
VCK: the Visual Cryptography Kit

Frank Stajano
Olivetti Oracle Research Laboratory

& University of Cambridge Computer Laboratory

The idea of visual cryptography is a fascinating inven-
tion by Moni Naor and Adi Shamir (1994). See

http://www.wisdom.weizmann.ac.il/~naor/PAPERS/vis.ps

In its simplest form, it implements an unbreakable (in
the information-theoretical sense) cryptosystem, rather
similar to the one-time pad, with the additional twist
that decryption does not require any computing
equipment. James Bond carries a special “key” which
is in fact a transparency with lots of random dots on it;
when M faxes Bond a secret message, it too consisting
of lots of random dots, Bond simply places his trans-
parency over the ciphertext and reads out the plaintext!
The stroke of genius here is the technique, explained
in the poster, by which the boolean operation of “xor”
is implemented by means of a visual “or”. I decided to
implement the system after seeing a demonstration of
it at a brilliant talk by Adi Shamir himself. Since the
point here was not so much using the cryptosystem but
communicating to others the intellectual excitement of
the invention, I wanted to be able to display all the
intermediate results in graphical form.

I decided to use the netpbm suite of graphical file for-
mats converters and I wrote a collection of small C++
programs, each of which performed a specific atomic
operation. The only problem with this was that, to ac-
tually generate the slides, the user had to perform half
a dozen separate operations, invoking these executa-
bles on the command line and giving them filenames
as arguments (piping couldn’t always be used since
some operations required two inputs, and besides it
was necessary to go through files to be able to inspect
the results). Gluing things together with a batch file or
shell script was cumbersome, as well as not portable
between Windows and Unix. And it still required to
run a separate image viewer to display all these inter-
mediate results.

For a while I thought about writing a VCK extension
to Python, so that I could use Python as the glue. But
eventually I settled on Fredrik Lundh’s PIL (Python
Imaging Library) instead. A tiny Python-only module,
vck.py, provides not only all the atomic operations
but also the means to view any intermediate result in

its own window with a single function call from within
the driving script. Some example scripts and their out-
puts are shown on the poster. The greyscale variant has
also been implemented: unlike in the C++ version,
where I had to generate raw PostScript directly, here I
could simply draw the figures on a Tk canvas and get
the PostScript code for free.

The significance of this work in the context of IPC7 is
as another demonstrator of the language’s suitability
for immediate practical experimentation (making ideas
executable), which I view as one of Python’s greatest
strengths. The Python rewrite of VCK took only a few
days, including the time spent learning the basics of
PIL, and, compared to its C++ predecessor, resulted in
a much more versatile and practical system for the end
user, firstly because a convenient preview facility was
now available and secondly because the VCK primi-
tives could now be easily composed together by
scripting. As an additional benefit, the code is now
much shorter, to the point that it is perfectly reason-
able to show the source to the user in order to explain
what the primitives do. With the previous version, this
would have exposed lots of irrelevant code to do with
low-level image manipulation details. With the build-
ing blocks provided by VCK, such as the “bitmap”
class and the boolean operations that take bitmaps as
arguments, it is a simple matter for anyone to add new
primitives in Python to implement any of the many
variants of the visual cryptography idea that the cryp-
tological research papers keep bringing out.

This code is totally un-optimised and has been written
for the human reader rather than for the machine. The
bitmap class exports methods to set and get the value
of a pixel, and every other primitive of the toolkit goes
through them. Most operations could be implemented
much more efficiently at a lower level; but, given the
purpose of this work, which is more about communi-
cating ideas and enabling experimentation than pro-
viding a tool to perform actual encryption, this solu-
tion wins both for the time it took to develop it and for
the advantage it offers of exposing the simplest possi-
ble source code. VCK is freely downloadable from

http://www.cl.cam.ac.uk/~fms27/vck/


