reduced form.

2.2.1 Geometric image formation

Geometric image formation establishes the geometric relationship between pixels and their
sampled rays in 3D. In this subsection, we provide an overview of the geometric image

formation for three camera models: pinhole, thin-lens, and realistic cameras.
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Figure 2.5: Geometric image formation for a pinhole (left) and a thin-lens (right) camera
model. For a pinhole model, each infinitesimal point p on the image plane corresponds to
the sampling of a single ray (ﬁ traversing the camera origin o.

A pinhole camera model assumes an infinitesimal aperture that only allows for rays
traversing a single point. As shown in Figure 2.5 (left), each infinitesimal pixel on the
image plane corresponds to a single ray traversing the camera origin (aperture). The
mapping of such a ray to its projection onto the image plane can be modelled by a camera

matriz [161]. The pinhole model is the simplest form of geometric image formation for
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an ideal situation. In the real world, an infinitesimal aperture is not physically realisable.
Real cameras apply lenses to converge rays to form a sharp image with a nonzero aperture
size. A thin-lens camera is composed of a lens with assumedly negligible thickness, as
shown in Figure 2.5 (right). The lens converges rays emitting from a surface point of
distance d; in front of the lens to a point of distance ds behind. According to the lens law,

the relationship between d; and dy can be modelled by a thin lens equation:

1 + 1 = ! (2.9)

di dy [’
where f is the focal length of the lens. For a thin-lens model, an infinitesimal pixel on the
image plane no longer corresponds to a single ray but the irradiance of multiple incoming
rays from a nonzero solid angle. When the object is in focus, as shown in Figure 2.5
(right), all incoming rays are emitted from a single surface point. If the object is out of
focus, an infinitesimal pixel corresponds to the irradiance of rays originating from a patch
of the object’s surface rather than a point, resulting in defocus blur. A pinhole camera
can be approximated by a thin-lens camera by reducing the aperture size, which reduces
blur and increases the depth of field (DoF). Yet, a small aperture may add noise (due to a
deficiency of photons) and diffraction patterns to the image. A pinhole camera can also be
approximated by capturing multiple images at various focal depths with thin-lens cameras

and merging them to form a sharp image at all depths [88].

Both pinhole and thin-lens models characterise the major principles of geometric image
formation of a camera, with assumptions on their optics in ideal cases. However, real
cameras are not perfect. For example, real lenses are not infinitely thin and therefore suffer
from geometric aberrations, including spherical aberration, coma, astigmatism, curvature of
field, and distortion (radial and tangential), unless compound elements are used to correct
for them. Images taken with wide-angle lenses often require proper modelling of distortion.
Chromatic aberrations occur when rays of different wavelengths diverge from their point
of intersection with the lens due to different refractive indices of different wavelengths.
Another property of real-world cameras is vignetting, the tendency of darkening pixel
values towards the periphery of the image. Vignetting can be caused due to natural and
mechanical reasons. Natural vignetting results from the foreshortening in the object surface,
projected pixel, and lens aperture, which is also present with an ideal thin lens. Mechanical
vignetting is attributed to the internal blockage of rays by external objects in a lens
system such as filters or secondary lenses. Finally, the pixel sensors are not infinitesimal
or continuously tiled. The raw pixel value corresponds to the radiant flux received by
a non-zero pixel area rather than radiance or irradiance. This requires compensation in
photometric calibration, as will be explained in Section 2.2.2. Camera geometric calibration

is the process of establishing the geometric correspondence between the 3D scene and the
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2D image. This involves estimating the camera matrix and distortion, and potentially

more parameters [148].

2.2.2 Photometric image formation

Section 2.2.1 explains the principles of geometric image formation which establish the
geometric relationship between a pixel and its corresponding sampled rays. However, the
recorded pixel value does not directly reflect the true radiance or irradiance of sampled
rays. The calculation of true radiance values from raw pixel values requires compensation
for exposure, aperture, noise, pixel size, and dynamic range. In this subsection, we provide
a background of photometric image formation, establishing the photometric relationship

between raw pixel values and radiance.

@ ) £~

3D scene Lens systerm CFA Image sensor Analog gain A/D Raw image

Figure 2.6: Conversion from photons to image raw pixel values in a typical photometric
image formation process.

As shown in Figure 2.6, photons of a scene first traverse the camera lens system that
controls the exposure time and aperture size to adjust the number of photons passing
through. Before being captured by an imaging sensor, photons are filtered by a colour
filter array (CFA) to acquire the colour information. The imaging sensor converts incident
photons to electrons which is proportional to the number of registered photons. The
electrons yield a voltage as an analogue signal, which can be amplified based on the
settings of the camera gain. Finally, an analogue-to-digital converter (ADC) digitises the
signal into discrete raw pixel intensities. Modern digital cameras provide access to this
uncompressed, minimally processed data directly from the electronic imaging sensor in
the form of RAW images.

As mentioned in Section 2.2.1 and above, due to a non-perfect camera lens, nonzero pixel
size, and various exposure times and gain, a pixel does not directly record the radiance of
a single ray but the digital signal that is linearly proportional to the total radiant energy
(J) of photons carried by multiple rays received by the sensor. Since radiance measures
watt per steradian per square metre (W sr~' m™3), the recorded raw pixel values should
be compensated for that. Let Y;(p) represent the raw pixel value of the i-th colour channel

of the camera native space after CFA filtering at the p-th pixel, captured with exposure
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time t, gain ¢, aperture f-number a, and focal length f, assuming no presence of noise or
vignetting, the mean radiance of the radiant energy received by the p-th pixel sensor at

the 7-th colour channel can be calculated as:

Yi(p)

X;(p) =k —2E
(p) for (L)

(2.10)
where s denotes the area of the pixel sensor and k denotes the conversion factor from the

digital signal to the physical radiant energy (J/1).

Equation 2.10 did not account for noise and dynamic range. The real recorded raw pixel
value Y;(p) contains multiple sources of noise and thus Equation 2.10 is only an estimation
of the true mean radiance. Sources of noise include photon noise from the inherent
randomness of incoming photons which can be modelled by a Poisson distribution, readout
noise from the voltage fluctuations while accumulating electrons, and ADC' noise from the
quantisation error in the analogue-to-digital conversion. Meanwhile, real-world scenes often
span a wide dynamic range that is not possible to be captured with a single exposure, as
the pixel sensor has a limited capacity for registering photons. Large exposure can result in
saturated pixels while low exposure increases noise. Therefore, repeated capture is essential
not only to reduce noise and the percentage error but also to account for a large dynamic
range for radiance estimation. Most proposed radiance estimators from a high-dynamic-
range exposure stack require an accurate calibration of noise parameters to minimise
the variance of noise [31, 58, 62]. A Poisson-based estimator has been demonstrated to
perform with comparable variance without the need for knowledge about sensor-specific
noise parameters [61]. Finally, Equation 2.10 only models the mean radiance of registered
photons after complex interactions with the lens system. Acquiring the radiance of the raw
light rays described by the plenoptic function of the 3D scene requires further compensation
for defocus blur, vignetting, and geometric and chromatic aberrations, as discussed in
Section 2.2.1. Camera photometric calibration involves both radiance estimation and
colourimetric calibration. Radiance estimation is usually performed per colour channel
of the CFA, which can be further converted into a device-independent tristimulus colour
space from the native camera RGB space via a colourimetric calibration [47]. However,
camera colourimetric calibration is never 100% reliable, as the camera’s RGB spectral

sensitivity is different from LMS.
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2.3 3D scene representation for perceptually-realistic

view synthesis

In Section 2.2, we discussed the sampling of the plenoptic function using DSLR cameras.
Unfortunately, the high dimensionality of the plenoptic function and the high precision
required to match the limits of human vision make it unrealistic to directly sample the
entire plenoptic function to the precision of perceptual realism. Insufficient input views of
the captured light fields necessitate interpolation or extrapolation of the plenoptic function

to unseen views, which is prone to artefacts.

A scene representation is a data structure that encodes the intrinsic geometric and
photometric information about a 3D scene. It is a fundamental concept in graphics, upon
which many algorithms and downstream applications are developed. For the purpose
of this dissertation, we formulate a scene representation as a compact variant of the
plenoptic function, exploiting certain known or assumed properties of the scene to reduce
its dimensionality (although this is not necessarily the main consideration for the design of
a representation). In photorealistic graphics, designing a scene representation to effectively
and efficiently synthesise the plenoptic function at an arbitrary viewing position from a
sparse sampling of the light fields has been extensively studied in view synthesis. Methods
for photorealistic view synthesis can be extended to perceptually realistic view synthesis,
where the synthesised view is rendered and evaluated on a 3D display rather than a regular
2D screen. As shown in Figure 2.7, the scene representation is an integral component
of the PRG pipeline bridging acquisition and reproduction. In the pipeline, parameters
of the representation are learned from images captured in acquisition. This process is
known as 3D reconstruction. The reconstructed scene is later rendered on a 3D display to
reproduce a virtual light field that perceptually matches the real scene. For reconstruction,
the representation is expected to be sufficiently robust to arbitrary scene complexity in
geometry, topology, illumination, and materials. It should also be efficacious in retrieving
the high-frequency details of the scene geometry and appearance with possibly few captures.
With the emerging differentiable graphics (Section 2.3.2), the representation should also
provide meaningful gradients directing the optimisation to fast and valid convergence. For
reproduction, the representation is desired to be efficient in rendering and integrable with

the 3D display architecture of choice.

In this section, we provide an overview of various scene representations employed for
photorealistic view synthesis and discuss their extension to perceptually realistic graphics.
It should be noted that for graphics in general, view synthesis is not the only application

of a scene representation. There is no single representation that excels at all downstream
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Figure 2.7: Illustration of the perceptually realistic graphics pipeline assuming a static
scene. The scene representation is learned from the 3D scene acquisition and reconstruction,
which can be rendered on a 3D display to reproduce a virtual light field that perceptually
matches the real scene.

tasks. For example, tasks such as digital sculpture, animation, appearance editing, scene
composition, and relighting require the expressiveness of a representation in geometry,
materials, and lighting to perform such manipulations. However, expressiveness is not
an essential ingredient for the purpose of this dissertation where realism is the foremost

concern.

We structure this section with a short taxonomy of scene representations (Section 2.3.1)
and their reconstruction with differentiable graphics (Section 2.3.2) for view synthesis,
followed by a highlighted discussion on aspects crucial to extending photorealistic view

synthesis to perceptually realistic graphics.

2.3.1 Taxonomy

A scene representation can be roughly categorised as either describing a volume or a

surface, as shown in Figure 2.8.

A wvolumetric representation specifies the radiance information of every spatial location
(continuous or discrete) in a 3D volume. While the plenoptic function is a proper volumetric

representation, its high dimensionality makes it extremely difficult to directly reconstruct
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Figure 2.8: Visual illustration of common surface and volumetric representations.

it for view synthesis without dense input, or strong priors and constraints [153, 98, 4, 157].
Along with the high dimensionality is the redundancy where a large space of the scene
is not occupied by any physical matter and thus does not emit or reflect light. Such
redundancy can be alleviated by specifying an occupancy or density value for every discrete
(vozel grids [101]) or continuous (occupancy/density fields [105, 128]) 3D position. For such
representations, only space of nonzero occupancy contributes to the final accumulation of
radiance, enforcing a form of multi-view consistency hardly guaranteed by an arbitrarily
fitted plenoptic function. Each occupied 3D position can be additionally associated with a
radiance field [128, 179, 147, 60, 164] to simulate a view-dependent appearance. Volumetric
representation is the most general form characterising a 3D scene and is robust in modelling
complex scene geometry and topology such as hair, fabric, and smoke. Therefore, it has
been most widely adopted for view synthesis, especially with the recent advancement of
using neural fields [188] to represent spatially-varying occupancy and directionally-varying
radiance. Variants of volume representation with special data structures such as multi-
plane images [204, 48, 127, 179], octrees [195], and sparse voxel grids [147] have also been

proposed to reduce the computational cost of volume rendering.

In contrast to volumetric representations, a surface representation explicitly or implicitly

specifies a 2-manifold embedded in a 3D volume as a surface. FExplicit surface repre-
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sentations specify a surface by an explicit mapping from a discrete (e.g. mesh [132],
point clouds [193]) or continuous (e.g. parametric surface [59]) set of indices to all the
surface points, while implicit approaches specify a surface by identifying the level set of
an implicit field (a trivariate function such as signed distance function [190, 168, 191]).
The implicit field and volume density can be mutually induced [133, 168, 191]. Similar to
volumes, a surface point can also be additionally associated with an appearance model
(e.g. bidirectional reflectance distribution function (BRDF) [190, 199], lumigraph [12, 81],
view-dependent texture map [30], surface light fields [183, 20|, radiance fields [168, 191]) to
simulate view-dependent effects. Compared to volumetric representations, surface repre-
sentation is less commonly adopted for pure view synthesis where surface reconstruction
is not an essential intermediate step, especially for scenes containing complex geometry
and topology. However, for scenes containing simple or known shapes where accurate
surface reconstruction is feasible, a surface representation can potentially achieve a higher

rendering speed while maintaining a high synthesis quality.

2.3.2 Differentiable graphics

In the PRG pipeline, as indicated in Figure 2.7, the parameters of a specified scene
representation must be optimised to align with the input views before a novel view can be

synthesised:
argmin Y _[R(s,c;) — L], (2.11)

where s indicates the unknown parameters of a specified 3D scene representation; c;
indicates the camera parameters of the ¢-th input view. Note that c¢; can be estimated via
this optimisation process as well if it is unknown. I; indicates the input image captured at

the ¢-th view; and R represents a rendering operator.

Equation 2.11 is an inverse rendering problem, i.e. inferring information about the
intrinsic properties of the 3D scene from 2D images [95]. Traditionally, solving the
inverse problem has been extremely difficult as the simulation of light transport by R is a
complex process often involving non-differentiable steps, leaving efficient gradient-based
optimisation methods unemployable. For example, sharp changes in visibility due to object

silhouettes, occlusion, and illumination introduce discontinuities that are not differentiable.

Emerging differentiable rendering (DR) techniques attempt to derive effective gradients for
the traditionally non-differentiable operations in rendering to facilitate solving the inverse
problem. Example differentiable surface renderers include soft rasterisation [103, 143],
differentiable surface splatting [193], differentiable physically-based rendering [97, 106, 198],
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and differentiable spherical tracing [102, 77]. In contrast to surfaces, volumetric ray
tracing which is suitable for rendering volumes such as voxel grids or neural radiance
fields [128] is inherently differentiable as visibility is encoded into continuously-varying
probabilistic density values in such representations. While this dissertation is primarily
focused on applying differentiable rendering to view synthesis, differentiable rendering has
profoundly wider applications in physical inference, optimal control, scene understanding,

computational design, manufacturing, autonomous vehicles, and robotics.

While view synthesis has been extensively studied in the literature, it has been mostly
evaluated for photorealism [46, 162] rather than perceptual realism [121, 17], i.e. evaluation
on a 3D display against the view of a real-world scene. As will be discussed in Chapter 4,
perceptual realism poses a lower tolerance to artefacts (such as blur, noise, and distortion)
and inaccuracies in colour and appearance. Therefore, it requires a higher capacity of a
scene representation to converge to i) high-dynamic-range [129] and high-resolution [130)]
images, and ii) scenes containing complex view-dependent appearances (such as specular
reflections) [179, 164, 60]. For differentiable graphics, perceptual realism also requires the
scene and rendering parameters to be optimised with respect to the real-world scene and
human eyes, rather than merely images. This involves integrating accurate simulation of

cameras, displays, and human eyes into the differentiable graphics pipeline [16].
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2.4 3D scene reproduction with computational 3D

displays

In Sections 2.2 and 2.3, we discussed the sampling and representation of the light fields,
which constitute the first two stages of the perceptually realistic graphics pipeline. The
last stage of the pipeline is to reproduce a virtual light field on a 3D display, aiming for a
perceptual match with the real scene, as shown in Figure 2.7. While 3D scene acquisition
and representation inherit techniques from photorealistic graphics, computational 3D

displays are a unique constituent part of perceptually realistic graphics.

A distinguishing feature of 3D displays is that they reproduce additional depth cues
compared to regular 2D screens. In the past decades, while 3D display technologies have
become increasingly accessible — from stereo movies to personal head-mounted VR/AR
displays, the quality and experience are still far from perceptual realism. For instance,
the wide FoV of a head-mounted display (HMDs) causes an insufficient spatial resolution
(measured as ppd - pixels per degree), resulting in pixelation artefacts. Optics such as
Fresnel or biconvex lenses introduce noticeable lens distortions on the retinal image as
well as degradation in contrast and colour. The conventional design of VR headsets by
combining a stereoscope with fixed screen planes causes vergence-accommodation conflicts
(VA conflict) that often lead to fatigue and sickness. On the other hand, established
2D display technologies can produce 2D imagery with a quality that fulfils many other
visual requirements for perceptual realism in the absence of 3D depth cues. For example,
organic light-emitting diode (OLED) displays can deliver high resolution that matches or
exceeds the acuity of the human eye [119]. Dual-modulated HDR displays can achieve
high dynamic range and contrast [150]. Wide, accurate colour gamut can be achieved
by using more saturated primaries, or multiplexing (temporal or spatial) with more than

three primaries [78, 70].

In this section, we provide an overview of 3D display systems. We categorise their
architectures into stereoscopic displays, where the use of special headgear, glasses, or
visual separators for eyes is essential to support stereo cues (disparity and vergence), and
volumetric displays, where 3D images are created in a volume, allowing for stereo cues
and true 3D viewing to naked eyes. For each display type, we explain the mechanisms
they employ for depth reproduction. We also discuss the associated rendering algorithms
and scene representations compatible with the display system. While certain architectures
require specific representations and algorithms for rendering, many can extend existing
techniques from photorealistic graphics. Finally, we analyse the performance and limitations

of these display techniques by evaluating the virtual light field they produce and the visual
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requirements they fulfil for perceptual realism. In general, it is a great challenge for a
display system to render a virtual 3D scene that collectively meets all the essential visual
requirements for perceptual realism without artefacts and trade-offs. We will discuss how
various 3D display architectures take advantage of the limits of the HVS in this process.
We will also discuss how well-established display technologies for 2D displays can be

adopted to address the unnatural experiences created by existing 3D display techniques.

2.4.1 Volumetric displays

Volumetric displays create 3D images by emitting light approximating a true light field.
They can reproduce stereo cues without the need for special headgear, glasses, or any
type of visual separator for the eyes. In this section, we introduce three main types of
volumetric displays, distinguished by the mechanisms they employ to reproduce the light
field. Digital holographic displays aim to reproduce the entire distribution of light waves,
including phase, amplitude, and wavelength, based on the principles of light diffraction and
interference. Light field displays are a close alternative to holographic displays in terms of
recreation of the original light distribution in a 3D volume. The distinction is that light
created by a holographic display is formed by phase-conjugated rays from each hologram
point, while a light field display controls the directional intensity of beams expanding from
a 2D panel (usually composed of pixel cells). Vozel-based displays reduce the light field to

a 3D volume composed of voxels.

Holographic displays

In principle, all depth cues can be automatically and simultaneously achieved by repro-
ducing the entire light distribution of a 3D scene. This is the ultimate objective of a
holographic display. Invented by Dennis Gabor [53], hologram works on the principles of
light diffraction and interference. In acquisition, the object beam of a 3D scene interferes
coherently with a reference beam, resulting in interference fringes going through a recording
medium that records all the characteristics of light (phase, amplitude, and wavelength).
In rendering, the object beam is reconstructed in a reverse manner. The reference beam is
usually delivered by a single monochromatic laser. Coloured holograms can be generated
by rendering three separate holograms of different wavelengths (e.g., red, green and blue)
and incoherently superimposing them on one another [8]. Conventional analogue holograms
are recorded and reconstructed using non-reconfigurable mediums, such as photographic
emulsion. Modern computer-generated holography (CGH) generates holographic interfer-

ence patterns using spatial light modulators (SLMs) and digital technologies [154], which
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enables the rendering of holographic videos [7].

Although an ideal holographic display has been regarded as the ultimate form of 3D
display, it faces challenges in both hardware and software. For example, SLMs have limited
spatial resolution. Based on a 400 nm blue light, a 127000 ppi SLM with a 200 nm pixel
size is required to display a fringe width of half the wavelength of the light [21]. Current
commercial SLMs can only reach 7000 ppi [22]. Even if a dense SLM is physically realisable,
displaying a static 3D scene as large as a phone screen would require processing billions
of pixels, placing a huge burden on computation and data transmission. For dynamic
holograms, the amount of data rises to tens or hundreds of billion pixels per second.
Moreover, interference of coherent wavefronts results in speckle noise that undermines the
image quality in contrast and colour, despite recent progress showing that machine learning
techniques can be applied to reduce the artefacts of holographic displays, including speckle
noise [140, 15, 23].

Light field displays

In Equation 2.1, we use five spatial parameters to specify the starting position and direction
of a ray. If we assume a constant radiance along a ray, we only need to denote where the
ray hits the zy (z = 0) plane and can remove z from the parameterisation in Equation 2.1,
reducing it to:

O = F(z,y,0,p0,\1). (2.12)

A generic light field display generates a four-dimensional (x,y, 6, ¢) distribution of light
rays from a planar light source and an optical transmission medium. This way, both
positional and directional light can be recreated and modulated. The simplest method to
modulate directional rays is to redistribute pixels into N horizontal views. This can be
achieved by parallaz barrier [74, 71] — an interlace of transparent and opaque stripes, or
lenticular sheet [178] — a cylindrical micro-lens array that redirects diffused rays from
pixels into specific directions. Of course, both of these approaches prohibit vertical parallax.
One advantage of the lenticular sheet over the parallax barrier is that the lenticular sheet
does not reduce the display luminance, since the lenticular sheet is comprised of lenses,
while the parallax barrier blocks light paths. The concept of the lenticular sheet can be
generalised to present both horizontal and vertical perspectives and potentially focus cues
by replacing it with a 2D micro-lens array. This is the mechanism behind the integral
imaging [99], where the light fields of a 3D object are recorded by a 2D micro-lens array
and reconstructed reversely when viewed at the same distance of the object through the
same lens array. One fundamental issue of these approaches, as with many other light

field display architectures, is the inherent trade-off between spatial and angular resolution
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(number of distinguishable views). For a display of a finite number of pixels to generate
N? views, the spatial resolution reduces to 1/N? of its full resolution. However, a too-low
number of views can cause discontinuous parallax or break focus cues. Focus cues can
only be achieved with a highly dense layout of angular views, as it requires at least two
rays to enter the pupil. Another drawback of lenticular lenses is that they only permit a
fixed number of viewing zones, limiting the view box (the range of positions from which
the display can be viewed). An incorrect viewing position can cause cross-talk and other
cues to be wrongly presented. To tackle these issues, such displays can be integrated with
a head-tracking system [72], allowing for a dynamic adjustment of the display content to
align with the viewing position. This can reduce the essential number of distinguishable
views for a fixed head position to maintain a higher spatial resolution and broaden the
viewing zone. The drawback is that this is usually limited to a single viewer and requires
a highly accurate synchronisation between head tracking and rendering to avoid visual
artefacts. Directional light rays can also be controlled by time multiplexing, designed to
overcome the trade-off between spatial and angular resolution by superimposing each view
time-sequentially [82, 91, 169]. The downside of time multiplexing is that it requires an
overall refresh rate and a scanning rate of the directional device to be the product of the

perceived refresh rate of each view and the number of views [21].

The fundamental issue of a light field display in trading off the spatial and angular
resolution is inherently rooted in the large information bandwidth required to express a full
light field. Although Equation 2.12 has one less parameter than the full expression, it still
carries a redundancy of information, since 1) the change of surface colour with the viewing
direction is highly correlated, and is constant for diffuse surfaces; 2) regions of uniform
colours or textures exhibit small variance. Compressive light field displays were introduced
to leverage computational methods and compressive optics to adaptively maximise the
quality of the virtual light field for the displayed content [175]. They are referred to as
being compressive because the number of emitted light rays can transcend the number
of representing pixels, which are computationally optimised to direct the resulting rays
to best approximate the target light field and minimise redundancy. Compressive optics
usually consists of a backlight (uniform or directional) and multiplicative optical layers
(e.g. LCDs). Examples of compressive light field displays include tomographic image
synthesis [174], polarisation fields [92], and tensor displays [176]. One challenge of these
displays is that the multiple-layer architecture introduces scattering and inter-reflections,
resulting in approximation error and thus compromising the display contrast and colour.
Another challenge is that compressive light field displays require a scene-based optimisation

for each frame, causing a high computational cost.
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Voxel-based displays

Voxel-based displays produce light originating from voxels in a 3D volume, typically by
time multiplexing with image slices emitted or illuminated from switching or mechanically
moving surfaces. Examples of voxel-based displays include the use of rotating display
screens [45], stacks of switchable diffusers [158], the spin of a cylindrical parallax barrier
and LED arrays [192], and sweeping diffusers [165]. It is possible to create strong 3D
cues including stereo, parallax, and focus cues with these displays. However, the physical
realisation of a voxel-based display makes it difficult to show occlusions as each voxel is semi-
transparent. Those displays also cannot reproduce view-dependent surface appearance,
such as specular reflections, since light rays are uniformly emitted or reflected from each
voxel in all directions. Compared to a holographic or light field display, they have a
confined depth range of the scene within the physical display volume, but they permit a

much larger viewing zone.

2.4.2 Stereoscopic displays

The quality of a volumetric display is highly confined by its resolution, dynamic range,
contrast, colour accuracy, field of view, and computational cost. After all, reproducing a
full light field of sufficient size and quality requires control over billions of rays, which is
currently infeasible. However, if the number of viewers is limited to a single person and
the eye position can be tracked or stabilised, the subspace of a light field required to be

reproduced becomes much smaller. This is one of the advantages of stereoscopic displays.

In contrast to volumetric displays, stereoscopic displays stabilise the eye position relative
to the display screens? with special headgear or glasses, making it possible to render a
3D scene through a significantly smaller number of required rays. Moreover, existing
imaging and rendering techniques (or with slight variations) for photorealistic graphics
can be seamlessly integrated with stereoscopic displays. Therefore, stereoscopic 3D display
products have been commercially available long before volumetric or autostereoscopic
ones. The most basic design of a stereo display works by showing a separate planar image
to each eye to create a stereo vision. This is for instance the case of many commercial
head-mounted displays such as Oculus Quest 2 [125] and HTC Vive Flow [67]. However,
such a design lacks proper focus cues. As detailed in Section 2.1.1, rays traversing each
eye originate from a single planar screen at which the depth is fixed and may differ from

that of the virtual object in focus. This forces the observer’s accommodation mechanism

2This is with exceptions, such as shutter glasses and polarisation glasses. However, they cannot achieve
correct accommodation cues.
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to be decoupled from vergence. In this section, we introduce two variants of stereoscopic

displays that support proper focus cues (i.e. accommodation and defocus blur).

Vari-focal displays

Vari-focal displays are a variant of standard stereo displays with active adjustment of
the focal distance of the image plane seen by each eye via active optics such as liquid
lenses [36, 1, 134]. The adjustment of the focal distance is in accordance with the observer’s
gaze to show a varying depth-of-field (DoF) effect. Albeit in support of focus cues, these
types of displays introduce undesirable lens distortions caused by the active optics (e.g.
deformable membrane mirror [36]). They also require an accurate synchronisation of the
lens optics and depth-of-field rendering with the tracking of the gaze location. Inaccuracy
in the optics, rendering, and the gaze of the observers leads to errors on the reproduced
focal plane. The mechanisms of a vari-focal display also require its defocus blur to be
synthesised in rendering [187] rather than optically reproduced since they only allow for a

uniform focal depth throughout the scene for a fixed gaze.

Multi-focal displays

Multi-focal displays can be regarded as a variant of volumetric displays with a fixed viewing
position. For each eye, a stack of images is rendered at a fixed number of focal planes
at various distances, each plane adding a certain amount of light. Thus, a viewer can
accommodate appropriately at the desired depth. These focal image planes can consist of
superimposed virtual images on beam-splitters [2] or time-multiplexed image slices that
sweep a 3D volume with high-speed switchable lenses [107, 18, 197]. In contrast with
vari-focal displays, multifocal displays do not require a strict synchronisation of the optics
and rendering with the gaze location, but maintain a high resolution and contrast as they
can adopt well-established 2D display techniques [68, 203]. Architectures with fixed focal
planes also prohibit optical aberrations. However, the quality of a multifocal display is
especially sensitive to the accuracy of the alignment of the focal planes with the eye position,
as misalignment immediately breaks sharp edges and realism. Differences in eye positions
of individual observers can be compensated for with a homography correction [124] or a

physical calibration [203].

Despite the aforementioned improvements, edges near depth occlusions are particularly
difficult for a multi-focal display to reproduce. This is due to the additive nature of focal

planes, which cannot subtract light transmission to simulate physically-correct occlusion
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cues for finite pupil size. They also cannot create physically-correct accommodation cues
in between the focal planes. Therefore, compensation in rendering at each focal plane is
crucial for multi-focal displays to ensure a smooth perception of depth and texture. The
algorithm that drives the rendering for multi-focal displays is referred to as multi-focal
decomposition. It approximates the true light field of a 3D scene by distributing its content
on a discrete number of focal planes. The simplest form of multi-focal decomposition
is nearest neighbour, assigning the rendered object to its nearest focal plane. However,
the nearest neighbour can result in sharp discontinuities for surfaces spanning the depth
of multiple focal planes and artefacts at occlusion boundaries. It also drives the eye to
accommodate at inaccurate depth. Alternatively, light can be distributed across focal
planes via a dioptre-based linear depth filtering [2, 107]. Linear depth filtering can drive
accommodation to correct depth with focal plane separations up to one dioptre [111],
but may also produce visible artefacts at occlusion boundaries and for non-Lambertian
surfaces. Another approach is retinal optimisation [131, 124], which approximates the
retinal image of the displayed scene to be close to its real-world counterpart, especially
in terms of defocus blur. It performs better at occlusion boundaries at the expense of a
higher computational cost and less accurate accommodation cues [124]. Additionally, a
perception-driven hybrid decomposition strategy selects the best existing decomposition
method contingent on the scene content [196]. They show that in regions without occlusion
boundaries, linear depth filtering typically achieves the best result among all the multi-focal

decomposition algorithms.
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Chapter 3

Apparent Enhancement Rendering

In Chapter 2, we established the visual cues that are most relevant for perceptual realism,
including retinal image, spatial resolution, depth perception, dynamic range, contrast,
colour, and temporal resolution. Although these visual cues can be physically measured,
the perceived quality of such cues may vary under various viewing conditions while the
physical measurement of such cues remains unchanged. This is because the perception
of visual cues is a combined result of the physical light distribution of the scene and the
latent processing of it by the human visual system. Therefore, we may exploit particular
characteristics of the HVS to enhance the salience of visual cues that transcend the limits
of display devices. Such approaches are referred to as apparent enhancement techniques.
For example, apparent super-resolution that exceeds the display resolution can be achieved
by rapid temporal pixel variations [32]. Apparent image contrast can be altered with

Cornsweet illusion [142].

In this chapter, we present two rendering algorithms that can be applied to binocular
stereoscopic displays to boost the perceived quality of contrast and depth. Specifically, we
propose DiCE, a dichoptic contrast enhancing algorithm that exploits the binocular fusion
mechanism of the HVS to improve the perceived contrast without having to expand the
display contrast ratio (Section 3.1). We also introduce Dark Stereo, a depth-enhancing
algorithm employing a proposed model of stereo constancy to improve the precision of
depth perception from stereo cues under low luminance without having to manipulate
depth or disparity (Section 3.2). Both algorithms have been experimentally demonstrated
to be effective in improving realism and overall visual quality, and can be readily integrated

with any existing VR rendering pipeline with their real-time performance.
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3.1 Improving perceived contrast with binocular fu-

sion

Standard Stereo Standard Stereo

Standard Stere

‘-.

Figure 3.1: Comparison of standard stereo images and the images with enhanced perceived
contrast using DiCE. The images can be cross-fused with the assistance of the dots above
the images. Notice the enhanced contrast in the shadows and highlights of the scene. The
stereo images are from Big Buck Bunny by Blender Foundation.
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As discussed in Chapter 2, contrast is a crucial factor that influences realism. Images
with higher contrast have been demonstrated to be perceived as more realistic and three-
dimensional [163]. Bright, high-dynamic-range displays can achieve high contrast, but may
cause flicker in low-persistence VR/AR systems, as discussed in Section 2.1.3, and consume
more power. Local tone-mapping operators can be effective at enhancing local contrast, but
may lead to unnatural-looking images and artefacts in videos such as temporal incoherence
[40]. They are also computationally expensive, making their use prohibitive, especially
in time-critical VR/AR applications, in which every GPU cycle matters and dropping
frames is not an option. As opposed to these approaches, we capitalise on the human

visual system’s binocular fusion mechanisms to enhance contrast and improve realism.

We exploit an inherent property of the binocular fusion mechanism to enhance perceived
contrast. We introduce DiCFE, a dichoptic contrast enhancement method that selectively
applies lower or higher tone curve slopes to improve image contrast. However, a naive
implementation of this approach may cause binocular rivalry: an unstable percept that
switches between the image of one or the other eye. We empirically established the main
factors causing rivalry and tune the parameters of our method accordingly. We found
that the ratio of contrasts presented to both eyes is the main factor that can explain and
quantify rivalry. This allows us to tune our method to maximise contrast enhancement
while maintaining low rivalry. Since the dominant cause of rivalry is mostly independent of
image content, our method can be implemented as a fixed set of tone curves, which have
negligible computational cost and can be directly used in real-time VR rendering for any
stereo displays. We evaluated our method by comparing it with previous work, showing
that our solution is more successful at enhancing contrast and at the same time much
more efficient. We also evaluated our method in a VR setup where users indicated that
our approach improves contrast and depth compared to the baseline. Our methodology
and results suggest that rendering for the binocular domain is both a computationally

cheap and effective means to increase contrast in binocular displays.

We start this section with a review of preliminary concepts and related work in contrast-
enhancing tone mapping (Section 3.1.1) and binocular vision (Section 3.1.2). Next, we
explain our proposed binocular contrast enhancement method (Section 3.1.3) and experi-
mentally establish the main factor that causes rivalry in enhanced images (Section 3.1.4).
This lets us find the best parameters for our tone curve generation method (Section 3.1.6).
Finally, we demonstrate the strengths and shortcomings of our method compared with

existing dichoptic presentation techniques (Section 3.1.7).

95



The work presented in Section 3.1 produced the following publication:

e Fangcheng Zhong, George Alex Koulieris, George Drettakis, Martin S. Banks, Mathieu
Chambe, Frédo Durand, and Rafat K. Mantiuk. Dice: Dichoptic contrast enhancement
for vr and stereo displays. ACM Trans. Graph. (Proceedings of ACM SIGGRAPH
Asia 2019, Journal Track), 38(6), November 2019. ISSN 0730-0301. doi: 10.1145/
3355089.3356552. URL https://doi.org/10.1145/3355089.3356552

o6


https://doi.org/10.1145/3355089.3356552

3.1.1 Tone mapping and contrast enhancement

Tone mapping is an image-processing operation performed to convert an image from a
scene-referred colour space into a display-referred colour space. Tone mapping spans
a range of techniques that can vary in their goals. Some techniques simulate specific
phenomena of the visual system (glare, night vision). Others attempt to achieve the best
subjective quality (colour grading, enhancement) or possibly faithful reproduction of image
appearance [39]. Because scene-referred colours often exceed the dynamic range of the
target display, a common goal of all tone-mapping methods is the reduction of dynamic

range.

One of the most common techniques used in tone mapping is a global tone curve: a
monotonic function that maps input colour/luminance values to the displayed colour/lumi-
nance values. Such a curve can be fixed and, for example, can mimic the response of a
photographic film [144], or can adapt to image content [171] and a display [115]. A tone
curve is typically designed to enhance contrast in visually relevant parts of the scene and
compress or clip contrast in less relevant parts, which are dark or noisy [41], or contain

bright highlights or light sources that cannot be easily reproduced on a display.

To revert the loss of small contrast details caused by compressive tone curves, many
tone-mapping techniques involve local contrast enhancement. Such enhancement could
be achieved by unsharp masking combined with edge-stopping filters [38, 41], which can
avoid ringing or halo artefacts. Stronger enhancement could be achieved by operating in
the gradient domain [44]. This, however, requires computationally expensive optimization.
Contrast at multiple scales can be more efficiently edited using local Laplacian pyramids
[137]. The main drawback of all these enhancement techniques is that they introduce a
substantial computational overhead, which is unacceptable in real-time applications. Our
technique replaces computationally expensive local contrast enhancement with fixed tone

curves, which have negligible computational cost.

3.1.2 Binocular fusion
3.1.2.1 Tone mapping exploiting the binocular domain

Binocular fusion was exploited before in a number of tone-mapping methods for binocular
displays [189, 200, 201]. We will refer to these methods as binocular tone mapping operators
(BTMO). The goal of these techniques is to produce two tone-mapped images that are

maximally different, yet comfortable to fuse. This is achieved by adjusting the parameters
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of an existing [189] or newly proposed tone-mapping operator [200] in an optimization loop.
The loss function is designed to maximise the difference between left- and right-eye images,
leading to “richer” fused images. To ensure acceptable levels of rivalry, a binocular viewing
comfort predictor is used to reject image pairs that are deemed too rivalrous. Neural
networks can also be leveraged to generate tone-mapped images without assumptions about
monocular tone operators. In concurrent work, deep binocular tone mapping [201] employs
CNNs to generate an end-to-end binocular tone mapping operator that outputs the desired
LDR pair from an HDR image. Similar to previous BTMO techniques, the loss function is
designed to optimise the visual content distribution to maximise the perception of local
detail and global contrast, while maintaining visual comfort. Real-time computation can

be achieved with a GPU acceleration.

In contrast to BTMO techniques, our method explicitly enhances contrast based on
psychophysical models and findings, rather than making images different. In Section 3.1.7,
we demonstrate that this leads to much more consistent and predictable enhancement.
Instead of a complex viewing comfort predictor, which combines multiple heuristics, we
find a simple yet effective rivalry indicator based on new experimental findings. Our
technique does not restrict the choice of tone-mapping operator and can be used with
stereoscopic content. Most importantly, our technique has negligible computational cost
compared to the BTMO methods, and thus can process an image pair in milliseconds

rather than seconds without relying on GPUs.

3.1.2.2 Perception in dichoptic presentation

In a binocular display, dichoptic presentation is the presentation of different images to
the two eyes and dioptic is the presentation of identical images to the two eyes. If the
dichoptically viewed images are synthesised or photographed from two offset viewpoints
at a distance approximately equal to the human interpupillary distance, they contain
image disparities that elicit the illusion of depth by exploiting binocular vision. This is a
stereoscopic image pair and always requires dichoptic presentation. Dioptic presentation
cannot elicit the illusion of depth from disparities — as images for left and right eyes are
identical — and thus can only show monoscopic images. To avoid confusion, we will refer
to images without dichoptic enhancement as standard, regardless of whether these are

monoscopic or stereoscopic images.

When the dichoptic stimuli are too dissimilar to be fused into one stable percept, the
viewer experiences binocular rivalry. Binocular rivalry refers to a state of competition

between the eyes, with one eye inhibiting the perception of the image in the other eye
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Figure 3.2: For each level of standard (dioptic) contrast (¢ = 0.1..0.5), the colour
lines show the combination of the left and right eye contrast (dichoptic contrast) that
produces the match. The lines are plotted according to the contrast matching model from
Equation 3.2 and assuming S = 3. The black-dashed line represents standard contrast. The
grey-dashed lines illustrate the range of contrast combinations that result in an unstable
percept and rivalry. The colour dashed lines illustrate the same relation but according to
the late summation model (Equation 3.3), and the dotted colour lines show the relation in
terms of logarithmic contrast (Equation 3.4).

causing alternation between perceived images [9]. Rivalry is caused primarily by geometric
differences in the two eyes’ images. A special case is [ustre, which occurs when luminance
or contrast differences exist in corresponding image areas. It creates a shiny appearance

in such areas.

Fusion of luminance. When a uniform patch of luminance L; is shown to the left eye,
and a patch of luminance L, to the right eye, the fused patch can be matched to the

luminance that is the (weighted) average of those:
qused = aLl + (1 - CL) LT s (31)

where Liyseq is the matching luminance (presented to both eyes) and a compensates for
the dominant eye [96] (a=~0.5).

59



Fusion of contrast. Legge and Rubin [94] investigated perceived contrast when two
stimuli of the same spatial configuration but different contrasts are presented to the two
eyes. Two stimuli were presented: The standard in which the same contrast is presented
to the two eyes and the test in which a different contrast is presented to each eye. The
subject adjusted the contrast of the test in one eye to create the same perceived contrast
for the standard and test. They found that a generalised mean best describes their data.
If we present contrast ¢y, to the left eye and contrast cg to the right eye, the magnitude of

the perceived, matched standard/dioptic contrast ¢, is:

5, B\F
cm:<%> . (3.2)

B tends to be close to 3. It is the same across spatial frequencies and increases slightly
with contrast. The matching contrast obtained by the above formula is illustrated as
colour curves in Figure 3.2. The curves show that the fused contrast is dominated by the

eye with the stronger contrast, in a manner that is close to the winner-take-all strategy.

Kingdom and Libenson [84] further show that the contrast fusion can be explained by the
late summation model in which the signals from both eyes contribute to the response, R,

of a contrast transducer function:

&+ &

R(cp,cp) = —2—L
(cz, cr) z+cl +

(3.3)
where z, p, and ¢ are the parameters controlling the shape of the contrast transducer [93].
Curves of matching contrast resulting from the late summation model are shown as dashed
colour curves in Figure 3.2. Because both models are comparable in the range where
inter-ocular contrast differences are small (and the rivalry is low), we will rely on the

simpler form in Equation 3.2 in further analysis.

3.1.3 Dichoptic contrast enhancement

In this section, we explain how the contrast of images seen binocularly can be enhanced
beyond what can be reproduced on a typical display significantly improving image quality
and realism in VR headsets and stereo displays. Our method was inspired by the observation
of Legge and Rubin that the fused contrast is dominated by the image of higher contrast
(Equation 3.2). We take advantage of stereoscopic displays, which can present a different
image to each eye and therefore offer a separate dynamic range budget for the left and

right eye. This lets us selectively use lower or higher tone curve slopes to improve image
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Figure 3.3: An example tone curve mapping input image log luminance to output image
log luminance. The slope of the tone curve corresponds to the reduction or increase in
contrast in the given tonal range of an image.

contrast. When binocularly fused, the images convey more fine detail in the shadows and

highlights compared to standard tone-mapped images.

3.1.3.1 Tone curves and contrast enhancement

We define a tone curve as a function mapping the logarithmic luminance (base-10 logarithm)
of the input image to the physical logarithmic luminance of the display device, as shown in
Figure 3.3. Representing luminance in the logarithmic domain makes it more perceptually
uniform (see Sec 2.4 in [117]) but also has the property that the slope of the tone curve in
the log-log domain modulates the contrast of the corresponding tonal range. Altering the
slope corresponds to multiplying log-luminance values: i.e., raising linear luminance values

to a power (commonly known as gamma).

A well-selected tone curve can achieve high contrast in any relevant tonal range while
mapping all pixel values to the available dynamic range. Assigning a steeper slope in one
part of the tone curve boosts contrast in that range, however, a larger proportion of the
output dynamic range budget is spent, necessitating contrast compression in another part
of the input range. The output log-luminance is restricted by the peak luminance of the
display (dne.) and its black level (dpn)-

To ensure that we can rely on the contrast fusion rule when manipulating tone curves, we
need to address the discrepancy in contrast units. The contrast fusion rule in Equation 3.2
is defined in terms of Michelson contrast, which we denote as ¢. The slope of the tone curve

directly alters logarithmic contrast, which we denote as g. Logarithmic contrast is defined
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Figure 3.4: The relation between logarithmic and Michelson contrast.

as half of the logarithm of the luminance ratio, as illustrated in Figure 3.4. Logarithmic
contrast is not equivalent to Michelson contrast. However, for small and medium contrasts
(¢ < 0.5) that dominate natural or computer-generated imagery, both contrast measures
are linearly related, as shown in Figure 3.4. Thus, the contrast fusion can be expressed in

terms of logarithmic contrast:

1
B B\ P
gr+49
G = (—L2 R) . (3.4)

The new contrast matching formula, plotted as dotted lines in Figure 3.2, predicts contrast

match that lies between the predictions of Equations 3.2 and 3.3.

3.1.3.2 Interleaved dichoptic tone curves

Let us consider how we can design a tone curve that would maximise contrast enhancement
within the given budget of the dynamic range. A simple approach would be to create two
tone curves, like those in Figure 3.5, consisting of two piece-wise linear segments. For a

given tone curve segment, the slope in one eye can be increased while reduced in the other
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Figure 3.5: When a separate tone curve is used for each eye (dichoptic presentation)
the slope of one of the curves can be up to twice as high as that for a standard dioptic
presentation. The perceived contrast for the dichopic images will be 10%-50% higher (see
Figure 3.6). However, such a strong separation of the tone curves will result in an image
that is very uncomfortable to view.

without exceeding the dynamic range budget. If the base tone curve (black dashed line in
Figure 3.5) has the slope s;, we set the slope for one eye to s; and the slope for the other
eye to s, = 25, — s; so that s; + s, = 2s,. We will use indices [ and A to denote low and
high slopes (rather than left and right eyes) as the slopes will be assigned interchangeably
to each eye for each segment of the tone curve. From Equation 3.2, we can find that the

gain in fused contrast for the original contrast g is:

1 (g sl)ﬁ + (gsn)”? s 1 sf + sf g
r— S S/ R (3.5)
g Sy 2 Sp 2

The gain as the function of the slope on the left and right eye is plotted in Figure 3.6.

The curves clearly show that the gain in perceived contrast is greatest when the slope is
maximised in one eye and minimised in another. However, such a large luminance and

contrast difference could result in strong binocular rivalry.

To reduce the luminance difference and thus the potential cause of rivalry, we want the
left- and right-eye tone curves to be more similar to each other. This can be achieved
with an interleaved tone curve with a higher number of piece-wise linear segments, such as
the one in Figure 3.7. It should be noted that increasing the number of segments does
not affect the slopes of the curves in the left and right eyes and therefore does not affect
contrast enhancement. However, the number of segments restricts the highest contrast
that can be manipulated by the tone curve: if the contrast between two pixels is large

enough to span two segments of the tone curve (i.e. be larger than A;,), it is not going to
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Figure 3.6: The gain in contrast due to fusing left and right eye images which are processed
by the tone curves with the slopes s; and s, (x-axis). As the tone curve slope is reduced
on the left eye (s;), it is increased on the right eye (s;). Such a change in slope does not
reduce the dynamic range budget allocated to both eyes, but it boosts fused contrast.

be enhanced (or reduced) as intended. Finding the right number of segments and their
slopes is a challenging problem and we address this problem in a series of experiments
in Section 3.1.4. But first, we explain why we need to ensure the smoothness of the tone

curves.

3.1.3.3 Smooth tone curves

In preliminary experiments, we observed that the piece-wise linear interleaved tone curves
may result in banding artefacts when an image contains large areas with smooth gra-
dients. These are caused by the C' discontinuities in our tone curves, which translate
to similar discontinuities in the resulting image. The visual system is very sensitive to
such discontinuities, which are interpreted as spurious contours [83]. This problem can be
easily addressed by replacing the small intervals containing discontinuities in the piece-wise
linear curve with a cubic Bezier curve. We set the size of the interval to be 0.1 logy¢ units.
The three control points of this Bezier curve are the two endpoints on the interval and
the slope-transition point, as shown in 3.7-(b). This ensures that our tone curves are C*

continuous in the entire domain.

64



loutA

(] dmaw

& /

Cﬁ 4
g (a) -
= :
o0 S //
s %, : Y ld, :
< A é [ ¥ :
2 7 A/l
*S /, A;out ///Sl
© : i
% S 5
A Dinoo :

Input log luminance

Figure 3.7: Binocular tone curves may introduce less rivalry if they are constructed so
that resulting luminance values in each eye are possibly similar. The interleaved low- and
high-slope segments could be used to produce such curves. Inset (a) shows the notation we
use. We denote the lower slope as s; = /A, and the higher slope as s, = h/A;,. We also
denote the number of linear segments in the tone curve as N. For example, the segment
that spans A, is what we mean by one segment. Inset (b) shows smoothing using Bezier
curves. The black circles denote the control points.

3.1.4 The predictor of rivalry

The interleaved dichoptic tone curves are controlled by two parameters: the number of
segments and the slope of the interleaved tone curves. To determine the optimal choice of
these parameters that would produce the strongest enhancement and acceptable level of
rivalry, we conducted a perceptual experiment. The experiment was intended to test two

hypotheses, each proposing a different indicator of binocular rivalry:

Hypothesis 1 If rivalry is induced by the luminance difference between the left and
right eyes, a good predictor would be the maximum log-luminance difference, or h — [

using the notation from Figure 3.7. Note that h — 1 = (s, — ;) Ain.

Hypothesis 2 Rivalry may also be caused by the contrast difference between the left
and right eyes. A good predictor in this case would be the ratio of contrasts presented to

the two eyes s;/s, = l/h.

Apparatus and participants The experiment was performed on a 24-inch NEC
PA241W colourimetrically calibrated display with an attached stereoscope in a dark
room (Figure 3.8). The optical path to the display was 36 cm (2.77D). Eight volunteers
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Figure 3.8: LCD display with a stereoscope used in the experiments.

participated (8 males, mean age 27.3, SD 4.2 years). Before the experiment, each participant
read and signed the consent form. We also demonstrated to each participant what rivalrous

and non-rivalrous stimuli look like.

Stimuli and procedure We selected 16 HDR images, which were tone mapped based
on the smooth inter-leaved tone curves with NV equal segments as explained in Section 3.1.3.
The end-points of the tone curve were set to be at the 1st and 99th percentiles of image

luminance. The dynamic range of the target display was 2.7 log-10 units (500:1 contrast).

The participants were asked to adjust the deviation d (shown in Figure 3.7) from the
straight tone curve so that “the image looks sharp and comfortable to view” (exact
wording on the briefing form). The critical values of d were measured using the method-of-
adjustment procedure with three repetitions per image. Then, the two proposed predictors

were computed accordingly as:

h—1=2d (3.6)
I Ay —d
h Ay, +d (3.7)

The experiment consisted of six sessions. The same HDR images were used in all of them.

Four of the sessions had N = 2,4, 10, and 20 interleaved segments spanning the entire
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Figure 3.9: Examples of DiCE-enhanced monoscopic images from Experiment 3.1.4, with
different strengths of enhancement (the enhancement is stronger at a low {/h ratio), and a
different number of segments of interleaved tone curves (V). The images are suitable for
cross-fusion.

dynamic range of the display, 2.7 log-10 units. The two remaining sessions had N = 10
segments spanning half of the display’s dynamic range, 1.35 log-10 units, so that one
session spanned the darker half and one the brighter half of the dynamic range. Examples
of images rendered with a different number of segments and slopes are shown in Figure 3.9.

The order of sessions and images was randomised.

Results The plots for the two proposed predictors and for eight participants are shown in
Figure 3.10. It is evident that the ratio of contrast [/h is a much more consistent predictor
than the log-luminance difference across different test conditions (number of segments,
output display dynamic range). This was further tested in a leave-one-out cross-validation,
where we used 7 out of 8 of the measured images to calculate a fixed value of the predictor,
which was then used to predict the s; values of the remaining images. The procedure was

repeated eight times. The prediction error was computed as RMSE between the true and
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Table 3.1: Each row represents the prediction errors (RMSE) for each participant using
the corresponding predictors.

Participant | Log-luminance difference | Ratio of contrast
1 0.4182 0.0870
2 0.3793 0.0971
3 0.2880 0.0795
4 0.2062 0.0576
5 0.3811 0.0895
6 0.5217 0.1541
7 0.2824 0.0892
8 0.3148 0.0981

predicted s; and is shown in Table 3.1. The results suggest that the ratio of contrast [/h

is indeed the better predictor for s;.

Discussion The results demonstrate that the magnitude of rivalry is determined by the
contrast difference between the eyes (Hypothesis 2) rather than by the luminance difference
(Hypothesis 1). This finding confirms the importance of contrast in visual processing [84].
There is ample evidence suggesting that low-level visual mechanisms attempt to preserve
contrast but they do not encode information about absolute luminance. For example,
Weber’s law states that we are sensitive to ratios (contrast) rather than absolute levels.
Contrast constancy preserves the appearance of supra-threshold contrast across spatial
frequency and to some extent across luminance range [55, 86]. Furthermore, light-/dark-
adaptation is attributed to a large extent to the retina (photoreceptors and bipolar cells)
[37] and can be controlled individually per eye. This means that a per-eye luminance
difference can be partially compensated by the adaptation mechanism. Therefore, it is not
surprising that conflicting contrast signals evoke more rivalry than conflicting luminance
signals. This finding also shows that some degree of rivalry is unavoidable as we need
to introduce contrast differences for contrast enhancement. However, many observers
reported that they can adapt to a moderate level of rivalry a few seconds after switching

from standard to dichoptic presentation.

It should be also noted that the ratio of contrast {/h as a predictor of rivalry is independent
of image content. As shown in Figure 3.10, we cannot observe a pattern for images that
would be consistent across the participants. The differences in the means between observers
are also small given the within-observer variance. Therefore, the high variance is likely to

be due to the measurement noise, rather than systematic effects.
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Figure 3.10: The two proposed predictors of binocular rivalry (columns) collected from
Experiment 3.1.4, for eight participants (rows). The colours denote different numbers of
segments N and different output display dynamic ranges (d* and b* indicate half of the
display’s dynamic range, with d* representing the darker half and b* representing the
brighter half). The error bars represent the expected value of the standard deviation for
the given set of conditions. It is evident that the ratio of contrast [/h is distributed more
uniformly than the log-luminance difference
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Figure 3.11: An example binocularly-fused sinusoid stimulus used in Experiment 3.1.5.
The left and right stimuli were shown with different luminance.

3.1.5 Rivalry due to luminance difference

Although contrast seems to be the dominant factor in dichoptic rivalry, we cannot fully
discount the effect of luminance. If we did so, we would need to assume that two images
of the same contrast but very different luminance are always comfortable to fuse. To
determine the maximum luminance difference that can be regarded as acceptable, we

conducted one additional experiment using the same protocol as in Experiment 3.1.4.

Apparatus and Participants This experiment shares the same setup as Experi-
ment 3.1.4. Five volunteers participated (5 males, mean age 25.2, SD 2.2 years). Before
the actual experiment, they read the consent and briefing forms. In a short demo, they

were shown examples of rivalrous and non-rivalrous stimuli.

Stimuli and Procedure We used sinusoid gratings as the stimuli, as shown in Fig-
ure 3.11. The gratings shown to each eye had the same contrast and frequency, but differed
in luminance. Participants were asked to adjust the difference of luminance given the
same criteria as in Experiment 3.1.4. Six sinusoidal gratings were generated: a factorial
combination of 2 contrasts (0.2 or 0.4) and 3 frequencies (1, 3 or 5 cpd). Each condition

was measured three times and the order of all trials was randomised.

Results The results indicated that most observers can tolerate the luminance difference
(h —1) up to 0.66 log-10 units (50th percentile). The 25th, 50th, and 75th percentiles of
the data for the threshold of luminance difference are 0.51, 0.66 and 0.80 in log-10 units.

We use these results to determine the best number of segments in Section 3.1.6.1.
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Figure 3.12: DiCE as part of a tone-mapping pipeline. The dynamic range of HDR input
frames (in linear RGB colour space) can be reduced with any tone mapping operator.
Alternatively, a standard SDR frame can be used. The luminance is separated from
two colour-opponent channels. The per-eye interleaved tone curves are applied to the
luminance channel, separately for each eye and then colour is added back. Finally, the
pixel values are display-encoded into SDR (sRGB) or HDR (rec.2100) display-referred
space.

3.1.6 Implementation

Experiment 3.1.4 demonstrated that binocular rivalry is mostly induced by the contrast
difference between the eyes. The variance in the perceived rivalry between the images is
relatively small, therefore, we can make our enhancement method independent of image
content. Our interleaved tone curves can be precomputed, and applied to an image after
tone mapping (but before display coding). This is a significant advantage of our DiCE
method, letting us use it with any existing tone-mapping operator, or directly with SDR

images.

Figure 3.12 shows the diagram of a tone-mapping pipeline with DiCE. First, any existing
tone-mapping operator can be used to reduce the dynamic range of an HDR frame and

generate a display-referred frame. Alternatively, an SDR frame, decoded into a linear RGB
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Figure 3.13: The shape of the dichoptic tone-curves at different [/h ratios. The ratios
were selected to represent the 1st, 25th, 50th, 75th and 99th percentile of the data (across
all images and observers) from Experiment 3.1.4.

space, can be used as input to our method. We then separate a luminance channel from
CIE «/v" chromaticities and apply the interleaved tone curves to the luminance channel
alone. The colour is added back using an inverse colour transformation. Finally, the
colours are displayed encoded and stored in a raster buffer. Depending on the target
display, they can be encoded into the sRGB space for SDR displays, or one of the colour
spaces from the I'TU BT.2100 recommendation for HDR displays.

3.1.6.1 Selecting interleaved tone-curve parameters

Our experimental results indicate that {/h determines both contrast enhancement and
the magnitude of rivalry. The [/h is also independent of the number of segments. Given
that, we opt for the smallest number of segments for two reasons: a) wider segments let
us enhance a broader range of spatial frequencies (as discussed in Section 3.1.3.2); and b)
there is a smaller chance for banding artefacts in the region where the tone curve switches
from low to the high slope (as discussed in Section 3.1.3.3). However, a small number
of segments increases the maximum luminance difference, which could be another cause
of rivalry, as discussed in Section 3.1.5. Therefore, in Figure 3.14 we plot the maximum
luminance difference (h — () as a function of the display dynamic range and the number of
segments. The plots show that N = 2 is the right choice for most SDR displays up to 2.8
log-10 units of the dynamic range, including OLED displays used in HTC Vive and Oculus
Rift. The number of segments, however, may need to be increased to 4 for high-contrast
HDR displays.

Slope selection for the interleaved tone curves creates a trade-off between contrast enhance-
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Figure 3.14: The maximum log-10-luminance difference (h—1) for a given display dynamic
range (x-axis) and the number of segments (NN, colours). The plots are drawn assuming
[/h = 0.63 (50th percentile). The dashed line represents the rivalry threshold (50th
percentile) for log-luminance difference (Experiment 3.1.5). The plot shows that for most
SDR displays (dynamic range less than 2.8 log-10 units), we do not need more than 2
segments.

ment and binocular rivalry. Figure 3.4 shows that contrast enhancement is maximised
for small ratios [/h, but, as found in the rivalry experiment, such small ratios increase
binocular rivalry. Therefore, the ratio [/h should be set as a parameter, adjusted per user,
ranging from about 0.5-0.75. The family of interleaved tone curves for the range of I/h

ratios and two segments is shown in Figure 3.13.

3.1.6.2 DIiCE for partial overlap HMDs

As discussed in Section 2.1.1, binocular human vision is achieved via two monocular visual
fields of around 160° of horizontal visual angle each; their total horizontal field of view is
approximately 200°. The combined FoV consists of three regions: an overlapping 120°
central binocular region where stereopsis is achieved and two flanking monocular regions
of approx. 40° each [136].

Older HMDs employed a full overlap design, in which both eyes saw the same part of the
scene. This resulted in a smaller FoV as the optical design was limited by the human
binocular region. Modern commercial HMDs have a partial overlap design, mimicking the
human visual system. This allows for physically smaller displays while both increasing the
FoV and thus immersion, and supporting wider aspect ratios [52]. In such HMDs, binocular

overlap refers to the visible overlapping portion between the two eyes (see Fig. 3.15) in
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the headset and describes how much of the virtual scene can be seen by both eyes, which
is crucial for depth perception. In partial overlap binocular displays, only a central region
of the scene is shown to both eyes, and areas to either side are seen by only one eye. This
often creates interocular differences in the monocular regions [138] which often induce
a perceptual effect known as luning which is the subjective darkening in the monocular
regions or, for other users, it is experienced as a visual fragmentation of the field-of-view
into three distinct regions (left, middle, right) [85].

200°

Figure 3.15: Arcs denote angles for viewing in the real world: each eye sees a field of
view of about 160°. This results in a 200° combined horizontal field of view, 120° of
which are overlapping and thus binocular processing or stereopsis is possible. Two-headed
arrows denote angles in a modern VR headset: each eye sees a horizontal FoV of about
75°, leading to a 100° combined FoV, only 50° of which are overlapping and available for
binocular processing or stereopsis.

For partial overlap HMDs (most commercial headsets) we cannot apply the interleaved
tone curves to the entire FoV. If the monocular flanking regions (magenta and blue lobes
in Fig. 3.15) are processed by the interleaved DiCE curves, they remain unfused and show
spurious contrast modulation. This is magnified with head motion in VR, which causes
the contrast appearance to change in the flanked regions. To avoid this problem, we
employ a piece-wise linear blending function that ensures a gradual transition between the
dichoptically tone-mapped area of the image that is viewed binocularly, to the monocularly
tone-mapped flanking lobes. The binocular overlap area depends on the fixed headset
optical setup and the eye relief, i.e., the distance of the eye from the lens, which itself

depends both on how deep-set the eyes are in the face and how pronounced the brow is.
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Figure 3.16: Example of two images used in Experiment 3.1.7.1 in a format suitable for
cross-fusion.

3.1.7 Evaluation

We compare our method with the standard presentation and BTMO technique on the

stereoscope in Experiment 3.1.7.1, and then evaluate in VR rendering in Experiment 3.1.7.2.

3.1.7.1 Validation with a stereo display

In this experiment, we compare our technique with the standard presentation (no dichoptic

enhancement) and previous work (BTMO [200]) on a stereo display.

Apparatus and participants We used the same display and stereoscope as in the first

experiment. 16 volunteers participated (5 females, mean age 26.8, SD 4.3 years).

Stimuli 17 monoscopic images and 2 stereoscopic images were processed with our DiCE
technique and BTMO [200]. The images were kindly processed by the authors of the
BTMO paper. It should be noted that both techniques serve a different purpose: BTMO
is a tone-mapping operator that requires an HDR image as input. Our DiCE technique
expects as input an image that has already been tone-mapped. Therefore, to reduce
differences between the methods due to different tone-mapping operators, we used one
of the images generated by BTMO as the standard/dioptic condition (no enhancement)

and also as the input to our technique. When selecting an image, we chose the one from
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the pair (left- and right-eye image) which contained fewer under- or over-exposed pixels.
We used a [/h ratio of 0.63 for all DiCE-enhanced images, which was the median from
Experiment 3.1.4. We selected a median rather than a higher percentile as we noted
that the participants are more conservative when they are asked to self-report the rivalry
threshold and can tolerate higher rivalry over time. Two images used in the experiment

are shown in Figure 3.16 for cross-fusion. All other images are shown in Figure 3.17.

Procedure We used a full-design pairwise comparison experiment in which all unique
combinations of conditions are compared: DiCE vs. standard/dioptic, BTMO vs. stan-
dard/dioptic, and DiCE vs. BTMO. The participants were asked two questions regarding
each image pair that they saw: which image has a higher contrast? and which image looks
better? The participants could switch between one and the other image in the pair using
the arrow keys and they confirmed the image of higher contrast with the space key and
the image they preferred with the return key. Each pair was compared three times by each

observer. The order of image pairs was randomised.

Data analysis The results of the pairwise comparison experiments were scaled using
publicly available software! under Thurstone Model V assumptions in just-objectionable
differences (JODs), which quantify the relative quality differences between the techniques.
A difference of 1 JOD means that 75% of the population can spot a difference between two
conditions. The details of the scaling procedure can be found in [141]. Since JOD values

are relative, the bioptic (baseline) condition was fixed at 0 JOD for easier interpretation.

Results Results in Figure 3.18-a show that our DiCE method produces images of higher
perceived contrast compared to their standard/dioptic counterparts, demonstrating that
the contrast fusion model is effective in complex images. The BTMO results are mixed,
sometimes producing images of higher, but sometimes also of lower contrast compared
to the standard/dioptic condition and DiCE. It is difficult to compare DiCE and BTMO
techniques in terms of contrast enhancement, as each technique can produce images of
even higher contrast if the binocular rivalry metric is relaxed. This, however, will result in
images that are uncomfortable to view. The main strength of DiCE over BTMO is that the
enhancement is consistent across the images, demonstrating that the direct manipulation
of contrast in DiCE offers better control over resulting images than the optimization used
in the BTMO method.

The preference results, shown in Figure 3.18-b, are less conclusive as large subjective

lpwemp — https://github.com/mantiuk/pwcmp
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(p) Pooh and Tiger (r) Landscape

(s) Poker scene

Figure 3.17: Test images used in Experiment 3.1.7.1
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variations made most differences statistically insignificant. For the DiCE method, we
could measure the preference difference only for the 2 (Poker scene and Moelfre) out of
19 images. These differences could still be accidental as the test does not correct for
multiple comparisons. For 8 out of 10 comparisons that are statistically significant, the
BTMO method produced less preferred results than standard (dioptic) presentation and
only in two cases the preference was higher. This is in contrast to findings from [200],
where the authors showed a strong preference for BTMO over standard presentation. We
can only speculate that the effect could be due to the training of the participants; in our
experiments, the participants with more exposure to dichoptic images also indicated a
stronger preference for them. This could be compared to the experience of wearing new
glasses, when it takes some time to get fully comfortable and used to the new correction.
This result could be also explained by the broad meaning of the “preference” criterion,
which could combine many factors, such as comfort, familiarity, visual quality, wow-effect,
etc. The results suggest that single-dimensional “preference” may not be the best measure

for the dichoptic contrast enhancement techniques.

Figure 3.16 shows an example of two images produced by each method: the one for which
BTMO produces a higher contrast image (Poker scene) and the one for which DiCE
produces a higher contrast image (McKees Pub).

3.1.7.2 Validation in VR

Experiment 3.1.7.1 was performed in a stereoscope, which provides high resolution and
image quality, but it is less suitable for testing real-time rendering. Therefore, in the final
experiment, we compare DiCE with standard presentation in VR environments. This
experiment is also more relevant for the application of our method in real-time rendering.
Note that we could not include BTMO in this experiment as that method is unsuitable

for real-time rendering of 3D environments with 6DoF free viewing.

Apparatus and participants The VR environments were presented on an HTC Vive

VR headset. Ten volunteers participated (2 females, mean age 25.8, SD 3.2 years).

Stimuli and procedure The stimuli consisted of three VR scenes shown in Figure 3.20,
each seen from three different viewpoints. The participants could freely look around the
scenes while seated on a swivel chair. To switch between DiCE and standard presentation,
the participants pressed the trigger on the Vive controller. We used a [/h ratio of

0.55 for the DiCE method for similar reasons as in Experiment 3.1.7.1: to avoid overly
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Figure 3.18: The results of the validation experiment, comparing perceived contrast (a)
and preference (b). The results are reported for each scene and for the aggregated results
across all the scenes. The bars indicate the quality improvement relative to the standard
presentation (no dichoptic enhancement) in JOD units (the higher the better). +1 JOD
in that scale means that 75% of observers select the given condition over the standard
presentation. The negative values mean that the standard condition is selected more often.
The grayed bars indicate that we have no statistical evidence that a given condition is
different (with respect to contrast or preference) from the standard presentation. The
statistical test does not include the correction for multiple comparisons.
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conservative threshold adjustment and to make the method more different from the
standard presentation. For each stimulus, they were asked three questions: 1) which scene
appears to be higher in contrast?, 2) which scene appears to have more depth?, and 3) in
which scene the materials and textures look more realistic?. The questions were motivated
by our own observation that DiCE-enhanced images have different quality and appear
more three-dimensional. We did not ask about their preference as the question did not
give conclusive answers in Experiment 3.1.7.1. Before the experiment, each participant
read and signed the briefing and consent forms. As part of a training session, each
participant was presented with three pairs of images with examples of low /high contrast,
three-dimensional /flat shading, and natural/unnatural looking textures (Figure 3.19).
None of the participants reported symptoms of VR sickness after a 10-15 minute session

(no formal questionnaire was used).

Results The results of Experiment 3.1.7.2 are presented in Figure 3.21 as percentages of
participants who voted for DiCE when asked each of the three questions. It shows that our
DiCE method produces higher contrast perception than standard presentation for all VR
environments. The results also confirmed that the observers could perceive more depth
with the DiCE enhancement. The effect can have a number of explanations. Ichihara
et al. [73] showed that increased contrast can give an impression of depth. Binocular
lustre may be causing lustrous features to pop out [181], giving the impression of false
depth. Another possible explanation is that artificial disparity stemming from the different
monocular images (luminance dichopticities) could give rise to a depth sensation [180].
The results for realistic-looking textures were less conclusive with only one environment,

with the simplest textures and lowest complexity, showing a moderate preference for DiCE.

3.1.8 Discussion

The results of Experiment 3.1.7.1 and 3.1.7.2 confirmed that our DiCE technique can
effectively enhance contrast not only for simplified stimuli, used in psychophysical models,
but also for complex images. Experiment 3.1.7.2 indicated that our technique can also
improve the impression of depth in images. This question emerged when we were inspecting
the results of our method and noticed that they look different from typical monoscopic
images because of an apparent impression of depth, even if such depth is false. We also
noticed that materials change their appearance when processed with our technique. Glossy
objects appear shinier, giving them a more realistic appearance. Full understanding of

appearance changes caused by dichoptic presentation would require further research.
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Figure 3.19: Training images for Experiment 3.1.7.2

Figure 3.20: Three VR scenes in Experiment 3.1.7.2: Road, Rock, Woods (from left to
right).
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Figure 3.21: The percentages of votes for DiCE when compared to the standard presenta-
tion. The results are reported for each VR environment and for the aggregated results
across all the environments. The error bars denote the confidence intervals.

Contrary to previous BTMO techniques [189, 200] that venture to make images look
different to the eyes but may or may not result in contrast enhancement, our method
always enhances contrast in a principled manner. BTMO methods require very expensive
optimization; for the 800x600 image the authors report 22.24 seconds per single iteration
for the 2012 technique and 2.36 seconds for the 2018 technique. As most rendering pipelines
include a tone curve, they can be customised per eye using our interleaved tone curves
at no additional cost. The simple lookup table implementation of DiCE tone curves
causes zero drops in frame rates. Binocular rivalry can be controlled without the need
for complex predictors, by simply changing a single parameter. We test our technique on
both monoscopic and stereoscopic images, the latter being more relevant to the intended

application.

One aspect of binocular fusion that our method does not directly address is the ocular
dominance of the user. The visual system has a preference for one of the eyes, especially
in the presence of strong rivalry. Since our method attempts to reduce rivalry, ocular
dominance is less relevant than image contrast. Legge & Rubin [94] and Kingdom &
Libenson [84] showed that the eye receiving the higher contrast image dictates whether it
contributes more to the fused image and the effect of eye dominance is not clearly visible

in their data.

The main limitation of our technique is the inherent trade-off between contrast enhancement
and binocular rivalry. Stronger levels of enhancement result in more rivalry, which is
perfectly acceptable for some observers (two in eight) but not for others. This was
evidenced in the preference results of Experiment 3.1.7.1, where the answers were mixed

even though average observers reported seeing higher contrast (Figure 3.18). Clearly, more
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factors than perceived contrast contributed to the preference judgments. We suspect that
the nature of the dichoptic enhancement requires some period of ‘wearing-in’, similar to
getting used to a new pair of glasses. We did not observe any symptoms of VR sickness
but such symptoms can be only revealed in a longer, purpose-designed experiment that

has a control condition.

3.1.9 Summary

We propose a contrast enhancement technique for stereoscopic presentation, which is
derived in a principled manner from a contrast fusion model. The main challenge of our
approach is striking the right balance between contrast enhancement and visual discomfort
caused by binocular rivalry. To address this challenge, we conducted a psychophysical
experiment to test how content, observer, and tone curve parameters can influence binocular
rivalry stemming from the dichoptic presentation. We found that the ratio of tone curve
slopes can predict binocular rivalry letting us easily control the shape of the dichoptic tone
curves. We validate the effectiveness of our technique in the evaluation study, in which we
compare our technique with standard/dioptic presentation and previous techniques, for
both monoscopic and stereoscopic images. We observed marked visual improvement in
both perceived contrast and depth. In addition, glossy objects show increased shininess
and are thus perceived as more realistic. The technique has a negligible computational
cost (a lookup table) and only requires applying a separate tone curve for each eye. The
single parameter of the curve generation may be needed to be adjusted per observer but
it is content-independent so it does not require any analysis of the input images content,
which is a costly operation in real-time rendering. As tone mapping is usually a part of the
rendering pipeline, our technique can be easily combined with existing VR/AR rendering

at no additional cost.
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3.2 Improving depth perception under low luminance

Standard rendering

Proposed stereo constancy method

Figure 3.22: Stereoscopic image pairs that can be crossed-fused, demonstrating the stereo
preservation under low luminance using Dark Stereo. The images should be viewed on a
dimmed display (below 5cd/m?).

As discussed in Chapter 2, depth perception from various depth cues, especially stereo
cues, is a significant visual requirement for perceptual realism and a distinguishing feature

that separates 3D displays from conventional 2D ones. However, binocular depth cues are
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less reliable at low luminance because the global stereopsis mechanism requires a certain
level of suprathreshold contrast to detect a binocular disparity signal [49], and the contrast
detection thresholds are much higher at low luminance. On the other hand, it is often
preferable to display VR content at low brightness as it brings a number of benefits in
other aspects. For example, low luminance significantly reduces power consumption, as
the display itself can be responsible for half of the power usage in a stand-alone, battery-
powered headset. For perceptual realism, the most important benefit of keeping a low level
of luminance is improved motion quality. As discussed in Section 2.1.3, low persistence is
essential to reduce motion blur, but may cause flicker artefacts for a limited refresh rate.
Lowering display luminance can reduce the visibility of such flickering without the need to

increase the refresh rate [19].

In this section, we resolve the deterioration of depth perception under low luminance,
while keeping the aforementioned other benefits by compensation for contrast to maintain
a stereoscopic constancy and without manipulation of depth or disparity. In general,
the undesirable effects introduced by a dimmed display include reduction of perceived
contrast [6, 167], less colourful images [14, 151, 89], and undermined depth judgements
based on stereoscopic depth cues. While the former two effects have been well studied
and addressed in the literature, the effect of absolute luminance on depth judgements has

received relatively less attention.

We measure, demonstrate, and quantify the effect of display luminance and contrast
on depth judgements from binocular disparity cues, and propose an image contrast
enhancement technique that can enhance depth perception on dimmed stereoscopic displays.
We start this section with a review of the effects of display dimming (Section 3.2.1) and
methods for depth enhancement (Section 3.2.2). Based on a series of psychophysical
measurements on a prototype stereoscopic high-dynamic-range display (Chapter 4), we
propose a model of stereoscopic constancy (Sections 3.2.3 and 3.2.4), which predicts the
amount of physical contrast needed to maintain the same precision of binocular disparity
depth cues across the luminance range of 0.1 cd/m? to 1000 cd/m?. The model is then
used to develop a multi-scale contrast compensation method (Section 3.2.5) that attempts
to preserve the precision of binocular depth cues at different display luminance levels. The
method has been implemented in GPU shaders and it can be used in real-time applications.
Finally, we test our algorithm in a low-brightness VR rendering application, in which
our method is both preferred and gives a better impression of depth than non-processed

rendering and existing methods (Section 3.2.6).
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Author’s note in collaborative work Section 3.2 contains collaborative work with
other parties for the completeness of the presentation. The author contributed to the
display calibration and data analysis for the 3D shape perception experiment (Section 3.2.3);
the modelling of stereo consistency (Section 3.2.4); and partially the data analysis of the
validation experiment (Section 3.2.6). Others were included for the completeness of the

presentation.
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3.2.1 Display dimming

In this subsection, we discuss the advantages and disadvantages of dimming a display and
the studies on the functioning of the human visual system and colour appearance in dark

and bright conditions.

Effect of display dimming on user experience Several works have studied the
impact of display brightness on user experience and power consumption. Schuchhardt
et al. [149] proposed an optimal dimming scheme to reduce mobile display brightness
while ensuring good legibility on the screen. Erickson et al. [43] investigated the effect
of colour mode on visual acuity and fatigue with VR head-mounted displays. They
found that a dark background used in dark mode can reduce visual fatigue and increase
visual acuity in a dim VR environment. Mantiuk et al. [116] argued for using amber
and red colours on dark displays as they induce the least amount of disability glare or
photophobia. They also found that the preferred display brightness was between 20 and
40cd/m? in a dark environment. Chapiro et al. [19] reported that, in low luminance
conditions, judder is less visible, leading to better-perceived motion quality. These works
provide solid ground for the merit of dimming VR displays. However, it is well recognised
that the visual performance, including contrast and depth perception, is substantially
degraded at low luminance. Although the visual system can preserve the appearance of
contrast through a range of conditions [54], the contrast appears weaker and eventually
disappears as the luminance is reduced, particularly the contrast that is close to the
threshold [86, 139]. Lower luminance levels cause the pupil to dilate. This could result
in a larger defocus blur in fixed-focus displays. Singh et al. [152] found that matching
the brightness of the displayed and real object on an AR display results in more accurate
depth estimation when focus cues are consistent (no vergence-accommodation conflict) or
when focused on the mid-point of the tested depth range. No absolute luminance levels
were reported so we cannot compare their finding with ours. According to Frisby et al.
[49], the global stereopsis mechanism requires a certain level of suprathreshold contrast
to detect a binocular disparity signal. Since the contrast detection thresholds are much
higher at low luminance, our ability to see depth in low contrast content is greatly reduced

[104]. Our work focuses on solving this issue.

Colour appearance on dimmed displays Despite the ability of our visual system to
maintain colour perception across a very wide range of illumination (colour constancy),
some changes in appearance are inevitable when light levels are low, in particular when the

visual system transitions from cone-mediated vision (photopic) to cone- and rod-mediated
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vision (mesopic) [6]. Indeed, colour appearance in mesopic vision (0.01 - 3cd/m?) can
be influenced by the change in rod activity [156]. As a consequence, luminance levels
alter the perception attributes such as hue, chroma, and lightness [89, 151]. Brightness
and colourfulness also reduce with decreasing luminance [51]. Several models explaining
the changes in colour appearance at mesopic light levels have been proposed [151, 14],

including an extension of CIECAMO02 colour appearance model [110].

Simulation and compensation of night vision Some works tried to simulate and
compensate for changes between day and night visions. Wanat et al. [167] proposed a
luminance re-targeting method to match the appearance of different luminance levels by
altering perceived contrast and modelling hue and saturation shifts of an image. Kellnhofer
et al. [79] argued that for stereoscopic displays, such changes are not sufficient to fully
simulate dark conditions. Their proposed solution involves the manipulation of binocular
disparity so that a scotopic stereo content displayed on a photopic monitor is perceived
as the scene was scotopic. Contrary to the mentioned studies, instead of improving or
simulating the appearance of a dark screen, our work focuses on improving stereo vision

in low-luminance conditions.

3.2.2 Depth enhancement

In this subsection, we outline the works that manipulate image content to improve stereo

vision.

Disparity manipulation Several works have proposed techniques for altering image
disparity, mostly intending to reduce vergence-accommodation conflict and make images
more comfortable to view. Oskam et al. [135] described a method that controls the camera
convergence and interaxial separation over time to optimally map a dynamically changing
scene to the desired depth range, which improves comfort. Lang et al. [90] proposed a
method that controls and re-targets the depth of a stereoscopic scene in a nonlinear and
locally adaptive fashion. The solution employs computed disparity and saliency estimates
to compute a deformation of the input views so that they meet the desired disparities. To
avoid undesirable distortions from disparity manipulation, Didyk et al. [33] introduced
a perceptual model of disparity which provides a metric to evaluate perceived disparity
change for stereo images. The follow-up work [35] studies the interplay of contrast and
disparity on the depth discrimination. Based on their disparity-perception model, they

jointly manipulate luminance contrast and disparity to reduce depth in stereoscopic images.
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However, these models ignore the impact of display luminance, which is central to our
work. Didyk et al. [34] also proposed a depth-enhancement technique that relies on the
Cornsweet illusion in the disparity domain. While all these methods show the potential of
manipulating disparity to improve the perception of depth in a displayed image, we argue
that manipulating disparity in VR content might affect visual feedback to egomotion and

contribute to an intensified VR sickness [76].

Depth enhancement by image content manipulation It has been shown that
certain image manipulations can enhance the apparent depth. Luft et al. [109] proposed
a technique that enhances contrast and colour near depth discontinuities to improve the
perceptual quality of monoscopic images. Our intention is to preserve the perception of

depth in stereoscopic content across different luminance levels rather than to enhance it.

3.2.3 3D shape perception

As discussed in Section 2.1.1, binocular disparity is one of the most important depth
cues [28] and is commonly employed in stereoscopic displays to evoke stereo 3D scene
appearance. In this section, we develop a computational model of the precision of binocular
disparity cues as a function of image contrast and luminance. To this end, we designed
an experiment in which observers were asked to judge the angle of a 3D hinge-like shape
(Figure 3.23, left), reproduced on the display using only disparity depth cues (Figure 3.23,
right). Our 3D shape perception experiment was inspired by the study of Watt et al. [172],
where a similar hinge-like shape was used to examine whether focus cues have an indirect

effect on depth interpretation.

Apparatus The experiment was conducted on a custom-built HDR stereo display,
which shares the same architecture as the HDR multi-focal display apparatus presented
in Chapter 4, except that we only used the near focal plane for this experiment. The
apparatus allows a single observer to view a pair of HDR images (from 0.01cd/m? to
3000 cd/m?) through an optical arrangement similar to the Wheatstone mirror stereoscope,
as illustrated in Figure 4.3. Further details on the display design, control software and its
colourimetric and geometric calibration are explained in Chapter 4. We used HDR rather
than a standard display as it can reproduce both very low and very high luminance while
maintaining sufficient colour accuracy (bit-depth). The virtual images of the HDR content

were placed 45 cm in front of the observers, with a resolution of 82 pixels per visual degree.
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background stimuli observer

Figure 3.23: Left: The stimulus used in Experiment 3.2.3. The observer is presented with
a hinge-like concave shape. The angle is changed by moving the hinge part towards or
away from the observer (depicted by the arrows). Right: Procedural organic pattern on a
uniform background. The superimposed grid depicts the three-dimensional shape of the
stimuli. Note that the superimposed grid was only added to this figure to facilitate its 3D
interpretation, while originally the hinge shape was reproduced only by the disparity cue.

Stimuli To study the influence of low luminance on binocular depth perception, we
designed a stimulus that contained a controlled binocular disparity cue while minimizing
the effect of other depth cues. The observers were presented with a concave, hinge-like
shape on a uniform grey background. The stimuli were textured with a procedurally
generated pattern (Figure 3.23, right) with only two shades of grey. To isolate only the
disparity cue, the texture was projected on a surface from a position of a cyclopean eye,
thus eliminating the perspective projection cue (the texture density did not change with
the distance). It was also rendered without a reflection model to remove shading cues.
During the experiment, observers were asked to use a chinrest to prevent head movements.

The stimuli and setup are presented in Figure 3.23.

The stimuli were presented at five luminance levels: 0.1, 1, 10, 100, and 1000 cd/m?. For
each luminance level, four contrast levels, measured as Weber contrast (Equation 2.8), of
the texture were measured: 0.05, 0.1, 0.2, or 0.4. As in the pilot experiment observers
were not able to see the stimuli at 0.1 cd/m? and Weber contrast of 0.05, we removed this
condition from the main experiment. The order of conditions was randomised for each
observer. If the luminance decreased between two conditions, we displayed a uniform field
with the target luminance for a minute to ensure the observer was adapted to the new

luminance level.

Experimental procedure The task was to assess whether the angle was greater or

smaller than 90 degrees and confirm the decision by pressing a corresponding key on
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the keyboard. For each of the 19 conditions, we used the method of constant stimuli
to estimate the probability of judging the angle as acute or obtuse. The tested angles
were: 65°, 75°, 85°, 95°, 105°, and 115°. Six trials were collected for each angle and each
observer. We changed the angle by moving the hinge part towards and away from the
observer while keeping the side edges stationary (Figure 3.23). This was done to avoid

additional depth cues. The tested angles were randomised between the trials.

Each observer was asked to complete a training session at 10 cd/m?, in which they were
given feedback on whether their answer was correct. Such feedback was not given in the
main experiment. The training session helped the observers to familiarise themselves with
the task and become accustomed to disparity-only stimuli. The session was also used to
screen observers. We excluded three observers who were unable to properly complete the
training session? from further experiments. The entire experiment took each participant

around two hours and was split into 3—5 short sessions.

Observers Eleven volunteers (four females and seven males, mean age 31, SD 4.5 years,
including three authors®), who passed the training session, participated in the experiment.
Nine of them completed trials for all luminance levels, while two completed only the trials
for luminance levels from 0.1 cd/m? to 10 cd/m?. All observers had normal or corrected-to-
normal visual acuity. All passed the Titmus stereoacuity test. All observers except the
authors were naive to the purpose of the experiment. Before the experiment, each observer
read and signed the consent form. The observers were rewarded for their participation.

The experiment was approved by the departmental ethics board.

Results The experiment explained how well the observers could see a geometric angle at
several luminance and contrast levels. The data averaged over all observers, plotted as the

probability that an observer reports an obtuse angle, is shown in Figure 3.24 as red stars.

The first important observation is that the psychometric curves formed by the data points
cross the 50% probability point at around a 90-degree angle regardless of luminance and
contrast. This means that the perceived angles were not distorted by lower luminance and
contrast. However, the slopes of the psychometric functions differ substantially between
the conditions. The shallower slopes indicate that the observers more often mistook the
angle at low luminance and low contrast. This means that lower luminance does not

reduce the accuracy of the shape assessment task, but it reduces the precision of that task.

2giving purely random results as they cannot properly perceive stereo cues.
3The authors participated in this experiment as they did not have a preferred outcome, but rather
aimed to accurately measure the precision of stereo cues.
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Figure 3.24: The red stars are the original data points collected from the 3D shape percep-
tion experiment (Section 3.2.3). They represent the frequency at which the participants
assessed the angle as obtuse under various luminance and contrast conditions. The error
bars denote the 99% confidence intervals. The blue curves represent our fitted psychometric
model (Section 3.2.4). The top-left plot has no data points as it was impossible to see the
stimuli in this condition.

3.2.4 Stereo constancy model

In this section, we propose a model that can predict how contrast needs to be altered to
preserve the same precision of the stereo task across different luminance levels. As the first
step, we assume the collected data can be explained by a psychometric function that follows
the Weibull cumulative distribution function [177]. We used this psychometric function to
describe the probability p of an observer perceiving the hinge-like shape (Figure 3.23) as

an obtuse angle given the actual angle «, represented in degrees:
p(a, B) =1 — exp (log(0.5)107@err)) (3.8)

where ayp,, is the angle at which the probability of detection p is 0.5, which we assumed to
be 90 degrees. The value of 3 controls the steepness of the function, which reflects the
precision of the user performance in this task. A higher value of 8 means that the observer

is more sensitive to the variations in the perceived angle and also that the task is easier.

Our goal is to find a model of 3 as a function of contrast and luminance, such that the

92



likelihood of the data observed in the 3D shape perception experiment is maximised. We

found that § can be explained by a quadratic function of contrast and log-luminance:
Ble, L;w) = wi L + woc + w3 L? + wyc® + ws (3.9)

where L is the logarithm of luminance (L = log,,(Y)), ¢ is logarithmic contrast, and
w = [wy, ..., ws| denote unknown free parameters. Note that contrast was recorded as
Weber contrast C,, (Equation 2.8) in our experiment. However, our contrast enhancement
method (Section 3.2.5) can be implemented more efficiently if it operates on logarithmic
contrast. The Weber contrast C, can be converted into logarithmic contrast ¢ with the
formula:

¢ = logy(Cy + 1). (3.10)

To have better control over free parameters, and to ensure that the function is monotonic,
we used the maximum a posteriori (MAP) estimation to find the values of w. We assume
w ~ N(u,diag(o)?) for some p and o, where p; and o? are the mean and the variance of

w; respectively.

The likelihood of observing k out of n trials (of selecting an obtuse angle) can be explained
by a binomial distribution, with a latent probability of p of perceiving the angle as obtuse.
As indicated by Equation 3.8, the value of p is dependent on the presented angle o and
detection sensitivity (8, which is then parameterised by contrast ¢, luminance L, and w in
Equation 3.9. Under the MAP framework, free parameters w can be found by minimizing

the negated log-likelihood of the binomial distribution:

. ns,d ks Ng _ks 1
argmin = 30 S tog (1Yol (1= ) ) 4 B gt )
d S, 7

w s i=3,4

where s is the index of the observer, d = [«, ¢, L] are the parameters of each condition, and
pa = p(a, B(c, Ly w)) is given by Equations 3.8 and 3.9. ng 4 in the binomial coefficient
is the total number of measurements collected for observer s and condition d and k; 4
is the number of measurements in which obtuse angle was selected. Table 3.2 shows the
final estimated parameters we found for w, and our choices for p and o. Under the
MAP framework, ﬁ becomes the weights on the regularization terms. Note that we only

2"%_order terms ws and w, to ensure monotonicity. With these parameters, we

regularize
plot the corresponding fitted psychometric functions parameterised by S under various
luminance and contrast conditions on top of the original data points in Figure 3.24 as blue
curves. The plots demonstrate that the model explains well most conditions. The worse
fit for some conditions (e.g. 0.1cd/m?, Cy = 0.4) is due to the regularization, which was

necessary to make the model monotonic and thus invertible.
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Table 3.2: Estimated values of free parameters of Equation 3.9 and the priors for the
Maximum a Posteriori (MAP) estimation. Symbol / indicates that no prior was used.

w | 0.0050 | 0.1849 | -0.0010 | 0.3994 | 0.0263

0.001 | 0.001

Next, we use the fitted model to find the lines of equal precision of the task (constant
f). Such lines are plotted as continuous lines in Figure 3.25. The figure shows that to
maintain the same precision of the task (the same ), we need to increase the contrast at
low luminance and that such an increase should be smaller for higher contrast. We will
refer to this model as a stereo constancy model and use it in the next section to derive our
contrast enhancement technique for dark stereo displays. To demonstrate that the effect
cannot be predicted by a contrast constancy model, we plot in the same figure the contrast
constancy model of Kulikowski [86] (used in [167]). The comparison shows that stereo
constancy requires stronger contrast enhancement between 0.1 and 10 cd/m? (mesopic and
photopic range) than contrast constancy. The difference between both models is further

corroborated in our validation experiments in Section 3.2.6.

3.2.5 Stereo-preserving contrast enhancement method

We use our model to design a local contrast enhancement method that preserves the
precision and difficulty of stereo perception at low luminance. We follow a similar contrast
retargeting algorithm as used by Wanat et al. [167] to manipulate the local contrast
according to the stereo constancy model. We also improve a few processing steps for better
real-time performance and temporal stability. The following subsections explain each step

of the algorithm.

3.2.5.1 Colour space transformation

Since our stereo constancy model is defined in terms of physical (linear) luminance units,
we first convert the rendered frame from a gamma-encoded to a linear colour space.
Assuming ITU-R BT.709-6 RGB primaries and the standard gamma (v = 2.2), the relative
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Figure 3.25: The solid lines, or equivalent-/3 lines, connect the contrast values that result
in the same precision of perceiving depth (the same /3 of the psychophysical function) as a
function of different display luminance levels. The lines are derived from our model of
stereo task difficulty. The dashed lines represent the equivalent perceived contrast for
three different spatial frequencies (2, 4, and 8 cpd) according to Kulikowski’s model.

luminance, Yinput, is computed as:

3

yiHPUt (X) = Z Uk Iz{gput(x7 k) Y (312)
k=1

where I'(x, k) is the gamma-encoded input value at pixel x and in colour channel %k (in
the range 0-1), while v, = [0.212656, 0.715158, 0.072186]. Note that we use lower-case y

for relative luminance to make it distinct from absolute luminance, Y.

3.2.5.2 Multi-scale decomposition

The proposed method compensates for the deteriorated depth perception by enhancing
local image contrast. In order to operate on local image contrast, we decompose an
image into frequency bands using the Laplacian pyramid. We use the classical Burt and
Adelson method [13] with the coefficient a = 0.4 used to construct the filters. In our
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implementation, we construct a Laplacian pyramid consisting of 3 levels: two band-pass
levels and one low-pass level (baseband). The two band-pass levels are sufficient because
of the limited effective resolution of VR headsets (in terms of pixels per degree). Such a

shallow decomposition also improves the performance in real-time applications.

For computational convenience, the decomposition is performed on logarithmic values of
luminance | = 10g;o(Yinput)- This ensures that the coefficient of the pyramid represents
logarithmic contrast (they approximate the logarithm of ratios between two levels). The

Laplacian pyramid coefficient at level ¢ is then computed as:

Fi(x) = (g % (%) = (i1 x D)(x), (3.13)

where g; is the kernel of a Gaussian pyramid at the level 7 and * is the convolution operator.

3.2.5.3 Measure of local contrast

Our stereo constancy model requires an estimate of the local contrast to find a corresponding
equivalent contrast in the target image. Although the coefficients of the Laplacian pyramid
can be used for this purpose, it can result in over-enhancement and artefacts at sharp
contrast edges [167]. We follow the same approach as in [167] and compute a root-mean-

squared (RMS) measure of local contrast.

The localised root-mean-square (RMS) contrast can be computed as:

ci(x) = V(g0 * 2)(x) = (g0 * 1) (x))?, (3.14)

where [ is the logarithm of relative luminance and g is a Gaussian kernel with standard
deviation 0. We use the kernels with larger o at the lower frequency pyramid levels. To
avoid computing additional convolutions, we can instead reuse the Gaussian pyramid and

estimate the local RMS contrast as:

e(x) =\ Hi(x) — G2(x). (3.15)

where G; is a Gaussian pyramid built from log-luminance [ and H; is a Gaussian pyramid
built from squared log-luminance [?. Computing a second pyramid H is inexpensive on
a GPU, as it can be done by operating on a 2-channel texture, where the first channel

contains log-luminance and the second channel contains squared log-luminance.
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Figure 3.26: Method of finding equivalent contrast that preserves the precision of binocular
disparity cues. Similar to Figure 3.25, for a given input contrast and source luminance,
our stereo constancy model gives the curves of equivalent contrast (constant /3, blue line).
This lets us find the desired contrast for any target display luminance.

3.2.5.4 Contrast retargeting

Once the Laplacian pyramid and contrast magnitude are computed, we can map the contrast
for a given source luminance (Y;;,) to the contrast that provides the same stereoacuity
when seen at target luminance (Y,,;). This can be done by executing the following steps
for every frequency band except the low-pass band (baseband), which does not encode

contrast.

Finding contrast enhancement factor We need to find an equivalent contrast at
another (target) luminance level, which results in the same stereo precision (/) as the
original contrast. We can rearrange Equation 3.9 to compute the equivalent contrast c.,

for the desired logarithmic contrast ¢, source (Y;,) and target (Y,) luminance:

—wy + Jwd — dwgt
Ceq(ca Kn; }/(-)ut) - W2 e e 5 (316)

- 2w4

where

t=wy Loyt +w Lgu 4+ ws — B¢, Lin
1 t 3 t 5 ﬁ( ) (317)

L, = 10g10 Yin Low = 1Og10 Yout

with the parameters wy, ..., ws reported in Table 3.2. Function ((-) is given in Equa-
tion 3.9. The process of mapping contrast between luminance levels is further illustrated

in Figure 3.26.
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Instead of directly modifying contrast in the Laplacian pyramid, we compute a contrast
enhancement factor:
Coa (€5(), Yin (%), Your (%) )

¢i(x)

, (3.18)

m;(x) =

where ¢; is an input RMS contrast computed according to Equation 3.15 and ceq() is
the equivalent contrast function from Equation 3.16. Yj, and Y, are source and target

luminance which are computed as:

Y;n(x) - 1OGN(X) . Y;)eak,srca

(3.19)
Y'out (X) = 1OGN(X) : Y;)eak,trga

where G is the base band of the Gaussian pyramid (as explained in Section 3.2.5.2).
Ypeak src 18 the peak luminance of the source display (before dimming) and Yjeax trg is the
peak luminance of the target (dimmed) display. We use Ypeaksre = 80 cd/m? in all our

experiments.

Contrast enhancement Given the local contrast estimate computed in Section 3.2.5.2,

we retarget it, enhancing locally the Laplacian pyramid:
Py(x) = Pi(x) - my(x), (3.20)

where P; is the i-th level of Laplacian pyramid (i = 1,..., N — 1, excluding the base-band)

and m; is a corresponding enhancement factor from Equation 3.18.

We reconstruct the resulting enhanced luminance channel y,;, by summing all N levels of

pyramid P including the base band:

yenh<x) = 102?;1 IBZ(X) (321)

3.2.5.5 Reconstructing colour image

The enhanced colour image I, is produced by multiplying input colour (RGB) image in

linear space Iinpue by the ratio of enhanced and input luminances:

Yenh (X)

[en X7k - ]in u Xak
h( ) p t( ) yinput(X)

, (3.22)

where k is the index of the colour channel (k € {1,2,3}). Such an approach may, however,

result in out-of-gamut colours (one of the colour channels values greater than 1) and
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distorted or desaturated colours. To prevent this, we compute how much a particular pixel

can be enhanced until the pixel exceeds the gamut:

1

mmax(x) = . (323)
maxj, {Imput(X, k)}
Next, we introduce this term into the previous grey to colour conversion equation:
Lo (%, %) = Iopu (, &) - min {yh—(x) mmax(x)} | (3.24)
Yinput (X)

As the last step, we convert the linear colour channels to display-ready gamma-encoded

ones with a gamma function: I'(x, k) = I'(x, k).

3.2.6 Validation

We evaluated the effectiveness of our method in a validation experiment in which we
compared the proposed enhancement algorithm with the most closely related method of
Wanat et al. [167] and standard rendering. The methods were compared in terms of the

impression of three-dimensionality and the appearance of the presented scene.

VR headset The experiments were prepared for the Valve Index VR headset. We chose
Valve Index because it offers a relatively high display resolution of a maximum of 16
pixels per visual degree and its drivers allow the user to dim its display. We set the peak

luminance to be 5cd/m?.

Stimuli The test scene was built from stylised assets that provided a good balance
between good quality content, similar to those found in most VR experiences, and
performance (no complex geometry). An example screenshot from the scene is shown
in Figure 3.27. Figure 3.28 shows three rendering modes used in the experiment: the
proposed stereo-constancy model (top), standard rendering (middle), and Wanat’s method
(bottom).

Procedure During the experiment, we placed the observers in the virtual environment
and teleported them to five different locations. They were allowed to look around freely
and switch between two rendering methods using the trackpad on the right controller. In

each trial, they compared our method with either standard rendering (no post-processing)
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Figure 3.27: Preview of the scene presented to the observer in the preference experiment.
The assets are a part of the POLYGON series prepared by Synty Store. The images show
a non-enhanced (standard) rendering of the scene.
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or the method of Wanat et al. [167].

The experiment was split into two parts. In each part, the observers visited the same
locations (in random order), regardless of the question being asked. In the first part, the
observers were asked to select the rendering mode that looks more three dimensional and
in the second part they were asked to select the rendering mode that looks better. The
observers gave the answer by pressing the right trigger while the selected rendering method
was active. The participants were allowed to make a selection only after viewing both
rendering modes. For both questions and every condition, each location was shown to
the participant five times, each time using a different direction of the camera (random
rotation around the up vector). The order of trials and parts was randomised. We also
displayed information about the current progress of the experiment and the assessment

criterion (depth or preference) at the bottom of the viewport.

Observers Nine observers (one female and eight males, mean age 26.7, SD 3.2 years)
were recruited among students and researchers. All observers had a normal or corrected-to-
normal vision and were also naive to the purpose of the experiment. Before the experiment,
each participant read and signed the consent form. The participants were screened for
stereoacuity in a test performed in VR, in which they had to choose a closer square from

a pair (akin to the Titmus fly test).

Results The bars in Figure 3.29 show the percentage of trials in which our method
was chosen over the alternative method. The yellow circles indicate per-observer results.
Eight out of nine observers agreed that the image modified with our method looks more
three-dimensional and also better than the image enhanced with Wanat et al.’s method
and standard rendering. We further validated these results with a one-sided binomial
test and a null hypothesis of random selection for both preference and impression of
three-dimensionality. The tests confirmed that the results were significant and our contrast
enhancement for stereo-constancy improves the perception of 3D shapes and produces
more preferred images. In a post-experimental survey, we asked the observers whether
the colour seen in the VR headset appeared natural. None of the observers reported an

artefact in colour appearance.

3.2.7 Discussion

No distortion of depth The most important conclusion from our 3D shape perception

experiment (Section 3.2.3) is that low luminance levels (0.1-10 cd/m?) do not distort depth.
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Figure 3.28: Three rendering methods used in the preference experiment: image enhanced
with the proposed stereo-constancy model (top), standard rendering with no enhancement
(middle), and image enhanced with Wanat’s method (bottom). The insets show close-ups
of the selected image areas. It can be observed that Wanat’s and the proposed stereo
constancy methods increase local contrast and result in a sharper image, but for different
purposes.
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Figure 3.29: Results of Experiment 3.2.6, assessing the preference and the impression of
three-dimensionality. The yellow circles represent the per-observer results and the empty
circles denote observers who failed the stereoacuity test. The height of the bars presents
the percentage of trials in which our method was chosen over the method given below
(excluding disqualified observers). Standard stands for a no enhancement and Wanat for
the method proposed by Wanat et al. The error bars present a 95% confidence interval
and the red dashed horizontal line indicates the guess rate.

This is in contrast to the observations of Kellnhofer et al. [79], who reported compression
of depth at low luminance. Our experiment showed that, even at 0.1cd/m?, observers
could correctly assess the angle without bias (high accuracy), however with larger variance
in their responses (lower precision). Had the perceived depth been compressed at low
luminance, the results would have been biased towards obtuse angles, as the observers
compensated for the reduced disparity. However, we did not experiment with light levels
below 0.1cd/m?, so we cannot confirm whether the perception of 3D shapes is affected at

these luminance levels.

Contrast vs. disparity manipulation Several works [33, 35, 80] manipulate disparity
to improve depth perception. While such an approach is practical for 3D cinema content,
it is unsuitable for VR environments, in which depth must be faithfully reproduced to give
accurate visual feedback to egomotion. Disparity manipulation in VR is likely to result in

conflicting visual and vestibular sensations leading to VR-sickness [76].

Colour appearance in mesopic vision Degradation in stereoacuity is not the only

issue of showing VR content at low brightness. It is well-established that colour appearance
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also degrades as luminance decreases to mesopic vision [6, 51]. Those models could be
incorporated into our enhancement technique, as was done in [167], however, we did
not find the changes in colour to be substantial enough to require additional processing.
None of the experiment participants reported an unnatural colour appearance in our
post-experiment questionnaire (Section 3.2.6). Our observation is also supported by the
results of Kwak et al. [89, Fig. 6,7] who reported negligible changes in colourfulness and
hue, measured using magnitude estimation, when the reference white was reduced to
only 1cd/m?. Larger changes in colour appearance can be observed when two luminance
conditions are presented to the observer simultaneously in an asymmetric (haploscopic)
matching experiment [151]. Such artificial presentation, however, is not representative of

viewing content on a dimmed VR headset.

Limitations Our model was fitted to the data collected in the luminance range between
0.1cd/m? and 1000 cd/m?, which may limit the ability of our model to generalize to very
low luminance levels. We cannot generalize our model to the scotopic levels much below
0.1cd/m?, but we argue that such low luminance is less relevant for displays. We also
do not consider the influence of tone mapping on depth perception. Since tone mapping
often involves contrast compression, we expect increased difficulty in inferring depth from

tone-mapped stereo images.

3.2.8 Summary

Dimming a display can be beneficial for VR experience as it reduces the visibility of flicker,
saves power, prolongs battery life, and reduces the cost of the device. The major downside
of this approach is the reduced sensitivity to stereoscopic depth cues, which are major
visual cues for perceptually realistic graphics that differs from photorealistic graphics.
Contrary to previous works [79], we do not find the distortion of 3D depth at low luminance
(0.1-1 c¢d/m?), but instead, we find increased difficulty and lower precision (larger variance)
of assessing 3D shapes based on binocular cues. This motivates our method for enhancing
contrast at low luminance levels, intended at improving the reliability of stereoscopic
depth cues. We demonstrate that such contrast enhancement can be implemented in the
real-time rendering of VR environments. We further show the effectiveness of such depth
enhancement in a perceptual experiment asking about qualitative aspects of preference
and impression of depth. The experiment demonstrates that depth perception can be
effectively restored by contrast enhancement and overall visual quality can be improved.
The proposed method can improve the user experience for VR headsets that need to

operate at low power or those that cannot achieve high refresh rates.
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Chapter 4

Reproducing Reality

Figure 4.1: We built a High-Dynamic-Range Multi-Focal Stereo display (a) which allows
for a direct comparison with a physical scene located in front of the observer (b). The
display can reproduce real-world 3D objects with accurate colour, contrast, disparity, and
a range of focal depth, making it hard to distinguish between real and virtual scenes (c, d).

Imagine a black box that contains either a physical 3D object or one virtually rendered
by a 3D display, with a naive observer tasked to distinguish between the two scenarios.

This is the notion of a wvisual Turing test [5] - an extension of the Turing test to the visual
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domain to evaluate perceptual realism. Passing a visual Turing test for arbitrarily complex
scenes is the holy grail of perceptually realistic graphics. Among all the possible quality
metrics, the visual Turing test is also one of the most efficacious and indicative methods for

evaluating perceptual realism, as physically measuring perceived quality can be nontrivial.

In Chapter 3, we presented two rendering algorithms for stereoscopic displays to boost
the perceived quality of contrast and depth. Nonetheless, only improving rendering for
contrast and depth is not sufficient to meet all the visual requirements for perceptual
realism and pass a visual Turing test. The overall fidelity of a typical stereoscopic VR
display is confined by limited dynamic range, low spatial resolution, lens distortions, and
vergence-accommodation conflicts. To push the limits of overall fidelity and challenge the
visual Turing test, we present a High-Dynamic-Range Multi-Focal Stereo display (HDR-
MF-S display) with an end-to-end imaging and rendering system aimed to maximise the

quality of all the essential visual cues for perceptual realism, as shown in Figure 4.1.

Passing a visual Turing test puts very strict requirements on the quality of reproduction.
To make the task feasible, we aim for a visual reproduction of a static scene encompassing
a moderate field of view (27° x21.8°) and seen from a fixed viewing position (no motion
parallax). As analysed in Chapter 2, such a scene can in principle be reproduced with
perceptually-realistic fidelity if sufficient quality and accuracy can be achieved in terms of
the retinal image, spatial resolution, depth cues, dynamic range, contrast, and colour. The
fact that human perception integrates across different cues, creating a ‘holistic’ percept,
raises the possibility that almost inevitable small differences to the real world in terms of
individual attributes may not be noticeable provided the other visual cues are collectively

presented with sufficient quality.

The first objective of this work is to build a display apparatus and a 3D scene acquisition and
rendering system that combines high spatial resolution with accurate colours, luminance
levels, and cues to 3D structure (including focal distance). Our display apparatus combines
four custom-built HDR displays into a single-viewer two-focal plane stereoscopic display. It
can deliver a brightness level up to 3000 cd/m? and below 0.01 cd/m?, a spatial resolution
of at least 85 pixels per degree! at a viewing distance of 462 mm, a colour gamut of BT.709,
correct disparity, and variations in focal depth from 462 mm (2.16 D/dioptres) to 740 mm
(1.35D). These capabilities are sufficient to reproduce a small scene inside a box of size
200mm x 160mm x 300 mm (width x height x depth) with levels of realism that exceed
what existing display technologies can offer. Furthermore, the display is constructed in

such a way that a viewer can simultaneously, or selectively, see a physical box containing

! Although our display resolution does not reach the peak resolving power at the fovea (240 ppds [120],
see Section 2.1.1), it is sufficient for the majority of the population who do not normally have a 20/20
vision, as tested by our VI'T experiment (Section 4.5).
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real objects and compare them with displayed ones in the same spatial position. This
enables a set of new perceptual experiments that have not been possible before. To deliver
high-quality content for such a display, we create a system for acquiring, reconstructing,
and rendering 3D scenes with a surface lumigraph [12] (light field with a proxy mesh). The
system involves the capture of multi-exposure image stacks from multiple viewpoints with
a high-resolution mirror-less camera, camera pose estimation with photogrammetry, colour
calibration with a spectrometer, proxy mesh registration with differentiable rasterization,
lumigraph view synthesis with view-dependent UV maps, multi-focal rendering with linear
depth filtering, and a custom-designed focal plane calibration to compensate for different

viewing positions of observers.

The second objective of this work is to apply this system to visually reproduce a moderate-
size stationary object at a close distance to the observer (0.5m) with a high fidelity such
that it can be confused with a physical 3D object. The fidelity of reproduction should
be confirmed by a visual Turing test with a strict criterion: the virtual scene must not
be visually different in any respect from the real scene. To this end, we propose and
performed a visual Turing test in a three-interval-forced-choice (3IFC) experiment where
we asked naive observers to choose a scene that appears different when presented with two
real and one virtual scenes, or one real and two virtual scenes. In this way, as opposed to a
regular 2IFC test, we evaluate realism objectively and eliminate subjective interpretations
of realism from prior experiences. The experiment results show that naive observers can
only discriminate between real and displayed 3D objects with a probability of 0.44. To our
knowledge, this is the first work that achieves a close perceptual match between a real-world
3D object and its displayed counterpart in both geometry and appearance. In contrast to
previous work [126, 10, 119], we achieved this with a near-eye and binocular presentation
of the stimuli and a much more challenging 3IFC test, and without any optical degradation
of the real scene. The attempt at this challenge provides insights to better understand
the conditions necessary to achieve perceptual realism. In the long term, we foresee this
approach as an important step in the study of future display technologies, including AR
and VR, to determine what display capabilities are most critical in achieving perceptual
realism. Our display apparatus can also be useful in further studies of essential visual
cues for realism such as material perception, colour appearance, and depth perception, in

which realistic objects and scenes need to be faithfully reproduced.

We start this chapter with a review of early attempts at the visual Turing test (Section 4.1).
Next, we introduce the architecture and hardware setup (Section 4.2), and the imaging
and rendering pipeline (Section 4.3) of our HDR-MF-S display apparatus. We include
several visual demonstrations to show the characteristic capabilities of our display system

and performed a qualitative evaluation of its limitations (Section 4.4). Finally, we explain
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the procedure of our 3IFC visual Turing test and discuss the results (Section 4.5).

The work presented in Chapter 4 produced the following publication:

e Fangcheng Zhong, Akshay Jindal, Ali Ozgiir Yontem, Param Hanji, Simon J. Watt,
and Rafat K. Mantiuk. Reproducing reality with a high-dynamic-range multi-focal
stereo display. ACM Trans. Graph. (Proceedings of ACM SIGGRAPH Asia 2021,
Journal Track), 40(6), dec 2021. ISSN 0730-0301. doi: 10.1145/3478513.3480513.
URL https://doi.org/10.1145/3478513.3480513

Author’s note in collaborative work Chapter 4 contains collaborative work with
other parties for the completeness of the presentation. The author contributed to the overall
design and implementation of the HDR-MF-S imaging and rendering pipeline (Section 4.3),
including the light-field acquisition, lumigraph reconstruction, differentiable rendering,
and multi-focal calibration and rendering; the qualitative evaluation (Section 4.4); the
design of the VI'T experiment (Section 4.5) and its data collection and analysis; and the
geometric and photometric calibration of the data camera and the HDR-MF-S display
apparatus (Section 4.2).
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4.1 Early attempts of visual Turing test

Obtaining realistic results has been one of the main pursuits of computer graphics and
particularly rendering. Global illumination and physically based rendering allowed for
accurate simulation of light [56]. When combined with tone mapping methods [39],
simulation of lens glare [145], and camera response [144], these techniques can produce
photorealistic images, indistinguishable from photographs of real-world scenes. However,
since the focus of our work lies beyond photorealism, we review the studies that attempted

to achieve perceptual realism by matching a virtual scene with a physical one.

Meyer [126] was the first to compare rendering shown on a display with a real scene in an
experiment. The participants saw the real scene and a CRT screen with its reproduction
side by side, via viewfinders of two cameras with telephoto lenses. Additional Fresnel
lenses were added to enlarge the viewfinder images so that they could be seen from
112cm. Despite the lack of binocular depth cues and the low resolution of the CRT
screen, the authors reported that neither naive observers nor experts could tell which
image was computer generated. Although this was an impressive result, it was helped
by the degradation of the real-scene images, due to lens distortions, and their small size

(9.2x9.2 cm seen from 112 cm, or 4.7°).

Borg et al. [10] reported a graphics Turing test experiment, in which they successfully
reproduced the result of Meyer without the need to see the stimuli via a viewfinder. The
participants viewed either a real object (a pyramid or a sphere), or a display seen through
a small aperture in a 2m long box. The stimuli were viewed with one eye. Also, because
the authors could not achieve the required dynamic range on their display they asked the
participants to view the images from 10 cm away from the box in a non-dark room (50 lux)

so that the display black level was masked by glare in the eye and adaptation.

Masaoka et al. [119] measured how the impression of realism is degraded with the reduction
of resolution. The authors conducted a pairwise comparison experiment, in which one of
the conditions was a real scene and the other conditions were images of gradually reduced
resolution. The results of comparisons were scaled using a Bradley-Terry model to give a
measure of the sense of realness, proportional to JND units. The images and the real scene
were seen through a synopter so there were no binocular disparities, and the distance was
480 cm to ensure sufficient angular resolution and minimise the influence of variations in
focal distance. The study found that a resolution between 60 and 120 cycles per degree is

required to achieve the perceived realism of a real scene.

None of the above studies attempted to reproduce binocular depth cues but instead reduced
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their influence by using large viewing distances and optics. These studies also reported
difficulties in reproducing the real-world dynamic range. Both of these aspects were
addressed in the study of Vangorp et al. [163], in which the virtual scene was reproduced
on an HDR display (SIM2 HDR4T7E) seen through a stereoscope, albeit at low resolution
(30ppd). The goal of the study was to measure how binocular disparity and contrast
contribute to realism, in a manner similar to Masaoka et al.’s study of resolution. The
task was to compare two displayed scenes, each with a certain amount of both contrast
and disparity modification, and choose the one closer to the real scene. The participants
could look at the real scene at their discretion, but it was not included in the compared
conditions, so the experiment could not test for a perceptual match. The authors found
that the participants were more sensitive to changes in contrast than in disparity, and

selected as more realistic either natural or moderately enhanced contrast.

In addition to the above-mentioned visual Turing-test experiments, a comparison with a
real scene has also been used to evaluate the reproduction of brightness [122] and tone
mapping [194], but these studies did not attempt to achieve a perceptual match with a

real scene.

Although the studies of Meyer, Borg et al., and Masaoka et al. reported a perceptual
match of the display and real scenes, they were achieved only in monocular view or using
optics that degraded the visual quality of the real scene. Our work aims to go beyond
these efforts. We reproduce all visual cues, including depth and dynamic range, and match

a real object seen at a small viewing distance, and with no optical aberrations.

4.2 HDR-MF-S display

The main objective of the design of our HDR-MF-S display is to maximise the visual
quality and realism of the displayed images for all the following capability dimensions:
physical luminance, dynamic range (contrast), colour gamut, binocular and focal depth
cues. The goal is to deliver all these capabilities altogether with sufficient qualities rather
than focusing on maximising a single one. While there are several fundamentally distinct
approaches to 3D display architectures as discussed in Section 2.4, not all of them meet
the requirements for our objective. For example, accurate depth cues, matching light
distributions in the real world, can be potentially achieved with holographic [108] or light
field [159] displays. However, the current state-of-the-art of these technologies does not
allow us to achieve the field of view, colour accuracy, resolution, or dynamic range required
for perceptual realism. Reproducing a four-dimensional light field of sufficient size and

quality with these technologies requires control over billions of pixels, which is currently
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Figure 4.2: The front view of the display.

infeasible. However, if we can either stabilise or track the viewing position, the subspace
of a light field that we need to reproduce is much smaller, making it possible to build a

display of required capabilities.

One approach to producing the required light distribution, given either fixed or known eye
position, is to use a stereoscopic multi-focal display [2]. In such displays, the eye sees the
sum of light from multiple superimposed planes at different focal distances. Such displays
can effectively drive accommodation to any point between the planes if the plane separation
is small enough (~0.6D to ~0.9D) [111, 112], while retaining desirable capabilities of
conventional displays (resolution, colour gamut). Moreover, this uncomplicated design,
without any refractive or diffractive optical components in the viewing path, generates
images without additional optical distortions. This is in contrast with vari-focal displays
[36] or near-eye light field displays [69], which are likely to introduce noticeable aberrations.
One important limitation of a multi-focal display is that the addition of focal planes
reduces dynamic range. The additive nature of the beam splitters elevates the black
level, and their transmission limits the peak brightness of each plane. We address this
problem by combining a multi-focal stereoscopic display design with high-dynamic-range
displays, making a high-dynamic-range multi-focal stereoscopic (HDR-MF-S) display. In
the following subsections, we explain the details of the design of our HDR-MF-S display

and how it achieves the capability dimensions that we desire.
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Figure 4.3: Schematic of the high-dynamic-range multi-focal stereo display apparatus.
(Note that to simplify the schematic, not all the folding mirrors and beam splitters are
shown.) The apparatus creates two image planes (green and blue dashed lines inside the
real-scene box) per eye and the observer sees respective images via beam splitters. The
real-scene box is observed through the same beam splitters. The real-scene box is on a
manually rotating platform moving toward a fixed capturing position or a fixed display
position. The camera gantry is on another manually movable platform (not shown in the
figure) which can move towards or away from the real-scene box allowing coarse adjustment
of the field of view.

4.2.1 Apparatus overview

Figure 4.2 shows a photograph of the front view of our display apparatus. The apparatus
comprises three main components as shown in Figure 4.3: a Wheatstone stereoscope with
four high-dynamic-range displays and two focal planes; a real-scene box in front of the
observer that is seen through a pair of beam splitters; and a motorised camera slider
capable of capturing dense horizontal light fields of the real-scene box. In this setup,
a small physical scene is arranged in the real-scene box. This box normally faces the
observer, but can be rotated to face the camera rig in order to capture its light field as
shown in Figure 4.3. When facing the observer, the real scene and its rendered counterpart
are spatially superimposed. We can instantly switch between the real and displayed scenes
by controlling the light in the real-scene box and the display. We discuss the details of

each component in the following subsections.
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Observation distance | Projection distance

Figure 4.4: Each HDR display comprises a projector acting as a backlight for an LCD panel
with factory backlighting removed. A Fresnel lens sandwiched between two narrow-angle
diffusers, with scattering angles of 10 and 5 degrees. An image from the projector is
formed on the first diffuser acting as the backlighting of the LCD. The Fresnel lens helps
to steer the backlighting toward the eye uniformly. The second diffuser prevents reflections
between LCD glass and the Fresnel lens substrate.

4.2.2 HDR displays

The key feature of our display is the capability of reproducing a high dynamic range,
with a peak luminance of 3000 cd/m? and the black level much below 0.01 cd/m?. Such
a low black level practically eliminates any stray light in areas of an image that should
remain black. The HDR reproduction is delivered by four projector-based dual-modulation

displays, similar in design to those used in one of the first HDR displays [150]%.

The software for controlling each display implemented the standard two-spatial-modulator
factorization algorithm [150] running on a GPU. However, we took special care to achieve
accurate geometric alignment and high colour accuracy. The geometric alignment was
achieved by taking images with a DSLR camera of a calibration pattern (a grid of points)
displayed separately on the LCD and the DLP and then aligning them using homography
and mesh-based warping. The point-spread function of the DLP was measured for the same
grid of points and approximated with a Gaussian function. The colourimetric calibration
was achieved by measuring the colour ramps with a spectro-radiometer (Specbos 1211)
and fitting a gamma-offset-gain model to the LCD panel and using a dense look-up table
for the DLP. The dense look-up table was necessary as the response of the projector was

non-monotonic after removing the colour wheel. The effective bit-depth of both displays

2More details of the HDR display hardware and our improvements over [150] can be found in [203]
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Figure 4.5: The schematic showing the light paths from two display focal planes (green
and purple dashed lines) and from the real-scene box, for the right eye. The red dashed
line shows the viewing direction of the observer towards the real-scene box. The line
colours are consistent with Figure 4.3.

was increased to 10 bits by bit-stealing (DLP) and spatio-temporal dithering (both DLP
and LCD). The uniformity of the display was compensated by taking an image with a

DSLR camera and using it for compensation of the DLP image.

4.2.3 Focal planes and optics

To vary the focal distance, similar to a multi-focal display [2], our display can generate
images at two focal planes, at the distances of 462mm (2.16 D) and 740 mm (1.35D) from
the viewer, providing a 0.81 diopter separation between the planes. The separation was
selected to ensure that the images shown on two planes provide cues for accommodation
for any distance between the two planes [111]. Such distances also ensure a resolution of
at least 85 pixels per degree for the observer. These distances are adjustable by moving

the HDR displays on their mounting rails.
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Figure 4.6: Frames of the glasses with an IR
LED. The participants were asked to wear
| these frames to track their head position.

Figure 4.5 shows the optical paths for near and far virtual images on the right-hand
side. The image of the far plane is formed by reflecting the real image of the top right
HDR display through a mirror, and two beam splitters. The purple dashed line in the
figure indicates its optical path. The near-plane image is formed by reflecting the real
image of the bottom HDR display from a single beam-splitter, depicted by the green
dashed lines. This is symmetrical for the left-hand side of the setup. We opted for
this simple optical design without any refractive [111] or varifocal [18] optics to avoid
aberrations, which would introduce detectable imperfections and also reduce the dynamic
range due to scattering of the light. The real-scene box is observed through 70R/30T
(reflection /transmittance, Edmund Optics, 64-409) beam splitters, located in front of the
observer’s eyes. The red dashed line shows the viewing direction through these beam
splitters. This reflection/transmittance ratio was selected to achieve a higher brightness of
the display. The second beam-splitter 50R /50T (weidner-glas.de) on the side is used to
combine the images from far and near planes. Since the system has several optical paths
crossing each other, we enclosed all the image-delivering paths separately to avoid cross-talk
images. At the optical exit where the observer views the scene and the displays, we placed
a chinrest and forehead rest to fix the viewing direction and limit head movements. We
also placed blinders on either side of the chinrest posts to prevent a direct line of sight of

the near-plane LCD screens.

Multi-focal plane displays are very sensitive to misalignment due to head movement and
often require either bite-bars [111] to eliminate such movements or active correction in
rendering through eye tracking [124]. We aimed to build a setup similar to the latter using
an IR LED fixed onto a glasses frame without lenses (Figure 4.6). The observers were
asked to wear the frame while viewing, and the LED was tracked using a high frame rate
machine vision camera (iDS UI-3140CP), with 25 mm C-mount lens (Fujinon HF25HA-1B)
and a visible light filter. This allowed us to track the observer’s head position in real time.
We later use the data from the head tracker in our experiment (Section 4.5) to determine

the invalid trials.
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Figure 4.7: The front and side view of the real-scene box and schematic of the calibration
target inside. The calibration target has a grid of four-by-six squares of the size 30 mm
x 30mm, which defines a world coordinate system. The red, green, and blue arrows in
the figure represent the origin and orientations of the X, Y, and Z axes, respectively. We
define the upper-left corner of the grid as the origin for the X and Y axes and the target
placed at the front location as the Z = 0 plane.
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4.2.4 Real-scene box

The real-scene box has the inner dimensions of 200mm x 160 mm x 300 mm (width x
height x depth). It was made of black acrylic, which was covered on the inside with
high-absorption blackout material (Thorlabs: Black Flocked Self-Adhesive Paper). The
ceiling was fitted with an LED array light source with 225 individually addressable RGB
LEDs (WS2812B). The real-scene box was fixed on a platform, supported by ball transfer
units, allowing it to be freely rotated towards the observer for viewing, or towards the
camera for light-field capture, as shown in Figure 4.7. The real-scene box rotation was

fixed in either of the two positions using custom magnetic mounts.

To facilitate several calibration procedures for our imaging system (Section 4.3), we defined
world space coordinates for the real-scene box. We placed a removable calibration target
on a gantry plate inside the real-scene box, as shown in Figure 4.7. The gantry (Oozenest,
250 mm C-Beam Linear Actuator) can be controlled to move the target freely from the
entry of the real-scene box to its end. The calibration target had a grid of four-by-six
squares of the size 30 mm x 30 mm. We used the grid to define a world coordinate space,

as shown in Figure 4.7.

In addition to the calibration target, the real-scene box also included eight cross-shaped
calibration markers placed outside the box, as shown in Figure 4.7. The markers were
used as reference points to register the camera pose when the calibration target inside the

box had to be removed. The markers were carved on the two foamboards and illuminated

by an RGB LED (WS2812B) with a diffuser to improve their visibility.

4.2.5 Data camera for light field capture

To capture a horizontal light field of the real-scene box, we mounted a Sony a7R3 mirror-
less camera with a Sony G OSS zoom lens (focal length 24-105 mm) on a motorised camera
slider (Figure 4.8) at a distance of 415 mm from the real-scene box, similar to the distance
from the viewing position to the real-scene box. The camera slider traversed a baseline of

82.3 mm with an accuracy of 5pm.

4.3 HDR-MF-S imaging & rendering system

To achieve a perceptual match between real and virtual scenes, we need not only a display

capable of reproducing all relevant cues, but also an imaging and rendering system, which
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Figure 4.8: The data camera and motorised slider for light field capture.

can capture a real scene and reproduce it with sufficient quality. Most importantly, the
rendered scene should match the viewpoint of the observer. Our system is currently limited
to processing scenes of relatively simple or known geometry, but can handle complex

non-Lambertian materials and high-dynamic-range illumination.

Figure 4.9 shows a diagram of our HDR-MF-S imaging and rendering system. We start
with the capture of a horizontal HDR light field, which is colour-calibrated for the spectra
of the scene illumination (Section 4.3.1). Next, we employ photogrammetry to perform a
3D reconstruction and estimate camera matrices (Section 4.3.2). After that, we apply a
differentiable rasterizer to register a proxy mesh of the main object with its silhouette in
each HDR light field image (Section 4.3.2), so we can project the fitted mesh to each light
field image to obtain a view-dependent UV map and texture. Before rendering, we find
the position of each focal plane of the display with respect to the eye position and the
calibration target in the real-scene box (Section 4.3.3). Finally, we integrate lumigraph
view synthesis with linear depth filtering [2] to render the final scene on our HDR-MF-S
display (Section 4.3.4).

We found lumigraph to be the most suitable 3D representation for our purpose as it models
non-Lambertian surfaces, is robust to processing high-resolution textures, and performs

rendering in real time. We have also experimented with dense light fields, either captured
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Figure 4.9: The process of capturing and rendering contents for our HDR-MF-S display.
Refer to Section 4.3 for the explanation.
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or reconstructed using neural radiance fields [128], but they did not match the quality
required for perceptual realism. For example, according to Equation 2.2, capturing our
real-scene box (at the viewing distance of 415 mm) up to the visual acuity at the fovea
requires a spatial resolution of 33.13 pixels per millimetre. This approximately corresponds
to an image in the size of 6629 x 5302 pixels given the size of the real-scene box (200 mm
X 160 mm). Training, convergence, and rendering with such image size for view synthesis
remains an actively studied problem, although significant improvements [130] have been
made subsequent to our work. Therefore, in this work, we combined photogrammetry
and differentiable rendering to align known geometry with the captured HDR images to

reconstruct a lumigraph.

4.3.1 HDR light field capture

Using our data camera discussed in Section 4.2.5, we first capture a high-resolution (7360
x 4912 pixels) light field consisting of 16 views with a separation of 5 mm between them.
For each camera view, we capture an HDR exposure stack consisting of up to five RAW
images spaced two stops apart in exposure time and ISO of 100. We merge the RAW
images to increase the dynamic range and reduce noise using a Poisson photon noise
estimator [61]. Next, we demosaic the merged images using the DDFAPD algorithm [123].
To calibrate for colours, we measure the spectra of a colour checker passport (X-Rite)
positioned inside the real-scene box with a spectroradiometer (Specbos 1211, Jeti). Then,
we compensate for the measured spectral transmission of the 70/30 beam-splitter and
recover trichromatic coordinates using the CIE XYZ 1931 colour-matching functions. The
XYZ colour coordinates are used to find the matrix that transforms from native camera
linear RGB space into CIE XYZ and which results in the smallest RMSE of DeltaE 2000
colour differences. The white patch in the colour checker is used for white balance. Finally,
we apply the matrix to convert the merged HDR images from their native camera linear
RGB space to the BT.709 space used by our display.

4.3.2 Lumigraph reconstruction

The objective of this stage is to construct a surface lumigraph [57, 12] (a light field
projected on a proxy geometry), represented by a proxy mesh and view-dependent UV

maps and textures [30], of the captured scene.
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Input texture Ground truth silhouette Fitted silhouette
Figure 4.10: Results of the fitted silhouettes of the proxy mesh after registration optimised
by differentiable rasterization.

Photogrammetry We first use Meshroom [3], a photogrammetry software, to perform
a multi-view stereo reconstruction of the scene. We supply Meshroom with the HDR light
field images captured from the gantry and additional single-exposure images captured with
the camera mounted on a Magic Arm (Manfrotto) and positioned at multiple locations
around the front of the real-scene box. These additional images are necessary for the 3D
reconstruction but are not used for textures. After the reconstruction, Meshroom returns
a noisy scene mesh (including the main object, the real-scene box, the calibration markers,
etc.) with estimated camera extrinsic and intrinsic matrices. Note that at this stage, the
scene mesh is in an arbitrary local camera space. The camera matrices are also calculated
with respect to this space. We record the coordinates of each reconstructed calibration

marker in local space, which we later use for a coordinate transform.

Proxy mesh registration and UV map generation The mesh reconstructed from
photogrammetry does not meet the accuracy of perceptual match required by our experi-
ment. Hence, we choose to experiment with objects with simple or known geometry and
pre-generate the mesh files, as mesh reconstruction is not the main focus of this work.
However, we still need to register the mesh to the correct coordinates. It is crucial to ensure
that the projected silhouette of the registered mesh is near-identical to the ground truth.
Otherwise, the rendering would appear distorted once we project the mesh onto light
field images to construct the lumigraph. We employ SoftRas [103, 143], a differentiable
rasterizer, to find an optimal spatial transformation to align the mesh with the silhouettes

in captured images. Specifically, the optimal parameters of a spatial transformation T
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including scaling, rotation, and translation can be found by
argmin Y _ ||R(T (M), C;) — L], (4.1)
T ,

where R is a differentiable renderer that rasterizes a grey-scale silhouette image, M is
the unregistered mesh, C; is the ¢-th camera matrix, and I, is the extracted ground-truth
silhouette from the i-th camera view. We apply the GrabCut algorithm [146] to extract the
ground-truth silhouettes of the main object. Figure 4.10 shows the results of the silhouette
fitting. After the registration of the proxy mesh, we generate the UV coordinates by
projecting the mesh vertices onto each HDR texture using the camera matrices obtained

from photogrammetry.

Local-to-world coordinate transformation To facilitate the following calibration
steps, it is convenient to have the scene geometry represented in world coordinates expressed
in physical units (meters). To do this, we determine the coordinates of the calibration
markers in both local space (Section 4.3.2) and world space (Section 4.2.4) and apply the
orthogonal Procrustes algorithm to find an optimal change-of-coordinates transformation

from the local to the world space.

4.3.3 View-dependent focal plane calibration

Both pairs of display focal planes must be well-aligned with the positions of the observer’s
eyes to correctly align the two focal planes and match the scene shown in the real-scene
box. To map the coordinates of each display to the world coordinates of the real-scene box,
we perform a manual focal plane calibration. As different observers have different inter-
pupillary distances (IPDs) and may put their heads at different positions, this calibration

needs to be performed per observer.

During the calibration, the observer is asked to put their head on the chin rest and press
against a rigid forehead rest. The forehead rest provides additional stability and limits
head movements. As shown in Figure 4.11, each eye is presented with four crosses on
one of the HDR displays. They move the four crosses to align them to the corresponding
specified crossings of the calibration target in the real-scene box. The observers perform
this alignment for each of the two focal planes per eye and for the calibration target
positioned at two different depths. The gantry inside the box moves the target to their
desired locations. After this calibration, we obtain a correspondence of eight points in

world space and in image space. They are used to find the transformation from the 2D
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Figure 4.11: (a) Schematic of the focal plane calibration. We use yellow and cyan to
indicate the view of the left and right eye. (b, ¢) Left-eye view of the focal plane calibration
interface. Observers drag the red (near plane) and pink dots (far plane) to align with the
corresponding positions on the calibration target. (d, e) Rendering of the calibration grids
at different gantry positions after calibration.
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Figure 4.12: The radiance computation for the near and far focal planes for the left eye.
c1,...,cq are the positions of data cameras. er, is the viewing position of the left eye.

coordinates on each focal plane (an image shown on each HDR display) to the world
coordinates. We use the direct linear transformation algorithm (DLT) [160] to find a
rendering matrix M which maps the world coordinates to the clip space for each focal
plane. Finally, we apply an R(Q decomposition to decompose the rendering matrix into a
view (extrinsic) matrix V' and a projection (intrinsic) matrix P, i.e. M = PV. With the
view matrix, we are able to compute the observer’s view (eye) positions and orientations,
which is required for the lumigraph view synthesis and multi-focal decomposition in the

rendering stage.

4.3.4 Multi-focal lumigraph rendering

To find the value of each pixel of the near and far display focal planes, we use lumigraph
rendering [57], combined with linear depth filtering in the diopter space [2]. We choose
simple linear filtering as our test scene does not contain any occlusions, which would
require more advanced methods [131, 124, 196], as discussed in Section 2.4. Specifically,
the value of the pixel (z,y) on the j-th focal plane (1 — near, 2 — far) for the left eye (index

L) is computed by filtering across the focal planes and cameras (similarly for the right
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eye):

K
[ Dp — Dy
p L,
Viy(z,y) = ——%xp > Tk, o) wye (4.2)
k=1
N A N >
vV Vv
linear depth view synthesis across
filtering K camera views

where the symbols are illustrated in Figure 4.12. We use lower case symbol d to represent
distances in meters and upper case symbol D to represent distances in diopters, so that
D =1/4. In particular, Dy, ; is the diopter of the j-th focal plane from the viewing position
er. D, is the distance (in diopters) of the intersection point p of the ray r with the object,
where r originates from e; and passes through pixel (z,y). AD indicates the diopter
difference between the near and far focal planes. Ty(ug,vy) represents the value of the
HDR texture associated with the data camera k for the texture coordinate (ug,vy) at the
intersection point p. We calculate T} by rasterising the texture-mapped registered mesh
(Section 4.3.2) with the rendering matrices generated during the focal plane calibration
(Section 4.3.3). The texture is filtered with standard mipmap. The value of wy is the
weight associated with each data camera. As we assume a static eye position, we always

select the nearest neighbour in our current implementation to avoid blur artefacts:

1, if |lep — || = min; ||ep — |,
o ler = cell = miny les = ",
0, otherwise,

where the values of e and ¢ (data camera origins) are obtained from the focal plane

calibration (Section 4.3.3) and lumigraph reconstruction (Section 4.3.2) respectively.

4.4 Results

Although it is difficult to convey the three-dimensionality and color appearance of the scenes
shown on our display using photographs, in this section, we include a few to demonstrate
some of its characteristic capabilities. We captured images of several displayed and real
objects using a Sony a7R3 camera with a 55 mm lens (SEL55F18Z). We set the aperture
to F9.5 so that its diameter matched the expected pupil diameter for our scene (5.8 mm).
We also performed the focal plane calibration (Section 4.3.3) for the viewing position of

the camera.

Figure 4.13 demonstrates a close perceptual match between the real and virtual objects
achieved by our system. The accurate spatial alignment of the virtual object overlaying
the physical object demonstrates the perceptual match in geometry (Figure 4.13(a)). We

also achieved a close match in appearance and shading (see the overlapping shadows and
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Figure 4.13: (a) Photograph of a virtual object displayed on top of the real object. We
changed the hue of the texture to show a mixed-reality effect. (b) The real object can be
seen more clearly with the displayed object slightly shifted away. (c) Photograph of the
displayed object (right) next to the real object (left). The small white strip visible on the
bottom right corner of the right object is not a display artefact but a reflection from the
background.

specular reflections in Figure 4.13(a) and the side-by-side comparison in Figure 4.13(c)).
With such a level of precision, we are able to show many mixed-reality effects that would
not be possible otherwise such as changing the hue of the physical object without changing

the shadows or textures.

Figure 4.14 shows photographs of a rendered 3D-printed robot figure, displayed at three
distances while the camera was set to one of those three focal distances. As expected,
the display shows a desired defocus blur when the object is shown at a different focal
depth from that of the camera lens. However, since there is no display focal plane in the
mid-distance, the image shown at the centre is a superimposition of the two defocused
images from both focal planes, which results in a visually incorrect blur. The amount of

such blur can be reduced by bringing both focal planes closer.

To evaluate the resolution limit and the aforementioned incorrect defocus blur (when the
virtual object is placed between the two focal planes) of our display, we reproduced a 1951
USAF resolution test chart (ThorLabs, R3L3S1P, positive, 3" x3”) and photographed
it in comparison with the physical chart (Figure 4.15). We built a custom lightbox to
illuminate the chart from the back, producing a high-contrast resolution pattern. We
displayed either the real or rendered virtual chart at one of three distances®: 500 mm
(near), 577 mm (middle), and 654 mm (far). The camera focus was also set to one of these
distances. To reduce the Moiré pattern resulting from the interference of the LCD and
camera sensor pixel grids, we reduced the aperture to F16 and processed the images using
DxO PhotoLab 4.3.0 with only Moiré filtering enabled. Note that the Moiré pattern was

3For this evaluation, we moved the near focal plane close to the near distance and the far focal plane
close to the far distance.
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Object near Object mid-distance Object far

Focus mid-distance Focus near

Focus far

Figure 4.14: Photographs of an object rendered on our display at different depths (columns)
while the camera focus was set to one of the three fixed focal distances (rows). The
photographs demonstrate the performance of defocus blur due to the multi-focal plane
rendering. Note that the subpixel structure, seen in magnification, is not noticeable when
the object is seen by the eye. The position of the object changes in the field of view since
the camera optical axis was not aligned with the object depth axis.
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Figure 4.15: Photographs of a physical 2D resolution chart (top) in comparison with its
displayed counterpart (bottom) placed at different depths (columns).

Figure 4.16: The 3D CAD model of the object (left) and its photographs under the five
illumination patterns used in the experiment. The base of the wooden hemisphere had a
diameter of 47 mm. The photographs have been tone-mapped with v = 2.2 to preserve
the original colours.

not visible to naked eyes. Assuming that the resolution limit is the point at which the
lines blend together and cannot be regarded as separate, our display can reproduce up
to 4.0P/mm at 500 mm (0.58 P/arcmin), 2.83P/mm at 577 mm (0.48/arcmin) and 4.0P/mm at
654 mm (0.76P/aremin). This shows a dip for the middle distance, at which the displayed
image is a superimposition of two defocused focal planes (Figure 4.15, 2nd row, 2nd

column).

4.5 Visual Turing test

We designed an experiment to test whether participants can distinguish between real and
virtual objects shown by our system. The experiment is inspired by the early work of

Meyer et al. [126] and many follow-up studies, which attempted to create a system that
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passes a computer graphics Turing test or virtual reality visual Turing test. In contrast
to these studies, which have reproduced only 2D images of limited dynamic range, we
have created a capture-and-display system that can deliver all necessary visual cues. The
secondary objective of our experiment is to test the sensitivity of the visual system to the
degradation of different cues (contrast, in this experiment) when all other cues are present.
We hope that such data will facilitate understanding of what trade-offs are acceptable in
the fidelity of individual display properties, while still delivering highly realistic content —

valuable information for building practical display systems.

Stimuli Our test object was a wooden hemisphere (a prop used to teach geometry)
that was lightly sanded and stained, but retained the texture of wood and produced an
imperfect specular reflection of moderate intensity (refer to Figure 4.16). We chose to
work with a simple primitive shape as reconstructing geometry is not the main focus of
this project where we treated the ground-truth mesh as given. However, we still need to
perform a geometric registration using differentiable rendering and our pipeline can be
easily extended to reconstruct unknown shapes (see Section 4.6). As shown on the left
of Figure 4.16, the hemisphere was attached to a 3D printed holder (504 mm from the
viewer) on the flat side and had its spherical side directed toward the viewer so that it
appeared as a sphere to a participant. We selected this object for its simple geometry and

complex material and texture properties.

The sphere was illuminated by one of five different light patterns, produced by the RGB
LED array on the ceiling of the real-scene box. The patterns were created by switching on
a set of 2 LEDs at different positions in the LED array so that the object was illuminated
from a slightly different angle each time (while keeping overall brightness approximately
the same). To indirectly illuminate the object from the bottom, a piece of white cardboard
acting as a diffuse reflector was placed under the object. Different illumination patterns
are an important part of our experiment design as they vary the stimulus between the
trials so that the participants cannot memorise small differences in appearance across the

trials.

A rectangular aperture, made of black cardboard, was placed on the front side of the
real-scene box so that only the illuminated hemisphere can be seen. The illumination was
reduced to the point at which only the hemisphere can be seen but not any part of the

real-scene box (the peak luminance of the object was 2 cd/m?).

In addition to the standard condition, which was our best reproduction of the real object,

we created a distorted condition, in which we artificially reduced contrast. The contrast
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was reduced by modifying pixel values:

Lnod(x,y,0) = (w)7 Ied , (4.4)
med
where Ieq is the median luminance of the image, I, and I,0q are the original and
modified images (in linear RGB colour space), and (z,y, ¢) are pixel and colour channel
indices. We determined in a pilot experiment that v = 0.8 produced results that were
detectable but sufficiently challenging. Not only does this condition let us evaluate the
effects of reducing contrast per se, but it also plays important role in our experiment design
that it allows us to exclude the possibility that the task given to the participants was too
difficult to be feasible (or that they are not paying adequate attention). Consider the
case where we reduce presentation time, or luminance, such that none of the participants
can detect the real stimulus amongst rendered alternatives. This pattern of data would
resemble passing the visual Turing test, but for an entirely trivial reason. Showing that
people can detect small reductions in contrast with our chosen experiment parameters,
however, would demonstrate that they did perform the discrimination task satisfactorily,

and so a failure to discriminate in the standard condition can be interpreted at face value.

The object was rendered either on the near focal plane of our display using nearest-
neighbour rendering, or on both focal planes using linear depth filtering, as explained in
Section 4.3.4. We tested both conditions to understand the importance and challenges of

delivering correct focal depth.

Procedure We used a three-interval-forced-choice (3IFC), or odd-one-out, procedure. In
each trial, the participant was shown three intervals, for 2 seconds each, from which either
two were real and one virtual, or two were virtual and one real. The participant was given
the instruction: You will see three objects, one after another. Select the object that appears
different from the two others. We intentionally avoided asking a question about realism as
such a question would be open to subjective interpretations of what real looks like, and
may lead observers to attend to some aspects of the stimulus while ignoring others. With
an oddity task, the observer was instead free to use any aspect of the stimulus to make
their judgement, making it a true test of the ability to discriminate real from rendered
images. Indeed, the 3IFC task can be considered a very strict test of our display, given
that in practical use observers will often evaluate the realism of a rendered scene without
the presence of an equivalent real comparison. To avoid after-images causing identical
stimuli to appear differently between intervals, we showed a plane with a noise texture
of the same average luminance as the object and at the same distance. Our procedure

aims to objectively measure whether observers are able to distinguish a real object from a
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virtual one without being provided with any training, prior knowledge, or experience for

the given task.

The experimental session consisted of 120 trials, which took on average 40 minutes to
complete, split into two sessions with a short break. Each participant completed 30
repetitions of each condition. In each trial, we randomly selected either a standard
stimulus or one with reduced contrast condition, and presented it using either 2-focal plane
rendering, or only on the front focal plane (4 conditions in total). One of five illumination
patterns was randomly selected for each trial (the same pattern was used in all three
intervals). As the alignment of two focal planes is crucial for the reproduction of focal
distance, we displayed an alignment grid (similar to Figure 4.11) before each trial. The
participants pressed a key to continue only when a good alignment was achieved. They also
had an option to repeat the trial if they were distracted or accidentally moved their heads.
Finally, we asked the participants to wear glasses frames with an IR-LED (Figure 4.6),
which was used to track and record their head position before and after each interval. We
removed the measurements for the trials in which the movement reported by the head
tracking was above a certain threshold while multi-focal rendering was used (=~ 15% of the

measurements).

Participants 12 participants (3 females and 9 males, mean age 27.8, SD 4.1 years)
completed the experiment. Each participant was screened for normal stereo acuity with the
Titmus fly test and for normal colour vision with the Ishihara test. The participants were

instructed to wear their corrective optics. They were compensated for their participation.

Results The participants’ answers give us a measure of the probability of selecting the
correct interval, P(correct). Since the participants can select the correct answer by chance,

we need to correct for that by modelling:

P(correct) = P(chance U detected)

(4.5)
= P(chance) + P(detected) — P(chance)P(detected),

where P(chance) = 1/3 in a 3IFC experiment. P(detected) does not depend on the protocol
(2IFC or 3IFC) and a zero P(detected) indicates a complete perceptual equivalence between
the real and virtual objects. The resulting probability of detecting the interval that appears
different, P(detected), is plotted in Figure 4.17 for all 12 participants. As expected, the
results show that the reduced contrast increases the probability of detecting the different
object, proving that the participants can perform the task. However, for most participants,

multi-focal rendering on both planes made it easier to perform the task compared to
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Table 4.1: The results of the post-experiment questionnaire in which the participants were
asked to tick one or more differences they could see between the real and virtual objects.

Options ‘ Votes
different colour 2
different sharpness 6
different brightness 4
different shape or size 0
different position or orientation 0
different illumination 1
one object or other objects appeared flatter 0
one object or other objects appeared less shiny )
material appeared different 1

rendering only to the near plane!. We discuss potential factors that contribute to this

outcome in Section 3.2.7.

The results also show large individual differences in detection probabilities across partici-
pants. This is most likely because different participants tend to pay attention to different
aspects of the stimuli. Meanwhile, although our display resolution did not reach the peak
visual acuity (see Section 2.1.1) at the fovea, only participant #3 who reported a 20/20
vision was able to detect tiny differences in resolution and detail when comparing with
a physical object. We collected a post-experiment questionnaire to better understand
how the participants attempted to identify the different objects. In the questionnaire, we
asked: What made the selected object stand out from the other objects? and gave a set
of possible answers listed in Table 4.1. Table 4.1 shows that among the 12 participants,
six participants ticked sharpness, which could be a result of the incorrect defocus blur
discussed in Section 4.4 or the insufficient resolution (compared to human sensitivity) of our
display. The option one object or other objects appeared less shiny was also ticked by six
participants. This is potentially due to an inaccuracy of our lumigraph synthesis approach,
since the shininess of an object is attributed to specular reflections. Four participants
selected brightness while two selected colour, indicating room for improvements in our
photometric calibration and colour reproduction. We elaborate on the aforementioned
issues in Section 3.2.7. All participants reported that none of the virtual stimuli appeared
unnatural when viewed in isolation and if they had not been asked to look for differences

from a physical stimulus, they would have deemed the virtual stimuli to be real.

4This is with the exception of participant #1 and #9. However, participant #1 only had seven valid
trials for standard two-plane rendering, resulting in large confidence intervals. During a post-experiment
study, participant #9 indicated that the scene rendered on both focal planes better matched the real
scene in terms of colour and contrast. Participant #9 also reported not paying attention to the edges of
the object where defocus artefacts can be more salient with multi-focal rendering.
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We use our measurements across four conditions to further isolate the factors that con-
tributed to the detection. Assuming that all factors are independent but multiple factors
can trigger the detection, we can model the probability of detection as the probability

summation:
P(detected) =1 — (1 — P(f1)) (1 — P(f2))(1 — P(contrast)), (4.6)

where P(f1) is the probability of detecting the difference due to single focal plane rendering,
P(f2) is the probability of detecting the artefacts due to the limitations of two-focal plane
rendering (excluding all factors contributing to P(f1)) and P(contrast) is the probability
of detecting reduced contrast. We use maximum likelihood estimation to compute those

probabilities across all participants and get:
P(f1) =0.44 P(f2) =0.3 P(contrast) = 0.56. (4.7)

This shows the observers have 44% chance of detecting the difference between real and
virtual objects shown by our display and that two-focal plane rendering increases that
chance by 30%°. The isolated probability of detecting the contrast reduction by 20%
(v =0.8) is 56%, which corresponds to about 1 JND unit (78% for a 2IFC protocol). The
reduced contrast conditions serve as an example of a procedure that can be used to scale

other relevant “distortions”, such as the change of luminance, disparity or black level.

4.6 Discussion

3IFC task The outcome of our experiment, showing that observers can detect the virtual
object in 44% of the cases may appear worse than the results reported in other works
[126, 10]. However, we need to consider that this is the first time a direct comparison was
made between a display and a 3D object seen from a short distance. We also used a much
more challenging 3IFC procedure, which removed the subjective assessment of “realism”
from our task, and made our test sensitive to very small differences between displayed
and real objects. Such differences in certain insignificant aspects (such as viewing angle,
object size, position, etc.) do not necessarily degrade the quality of realism for images

viewed in isolation.

®Note that the probability of detecting limitations of single-focal-plane or two-focal-plane rendering (or
both) is: P(f1 U {2) = P(fl) + P(f2) — P(f1)P(f2) = 0.61.
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Distorted conditions Most visual experiments in graphics either test preference (does
A look better than B) or measure similarity to a “reference”, which is often obtained from
costly renderings, such as path tracing. Both approaches can only be used to determine
relative improvements with regard to another rendering method, which may or may not
capture the desired visual qualities. Our reduced contrast condition demonstrated how a
(simulated) rendering method (or a display limitation) can be directly compared against
the ultimate reference of a real-world object. Such absolute measures can tell us that a
certain percentage of observers across a population will not notice any observable difference
to the real-world object (P(contrast)), while discounting the existing imperfections of the
display (P(fl) and P(f2)). We plan to use such a methodology to quantify the importance
of various display capabilities, such as the dynamic range, absolute luminance, disparity,

focal distance, accommodation, and others.

Eye tracking Multi-focal rendering requires very precise alignment across the focal
planes. Effective alignment without uncomfortable restraining of the head position requires
active tracking and compensation for the head position. Our IR LED tracker was a first
step toward this goal. Latency of the tracking, and the limited refresh rate of the display,
did not let us implement active compensation for head movement yet. These are not

fundamental limitations of the approach, however.

Multi-focal rendering Our experiment showed a result that rendering on two planes
with linear depth filtering made it easier for most observers to detect discrepancies. One
explanation could be that while linear depth filtering with the current two-plane separation
distance can drive accommodation to the correct depth, it causes an increased defocus blur
compared to real scenes. Any multi-focal-plane display with a practical number of focal
planes necessarily samples focal depth coarsely, and so most scene points will not coincide
precisely with a focal plane. Accommodation can be driven to the appropriate inter-plane
distances by linear depth filtering (with plane separations up to and even exceeding that
used here, [111]). Yet, at least one image plane must be defocused (because two cannot be
focused on simultaneously), resulting in potentially detectable blur compared to a real
scene. The results suggest defocus blur plays a more important role in perceptual realism
than the accommodation response. As we are relatively insensitive to accommodation
state, and it is a weak depth cue, incorrect accommodation is likely to provide weaker
cues to realism than blur. Several steps can be taken, however, to reduce this defocus
blur compared to the present study. Due to light scattering inside the real-scene box, we
used dim illumination, which increased the pupil size, thereby increasing defocus blur.

In rendered scenes this problem can be reduced by using higher luminance (including
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HDR) scenes. Also, in this study, the far focal plane was far from the stimulus. Either
adding an additional intermediate focal plane, or moving the planes to optimal positions
with respect to the scene content, would reduce the focal depth inaccuracies that lead
to increased defocus blur. Finally, more advanced multi-focal decomposition algorithms
may be able to compensate for the loss of high spatial frequencies that characterizes
defocus blur [131, 124]. Since a correct stimulus to accommodation is necessary to avoid
vergence-accommodation conflicts [65], there is great value in attempting to optimise
multi-focal displays for reproducing realism. We hope that our display can be used to
explore the trade-offs involved in doing this. For example, does tolerance to incorrect focal

depth increase if other aspects of the scene are delivered with very high fidelity?

Reproducible stimuli Our system has several limitations in terms of the stimuli it
can reproduce. While our system can synthesize non-Lambertian materials with specular
reflections, the quality may not reach the level of perceptual equivalence, as indicated
by our post-experiment questionnaire. Specular highlights are sensitively dependent on
viewing positions, making them difficult to be reproduced as it is unlikely that our data
camera perfectly overlaps with the observer’s eye position. We anticipate that such
inaccuracies can be reduced by capturing more light field views or incorporating more
advanced neural scene representations [179, 164, 60]. We did not explore this direction as
training and convergence of scene-representation networks with large-size data (8k images
in our case) remained an actively studied problem at the time of our work. In the future,
we plan to evaluate various view synthesis approaches with our apparatus in terms of
perceptual realism, whereas existing works only focus on photorealism. Our system is also
currently limited to simple or known geometry. Nonetheless, this is not a fundamental
limitation of our approach — we can modify the loss function in Equation 4.1 such that
it not only optimises for a spatial transform but also for a per-vertex deformation to
fit an unknown geometry. However, this approach also requires capturing many more
views around the object. Since 3D reconstruction is not the main focus of this work, we
chose to work with known geometry and a horizontal light field. Our rendering method
is currently unable to reproduce edge occlusions of objects at different depths without
introducing visible artefacts. Our intention is to test more advanced multi-plane rendering
methods [131, 124, 196] in the future. Our display has an advantage over the previously
built multi-focal plane displays in that it can reproduce a much higher dynamic range,
which gives more flexibility in optimising for multi-plane decomposition (for example,
greater headroom for compensating for the loss of high spatial frequencies). In addition,
although the resolution of our display is much higher than that found in the previous
work [163], it is still lower than the levels required for a perceptual match, as reported by

Masaoka et al. [119]. Achieving the highest resolution reported in their paper (120 cpd)

136



would require tripling the resolution of our LCD panels. This is currently impossible
when using off-the-shelf components. As above, it will be interesting to explore whether
tolerance to lower-than-optimal resolution is increased when other aspects of the scene are
delivered with high fidelity. Finally, our colour calibration currently relies on CIE XYZ
1931 colour matching functions, which are known to be inaccurate for short wavelengths
[27]. It also did not account for the contribution of rods to colour perception or individual
differences. Better colour matching may require capturing multispectral images and

individual corrections to compensate for the differences in cone sensitivities.

4.7 Summary

The main objective of our work is to build an end-to-end system that can acquire a small
3-dimensional object and reproduce it faithfully with all the necessary visual cues on a
display. Being able to do so is an important step for perceptually realistic graphics, in which
the depicted imagery is indistinguishable from the real world. A direct comparison with
real-world objects lets us better understand the limitations of not only the visual system
but also those of display technologies, 3D representations, and rendering techniques. For
example, we found that defocus blur could play a more important role than accommodation
response in perceptual realism, together with the need for accurate view-point tracking, as

one of the main limitations of multi-focal plane displays.

We demonstrate that the first iteration of our HDR-MF-S display can deliver virtual imagery
that is in only 44% of the cases detected as different from its real-world counterpart. This
result was obtained when asking the question s it different? rather than is it real?,
making the task more objective but also requiring higher accuracy from a display system.
This work is also the first attempt to reproduce a 3D object at a short distance, with
an essential set of visual cues. Finally, our experiment design with a “control” distorted

condition ensured that the participants were correctly completing the task.

The display is a platform for a wide range of experimental studies, in which both faithful
reproductions of all visual cues and comparison to reality are paramount. For example, it
can be used for studies on gloss and material perception, physics-based rendering, global
illumination, tone mapping, view synthesis, augmented & mixed reality, and many more.
All these studies can take advantage of full control over each display capability dimension,
such as dynamic range or luminance. The displays can also simulate a wide range of
see-through AR displays, by using a real-scene box as a real environment and offering
a much higher dynamic range and peak luminance than that of most head-mounted

displays.
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Chapter 5

Conclusion and Future Work

In this dissertation, we provide a comprehensive unified overview of perceptually realistic
graphics (PRG), an emerging field gaining increasing attention and impact within the
graphics community, along with several proposed advancements in the field. We demon-
strate that perceptual realism can be approached by maximising the quality of essential
visual cues rather than reproducing a physically correct distribution of light. From an
application perspective, we believe that PRG has the potential to revolutionise the way
people entertain and interact with the digital world. Although achieving this would require
further research on the interaction between digital and physical content, realism remains
an essential and enduring requirement for the experience of such applications. From a
research perspective, PRG opens the door to several new branches in the study of computer
graphics, as traditional graphics was primarily focused on photorealism and rendering on
a single image plane. As demonstrated by this dissertation, human perception must be
in the loop in the design of new approaches throughout the PRG pipeline. Traditional
algorithms for 3D scene acquisition, representation, and rendering must also be adapted to

meet more stringent visual requirements and accommodate novel 3D display architectures.

Given the nascent nature of perceptually realistic graphics, this dissertation represents
merely the beginning of our exploration of the field. We anticipate a multitude of
research questions to emerge in the future. To start, this dissertation primarily focused on
maximising the perceived quality of static 3D scenes, with limited exploration of visual
requirements related to temporal aspects. Acquisition, representation, and rendering of
dynamic scenes must meet stricter requirements to achieve perceptual realism in motion.
Meanwhile, as briefly discussed in Section 2.3, perceptual realism requires optimising scene
and rendering parameters with respect to real-world scenes and human vision, rather than

merely images. This requires integrating accurate simulation of cameras, displays, and
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human vision into the differentiable graphics pipeline. For example, artefacts such as
aberration (geometric and chromatic) and blur introduced by the camera must be modelled
and corrected in the optimisation loop. Factors such as pupil size, lens, and chromatic
aberration of human eyes also influence the formation of the retinal image. Furthermore,
while traditional scene manipulation algorithms were designed to process scene content in
digital forms, new methods are required in PRG to directly manipulate the perception of
physical scenes and interactions between real and virtual objects. For example, in Chapter 4,
we demonstrate that our HDR-MF-S display is able to alter the colour and brightness of the
physical objects by superimposing a virtual mask. However, reducing light transmission in
additive displays to darken the physical objects or simulating a darkening effect remains a
longstanding challenge. More advanced effects such as relighting, recolouring, removal,
and occlusion of physical objects are also underdeveloped. Finally, an effective 3D quality
metric (parallel to image quality metrics such as SSIM [170] and PSNR) is needed to
quantitatively evaluate the qualities of virtual 3D scenes rendered on a 3D display, as
the visual Turing test can be laborious and unscalable. Such a metric may also consider
the tradeoffs associated with the importance of individual visual cues. In Chapter 2,
we provide a discussion on a mixture of qualitative and quantitative criteria to achieve
perceptual realism for the worst-case scenario, as we consider the best capabilities of
human vision in its limit. However, factors such as contrast sensitivity, visual acuity, and
motion perception can be scene-dependent. A desirable 3D quality metric is expected to
adapt to varying viewing conditions and scene content, enabling the identification of the

minimum requirements on individual visual cues for perceptual realism.
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