
Visual Cryptography Kit Computer Laboratory

UNIVERSITY OF
CAMBRIDGE

Visual cryptography (invented by

Naor & Shamir in 1994) is a

method for securely encrypting

messages in such a way that the

recipient won’t need a computer to

decrypt them.

The underlying cipher is essentially

the one time pad; so the system is

unbreakable in the information

theoretical sense.

The Visual Cryptography Kit, freely

downloadable from the URL above,

is a Python module, based on PIL

and Tkinter, that allows easy

practical experimentation with this

fascinating invention.

The one time pad is the only

demonstrably secure cipher, in the

sense that even an infinite amount

of ciphertext will not leak any bits of

information to the attacker about

the plaintext (except the length).

This is because, given a ciphertext,

you can choose any plaintext you

want and there will always exist a

key that generates that ciphertext

from that plaintext.

Why do people ever use anything

else, then? Well, the one time pad

is not very practical because it

requires a lot of key material (as

many key bits as message bits). You

can’t ever reuse the same key bits

and you must use a truly random

source; otherwise, cryptanalitic

attacks become possible.

If you use a pseudo-random number

generator, you instead obtain what

is known as a stream cipher.

The mechanism of the one time pad is very simple: XOR every plaintext bit with

the corresponding random key bit to yield a ciphertext bit: c = p k.

To decrypt, XOR the ciphertext with the key once more: d = c k. The two keys

will cancel out and you’ll get the plaintext.

d = c k = p (k k) = p 0 = p.k = (p k)

⊕
⊕

⊕ ⊕ ⊕ ⊕⊕ ⊕

The idea of visual cryptography is to perform a

visual one time pad by overlaying transparent

acetate sheets. But overlaying corresponds to

OR, not to XOR: ink overlay ink gives ink, not

transparent.

This is where the clever part of Naor &

Shamir’s idea kicks in: a new encoding

convention for the pixels (different for the

input pixels and the output ones) that allows

XOR to be built out of OR plus thresholding;

and the thresholding can be done “for free”by

our visual system!

At first it appears obvious that overlay

will never work, because one can’t

make 1 1 = 0 with it.⊕

But try this: use for 0 and for 1 at

the input; and accept both and as

0, and for 1, at the output of the

operation. Then note how

overlay = i.e. 1 1 = 0 …

This clever trick, which I call pixelcoding, is

the fundamental intuition of Naor &

Shamir’s visual cryptography construction.

⊕

On output from the decrypting XOR operation,

a black pixel means black and a 50% grey pixel

means white. This is a reduction in contrast,

but our eyes will easily “see” the grey as white

for free.

Note that on the input to the XOR, both black

and white are represented as 50% grey — but

by two complementary greys, i.e. one grey

pattern has black where the other has white

and vice versa. So the overlap of two identical

input patterns yields the same pattern (a 50%

grey, so logical white for output), while two

opposite input patterns yield black everywhere.

This satisfies the truth table for XOR.

M chooses a size

(width x height) for

the message and

generates a random

pad of this size,

made of black and

white pixels. He

stores it in his safe.

A couple of weeks

later, M must tell

007 something

really secret. He

writes it on an

image the size of

the pad.

Between a “shaken, not stirred”

and a romantic dinner, 007

gets the fax. He overlays his

acetate on it

(No computers

needed!) He then burns both

the fax and the acetate and

proceeds to save the world.

and reads M’s

message.

M pixelcodes the outcome of the XOR,

obtaining a ciphertext. He faxes this to

007. SPECTRE taps the fax line, but is

none the wiser. Ha ha ha!

M gets the pad out

of the safe and

XORs it with the

message. He then

burns the pad.

M pixelcodes the pad and gives the

result to 007 on acetate. 007 goes to

the Bahamas and has an active sex life

as usual.

One time pad

Pixelcoding — how to make XOR out of OR

Enciphering a bitmap image

A variant for greyscale images

plaintext = 010010101010111101001110010...
xor

110011010010101000010101000...
=

100001111000010101011011010...
xor

110011010010101000010101000...
=

010010101010111101001110010...

key =

ciphertext =

key =

decrypted =

To encrypt:

To decrypt:

pixelcode pixelcode⊕

overlay
(i.e. OR)

Frank Stajano 1998http://www.cl.cam.ac.uk/~fms27/vck/

0 1
11

0
0

1

1or overlay

0
0
1

1
0
0

1

1 overlayxor

THE OLIVETTI & ORACLE

RESEARCH LABORATORY

Halfmoons in the pad are randomly

oriented.

...they create pie angles proportional

to the pixel intensities of the

plaintext.

This artificial composite shows each

halfmoon pair on a local background

with the intensity of the original

plaintext pixel: the fully open pairs

are on white, the fully closed ones

on black.

In practice,

though, things

never go as

smoothly as this,

neither for the

monochrome nor

for the greyscale

variants. This is

because, apart

from the

interaction

between adjacent

pixel groups, it is

quite difficult to

achieve proper

registration over

the surface of the

whole picture. This

is primarily due to

the fact that the

acetates expand

in a non-uniform

and irregular way

during the printing

process.

Halfmoons in the ciphertext are

oriented so that, when

superimposed on the pad...


