
Acceleration of core post-quantum cryptography
primitive on open-source silicon platform through

hardware/software co-design⋆

Emma Urquhart1 B[0009−0005−9235−5320]

eu233@cam.ac.uk
and Frank Stajano1[0000−0001−9186−6798]

frank.stajano@cl.cam.ac.uk

University of Cambridge, Cambridge (United Kingdom)

Abstract. Post-Quantum Cryptography (PQC) algorithms are currently
being standardised and their early implementations are not as efficient
as the well-established public key cryptography (PKC) algorithms that
have benefited from decades of optimisations. We report on our efforts
to accelerate the Number Theoretic Transform (NTT), the most compu-
tationally expensive primitive in the Kyber (ML-KEM) and Dilithium
(ML-DSA) PQC algorithms selected by NIST for standardisation. Our
target platform is the OpenTitan Big Number Accelerator (OTBN), part
of the first open-source silicon root-of-trust chip. We implemented the
Kyber NTT in OTBN assembly, using only the existing instructions, and
identified its bottlenecks. We then restructured the code to exploit par-
allelism and defined additional assembly instructions for the open-source
co-processor that would enable execution of our vectorised implemen-
tation. Our hardware/software co-design approach yielded a significant
performance improvement: NTT ran 21.1 times faster than the base-
line implementation which used only OTBN’s existing instructions. Our
approach fully leverages the potential for parallelism and maximally ex-
ploits the existing capabilities of OTBN. Some of our optimisations are
fairly general and might be successfully applied to other contexts, in-
cluding accelerating other algorithms on other platforms.

Keywords: OpenTitan · Open-Source Hardware · Post-Quantum Cryp-
tography · Number Theoretic Transform · Kyber · ML-KEM · Perfor-
mance Optimisation · Hardware/Software co-design

1 Introduction

In the realm of Internet of Things (IoT) security, the ever-increasing ubiquity
and connectivity of mobile devices presents challenges and opportunities. Pub-
lic Key Cryptography (PKC) algorithms such as Rivest-Shamir-Adleman (RSA)
⋆ Authors’ preprint of 2024-07-11. To appear in Proc. International Conference on

Cryptology and Network Security (CANS 2024), Springer LNCS.

2 Urquhart, Stajano

[13] and Elliptic Curve Cryptography (ECC) [9] are used to ensure the con-
fidentiality and integrity of communication channels. Execution of these algo-
rithms can be expensive on resource-constrained devices and therefore many are
equipped with specialized cryptographic co-processors. In February 2024, the
first commercially-available open-source silicon root of trust was released by the
OpenTitan [7] consortium stewarded by lowRISC. This chip marks a significant
development in secure and transparent hardware. It incorporates the OpenTi-
tan Big Number Accelerator (OTBN), a cryptographic co-processor specifically
designed for use in IoT devices [8].

The advent of quantum computing poses an impending threat to the public-
key cryptosystems that are integral to the security of communications between
these devices. The mathematical problems on which algorithms such as RSA
and ECC rely include factorization of large integers and the discrete logarithm
problem. These tasks are computationally infeasible for classical computers, but
can be solved in polynomial time by a quantum adversary, as proven by Shor[15].
To mitigate this threat, Post-Quantum Cryptography (PQC) provides solutions
that can be implemented on classical hardware but are capable of withstand-
ing quantum attacks. The US National Institute for Standards and Technology
(NIST) is conducting a standardization process for post-quantum cryptosystems,
currently in its fourth round.

Lattice-based cryptography is emerging as a promising approach to PQC,
encompassing three of the four algorithms already selected for standardisation:
CRYSTALS-Kyber (ML-KEM) [3], a key encapsulation mechanism, and two
digital signature algorithms, CRYSTALS-Dilithium (ML-DSA) [4] and Falcon
[5]. Implementation of these algorithms, particularly on resource-constrained
devices, poses practical challenges as their core operations incur significant over-
heads on existing platforms. Modern cryptographic co-processors such as OTBN
are optimised for execution of RSA and ECC, providing large integer arithmetic
capabilities. However, lattice-based PQC algorithms do not involve such opera-
tions and therefore do not benefit from the capabilities of these co-processors.
OTBN is not yet specialised for PQC. We propose realistic and low-cost hard-
ware improvements to OTBN that can be leveraged to significantly enhance the
performance of PQC on this platform.

Due to the predicted prevalence of ring-based lattice schemes, we focus on a
characteristic bottleneck of such schemes: polynomial multiplication. We inves-
tigate acceleration of polynomial multiplication via the number theoretic trans-
form (NTT) in Kyber. The target platform is OTBN. The proposed instructions
and software implementations leverage OTBN’s existing capabilities and incor-
porate viable architectural extensions. Our main contributions include:

– Baseline implementation of the NTT in Kyber using the existing OTBN
instruction set, replicating the C reference implementation as closely as pos-
sible.

– Detailed analysis of the bottlenecks of the baseline implementation and cur-
rent limitations of OTBN in the context of efficient execution of NTT.

Accelerating post-quantum cryptography 3

– Set of 8 additional assembly instructions for acceleration of NTT on OTBN
and estimations of cycle cost for each instruction.

– A novel, vectorized implementation of the NTT in Kyber for OTBN, which
leverages the new instructions and achieves a reduction in cycle cost from
92,074 to 4,356 cycles compared to the baseline (21.1× improvement factor).

Our approach for identifying the bottlenecks and our ideas on how to speed
them up might also serve as inspiration for researchers seeking to accelerate
other algorithms on other platforms. Our code is publicly available at: https://
github.com/emmau678/opentitan/tree/mphil_thesis_pqc_acceleration.

2 Background

2.1 OpenTitan Big Number Accelerator

OpenTitan is the first open-source silicon root of trust (RoT) project, aimed
at creating a high-quality reference for transparent and secure silicon. The first
OpenTitan chips, based on the Earl Grey discrete RoT, reached commercial
availability in February 2024. OTBN, a co-processor for acceleration of asym-
metric cryptography, serves as a fundamental hardware security primitive. Its
large data path and specialized instruction set enhance the efficiency of classical
PKC algorithms. However, OTBN is not yet optimised for PQC.

OTBN features a 32-bit wide control path and a 256-bit wide data path,
each containing 32 registers. Its security-centric design incorporates a reduced
instruction set which comprises a base subset for control flow and a big-number
subset for wide-integer arithmetic in data flow. The separation of paths reduces
the risk of data leakage. OTBN supports data integrity protection and secure
wipe of internal states. Cryptographic security is further enhanced by its inter-
nal random number generation mechanism which is connected to the Entropy
Distribution Network. OTBN implements two dedicated memories of 4 kiB: in-
struction memory (IMEM) and data memory (DMEM), separated to bolster
security.

2.2 The Number Theoretic Transform

Polynomial multiplication is one of the most performance-critical implementa-
tion elements of lattice-based PQC schemes such as Kyber and Dilithium. The
NTT is commonly adopted for this purpose, enabling a reduction in complexity
of polynomial multiplication from O(n2) to O(n). It is a specialised form of the
Discrete Fourier Transform, which operates on the finite field Zq instead of com-
plex numbers. The NTT operates by transforming polynomials into a domain
in which multiplication is highly efficient. The multiplications are performed
within the NTT domain before the results are transformed back into the normal
domain using the inverse number theoretic transform (INTT). The NTT trans-
forms polynomials from their coefficient representation to their point-value form.
Multiplication of two polynomials in their point-value form is a straightforward

https://github.com/emmau678/opentitan/tree/mphil_thesis_pqc_acceleration
https://github.com/emmau678/opentitan/tree/mphil_thesis_pqc_acceleration

4 Urquhart, Stajano

pointwise product. Given polynomials f and g, we compute their product ac-
cording to Equation 1, where ◦ denotes multiplication within the NTT domain:

f · g = INTT (NTT (f) ◦NTT (g)) (1)

The operation of the NTT is given in Equation 2. This equation describes the
transformation on a polynomial g of degree n, where g =

∑n−1
i=0 giX

i and gi ∈ Zq.
In this equation, ω represents the primitive n-th root of unity, where ωn ≡ 1
mod q and, for any 1 ≤ k < n, ωk ̸≡ 1 mod q. Values of ωij are known
as twiddle factors. Multiplication by these values is equivalent to evaluating
the polynomial at powers of the n-th root of unity. The INTT reverses this
transformation.

ĝ = NTT(g) =
n−1∑
i=0

ĝiX
i, with ĝi =

n−1∑
j=0

gjω
ij
n (mod q). (2)

2.3 Profiling the reference Kyber C implementation

After selecting Kyber as the focus of our optimisation efforts, we conducted an
analysis of the reference C implementation to inform our choice of algorithmic
components to target for acceleration. Two implementations of Kyber are avail-
able within the official repository [12]: a platform-agnostic implementation and
an optimised AVX2 implementation. The optimised implementation may be run
on processors that support the AVX2 instruction set. AVX2 offers capabilities
for signed and unsigned processing of high and low parts of packed values within
SIMD registers. These processors also offer out-of-order execution, meaning that
instructions can be interleaved. Our target platform is OTBN, which has a re-
stricted instruction set, does not support advanced extensions like AVX2 and
does not support out-of-order execution. Therefore, the platform-independent
implementation was the most suitable reference point for our work. Given that
OTBN is not yet equipped with a compiler, the reference C code cannot be di-
rectly excuted on the platform. We obtained the profiling results by executing
the reference code on a regular laptop (Core i7 processor). We assume an ap-
proximate equivalence in terms of distribution of computational effort within the
Kyber algorithm between the reference C code and a full OTBN implementation.

Three executables are generated for each parameter set (512, 768 and 1024)
by compiling the test program; test_kyber$ALG, test_kex$ALG and test_
vectors$ALG, where $ALG identifies the parameter set. According to the repos-
itory documentation, test_kyber$ALG runs 1,000 tests which encompass key
generation, encapsulation and decapsulation. We used test_kyber$ALG for pro-
filing. The parameter sets correspond to the different security levels of Kyber.
We obtained results for all three security levels. The algorithm remains the same
for each security level; all that changes are parameter values. We generated a
flat profile for each parameter set, i.e. a table that captured the total amount of
time spent in the execution of each function. A visualisation of the percentage
of execution time spent within each function is presented in Figure 1.

Accelerating post-quantum cryptography 5

Fig. 1. Profiling results for reference Kyber implementations

Kec
ca

k

mon
tg
om

ery
_red

uc
e

nt
t

ba
rre

tt_
red

uc
e

inv
nt
t

ot
he

r
0

10

20

30

40

2
6
.3
2

1
8
.4
2

7
.8
9 1
0
.5
3

1
0
.5
3

2
6
.3
1

3
3
.3
3

2
6
.3
9

6
.9
4

8
.3
3

6
.9
4

1
8
.0
7

2
8
.5
7

2
1
.9
8

9
.8
9

7
.6
9

5
.4
9

2
6
.3
8

%
of

ex
ec

ut
io

n
ti

m
e

Kyber-512 Kyber-768 Kyber-1024

From the data in Figure 1, we firstly note that the distributions across the
parameter sets are similar, which aligns with expectations given that the code is
the same. The Keccak function is the most computationally intensive component
of the algorithm. However, the Keccak core is most conducive to acceleration in
pure hardware, as it was designed as a hardware-oriented implementation of the
SHA-3 hashing algorithm [2]. The purpose of our research is to investigate ac-
celeration of Kyber on OTBN through hardware/software co-design. Therefore,
while a custom Keccak accelerator could likely be integrated as a hardware exten-
sion, it is not the ideal candidate for optimisation via instruction set extensions
which do not aim to drastically alter the hardware architecture.

The four next most expensive functions are montgomery_reduce, barrett_
reduce, ntt, and invntt. It is important to note that the montgomery_reduce
function is called from both ntt and invntt, while the barrett_reduce func-
tion is called from the invntt function. Algorithmically, the ntt and invntt
functions are closely (inversely) related and hence share a number of similari-
ties. As a result, it appeared likely that it would be possible to design certain
optimisations to target both functions. Because montgomery_reduce is a compo-
nent of the ntt function, it was also targeted in our optimisation strategies. We
implemented and accelerated the NTT using acceleration techniques and new in-
structions which we believe would contribute similar performance improvements
to an implementation of the INTT.

6 Urquhart, Stajano

3 Methodology

3.1 Development environment and testing infrastructure

During our development work, OTBN was still being taped out as an engineer-
ing sample. A Python simulator for OTBN is available as part of the OpenTitan
repository and this was used for development. The simulator is cycle-accurate for
all existing OTBN instructions, which execute in either one or two CPU cycles.
In the case of designing instruction set extensions, it was necessary to consider
the required hardware modifications to estimate cycle counts. The instructions
we propose are designed to maximally leverage OTBN’s existing hardware com-
ponents and require only minor modifications. This not only facilitates an easily
implemented and low-cost solution that enhances performance, but ensures that
cycle count estimates are aligned with the ground-truth performance of existing
instructions. A C compiler is not yet available for OTBN, so all code was written
in OTBN assembly.

Correctness of implementations was validated by extending the testing infras-
tructure within the simulator. The repository contains a simple testing frame-
work for sample instructions. An input assembly file and a corresponding file
containing expected output values is provided for each test case. We integrated
a Python script that dynamically creates input and output files for customisable
input ranges and the corresponding outputs generated by function prototypes.
We created template files containing placeholders indicating the values to be
dynamically overwritten for each input/output pair and used them to automati-
cally create the files for processing. For simple subroutines and instruction tests,
we wrote the function prototypes in Python. For increasingly complex imple-
mentations, we used ctypes to ensure absolute alignment with the reference C
implementation of Kyber, as Python’s type handling would lead to divergence of
results. Once the full implementation of ntt() was complete, we implemented a
black-box test to run NIST vector tests. We captured the input/output pairs to
the ntt function by separately running the Kyber reference implementation and
storing the state of the input/return array before and after invocation of ntt().

3.2 Identifying the Bottlenecks in the Baseline Implementation

We first developed a baseline implementation of the NTT by porting the code
in the Kyber reference implementation as directly as possible to OTBN assem-
bly, using only the existing instructions. This process established the current
performance of OTBN in execution of these functions and provided baseline
performance benchmarks against which to compare optimisation efforts.

It should be noted that the Kyber reference implementation has not been
optimised for any platform. However, the reduced instruction set of OTBN con-
strains the potential for optimisation without implementing instruction set ex-
tensions, so the baseline performance provides a reasonable estimate of its capa-
bilities. Analysis of the baseline implementation on OTBN granted insights into
performance bottlenecks and particularly inefficient operations, hence serving

Accelerating post-quantum cryptography 7

to motivate optimisations and inform the design of instruction set extensions.
In Figure 2, we present our analysis of the baseline implementation of NTT on
OTBN. Performance bottlenecks are analysed in terms of percentage of overall
cycle count.

Fig. 2. % execution time spent on functionality types in NTT baseline

10.7

19.5

27.1

26.3
16.4

sign extension

register transfer

loading data

storing data

other

The baseline implementation of NTT required 91,939 CPU cycles to exe-
cute. During the implementation process, the most significant performance im-
pediment we noticed was the restriction to scalar computations on the wide
data registers (WDRs) of 256 bits. These registers were designed to perform
arithmetic on large integers; however, in the case of ntt, the integers involved in
computation, including intermediate results, do not exceed 32 bits and hence the
large register capacity is not utilised. The computational effort spent on these
operations is not being exploited to its full potential and the same effects could
be achieved by operating on much smaller units. We noted that vectorisation of
operations could be maximised to enable full use of WDRs.

Although the majority of instructions in both subsets execute in a single
clock cycle, in the context of the Big Number subset, additional operations are
required to perform certain computations. OTBN only supports unsigned arith-
metic and the NTT function operates on signed values. Two’s complement is
used to represent negative numbers. Although the values involved in multipli-
cation operations are 16 bits in width, it was necessary to sign-extend these
numbers to 64 bits before using BN.MULQACC, as it operates on 64-bit operands.
This had to be done manually if this data had been transferred from GPRs.
In the interest of maintaining a constant-time implementation, we adopted the
following approach. The sign bit is isolated through a right shift of 15 bits and
multiplied by a 64-bit mask with the upper 48 bits set. The result is then XORed
with the original 16-bit value, resulting in sign-extension to 64 bits. This process
costs 4 cycles for each of two operands, before a multiplication can be performed.
Sign extension required 10.7% of the total cycle count of the ntt baseline (2).
In order to enhance the efficiency of sign extension, we reduced the operand size
in our vectorised implementation. For example, if lanes were 16 bits in length,

8 Urquhart, Stajano

this would align with the operand width and therefore sign extension beyond
this width would not be necessary.

Another notable bottleneck was the requirement to transfer data between
the register types to perform different operations. Certain instructions, such as
multiplication, are only available in the Big Number subset. Conversely, other
operations, such as left shift, are only available in the base subset. Given that
the Big Number subset is designated for data flow, transferring data back and
forth between WDRs and GPRs during the main computation is both ineffi-
cient and not compliant with standard practice. However, at certain points in
the implementation this is necessary, for example, loading array values at fine
granularity from data addresses. A resulting objective of our design of new in-
structions was to minimise the requirement for data transfer between register
types. Transferring of data between register types cost 19.5% of the cycle count
of the ntt baseline (2).

The array r, which is processed by the NTT function, consists of 256 16-bit
elements which are stored contiguously in memory. Each element is processed
individually and reads from memory to GPRs can only be performed on 32-bit-
aligned boundaries. Therefore, data can only be loaded in fixed 32-bit blocks.
This complicated the element loading and storage procedures. In order to load
and operate on r[j], we floor-divide the index j by 2 by performing a right shift
by 1 bit, in order to identify the index of the 32-bit block containing r[j]. We
then shift the result right by 2 to compute the byte offset from the base address
of r from which to load the block. We determine whether index j is even or odd
by computing j AND 1. In the case of an even index, we isolate r[j] via an AND
of the loaded block with a 16-bit mask. In the case of an odd index, we shift
the loaded block right by 16 bits. However, this approach contains a conditional
statement, which may lead to violation of constant-time properties. In the case
of development of the baseline and optimised implementations, we avoided the
use of conditional statements in order to retain constant-time properties.

Therefore, we require a single execution path for loads and stores of odd-
and even-indexed values. To load and isolate an individual array value (of either
odd or even index) in a GPR, we follow the process outlined in Figure 3. We
begin by loading a data block containing 2 contiguous array elements following
the previous procedure, one of which is at the required index j. We compute
j AND 1 and its inverse. We shift both values left by 4 so the non-zero remain-
der represents 16. We then shift the loaded block right by the former value ((j
AND 1) << 16), shift left by the same value and finally shift right by the latter
value ((NOT (j AND 1)) << 16). This method isolates the required element in
the least significant position in the case of both odd and even indices, enabling
subsequent computations. For storing the result, we only overwrite one element
of r, leaving the other 16 bits of the 32-bit block unchanged. The opposite 16-bit
value in the block is isolated in a similar way to r[j]. Before the final block is
stored to memory, the two 16-bit components are shifted back to their original
position and combined with an XOR. We noted the evidently large computa-
tional overhead introduced by replicating the elementwise loading procedure of

Accelerating post-quantum cryptography 9

the reference implementation. In the ntt baseline (2), loading of values into
GPRs (including subsequent manipulation of loaded values) cost 27.1% of the
total cycles. Meanwhile, constructing the resulting data blocks and storing them
to memory cost 26.3% of the total cycles. We aimed to reduce the number of
load and store operations, eliminate manipulation of loaded values and facilitate
parallel computation on loaded values directly.

Loaded Data Block (2 contiguous elements of r)

index: j

odd_flag = j mod 2 = 1
even_flag = NOT odd_flag = 0
odd_idx_shift = odd_flag << 4 = 16
even_idx_shift = even_flag << 4 = 0

odd_flag = j mod 2 = 0
even_flag = NOT odd_flag = 1
odd_idx_shift = odd_flag << 4 = 0
even_idx_shift = even_flag << 4 = 16

odd even

[data_block] ≫ odd_idx_shift

[data_block] ≪ even_idx_shift

[data_block] ≫ even_idx_shift

Fig. 3. Loading and isolating data elements in GPRs

4 Vectorised Implementation Design

We designed the vectorised implementation of the ntt() function, outlined in
pseudocode in Algorithm 1, with the aim of maximising parallelism, minimising
load/store overhead, minimising data transfer between register types and more
efficiently handling signed multiplication. We designed an implementation that
maximises the vectorisation potential of OTBN and enables full usage of the
capacity of the WDRs. To implement it, we designed new instruction set exten-
sions that complement the existing capabilites of OTBN and incorporate some
moderate hardware modifications, which could realistically be introduced to the

10 Urquhart, Stajano

platform. The optimised implementation loads and stores 16 polynomial coeffi-
cients at a time, significantly reducing the load/store overhead of the baseline.
Array elements are operated on in-place using vectorised instructions, which en-
ables us to avoid manipulation of loaded values. Explicit sign extension is no
longer required due to the narrower lane widths.

The values of zeta are broadcasted at 32-bit intervals across WDRs before
entering the fqmul computation. Because the broadcast instruction replicates
the value in a GPR across all lanes of a WDR, we must load zeta from memory
directly into a GPR. We aimed to minimise the overhead of loading and isolat-
ing elements. We achieved this by unrolling two iterations of each loop which
required a new value of zeta to be assigned. This enabled us to load two values
at once, isolate them and retain the second one in a separate GPR instead of
performing a second load. In the baseline implementation, loading and isolating
two values of zeta cost 26 cycles, whereas this approach costs only 6 cycles.

The implementation is split into two parts: the first deals with values of len
which are multiples of 16. This means that the number of elements between r[j]
and r[j+len] can be stored in a distinct number of WDRs. Therefore the new
values of r[j] and r[j+len] can be separately computed and written to memory
in batches of 16 elements. Within the fqmul function, intermediate values can
occupy up to 32 bits. At this point, the lane widths are effectively expanded
from 16 to 32 bits. This process is illustrated in Figure 4, where shaded sections
of mask registers represent all 0s and non-shaded sections all 1s. Note that shifts
applied are vectorised on 32-bit lanes. The lower and upper 16-bit elements
in each 32-bit lane of the wide data register are extracted into two separate
registers. We isolate the elements of even index by pre-loading a 256-bit mask
with every even-indexed 16-bit element set and performing an AND operation
between this register and the loaded values. Then, to isolate the values at odd
indices, a vectorised right shift by 16 bits of each 32-bit lane is used to place them
in the lower positions. The fqmul operations can then proceed in the same way
for both vectors. The results of the two fqmul computations are then combined
by reversing the shift and performing an XOR between the two registers.

The second part of the implementation deals with values of len which are
factors of 16. The number of elements between r[j] and r[j+len] is less than
the capacity of a WDR. As data elements are loaded contiguously, computations
of the new values of r[j] and r[j+len] are combined within registers. Iter-
ation levels are merged to maximise computational capacity. This part of the
implementation has one less nested loop than the first, merging the loading of
zetas into the innermost loop. Then 8/len zetas are loaded into a single register,
occupying equal proportions. Each iteration reads 16 consecutive elements as a
vector of r[j]. Since loads to wide data registers are only permitted at 256-bit
boundaries, OTBN’s 512-bit barrel shifter, which produces a 256-bit output, is
used to load r[j+len] at the required level of finer granularity. The subsequent
block of 16 elements is then loaded, concatenated with the previous and shifted
right by len elements, returning the low 256 bits as the corresponding vector of
r[j+len]. This construction of the vectors of zetas, r[j] and r[j+len] allows

Accelerating post-quantum cryptography 11

the rest of the computation to proceed in the same way as the first part of the
implementation. Once fqmul has been computed, however, the computations of
the new values of r[j] and r[j+len] must be combined within the same re-
sulting register. This is achieved using bitmasks and shifting to interleave the
calculated values at offsets of length len within the register. Due to the direct
operations on data in WDRs throughout the computation, the overhead of trans-
ferring data between register types in NTT is reduced to zero from a cycle count
of 17,918 in the baseline (1).

Throughout the vectorised computation, elements are fully packed into the
WDRs. The combination of the computation of new values of r[j] and r[j+len]
within the same registers ensures that this potential remains maximised even for
values of len that are less than the element capacity of a WDR. The expansion
of lane widths from 16 to 32 bits is implemented for the smallest possible number
of instructions. Once 32-bit precision is no longer required for intermediate com-
putations, the implementation transitions back to the initial mode of operation
on 16 elements in parallel. Minimisation of load/store overhead is achieved, as
the optimised implementation loads and stores 16 elements at once. Additional
pre-processing of loaded array values is eliminated as all loaded values are oper-
ated on directly in the positions within the register at which they were loaded.
As shown in Table 1, the number of cycles spent on the loading of values and ma-
nipulation of loaded values was reduced from 24,947 to 1,196 cycles for NTT (1).
Similarly, the cycles required for constructing and storing data blocks to mem-
ory was reduced from 24,192 to 592 for NTT. Loading of zeta values into GPRs
before broadcasting is optimised by isolating and storing the two values that are
loaded at once from memory. The multiplication process has been streamlined to
eliminate the requirement for explicit sign extension in software. In the baseline
implementation of NTT, 9,854 cycles were spent on sign extension, however this
costs no additional cycles in the optimised implementations.

Table 1. Comparison of Cycle Count Distribution Between Implementations

Implementation Sign
Extension

Register
transfer Load Store Other Total

ntt_baseline 9854 17918 24947 24192 15028 91939
ntt_optimised 0 0 1196 592 2568 4356

12 Urquhart, Stajano

... algorithm operating on 16-bit lanes...

elements at even indices elements at odd indices

AND

[WDR] ≫ 16

fqmul operations...
fqmul operations...

[WDR] ≪ 16

XOR

... rest of algorithm operating on 16-bit lanes...

Fig. 4. Expansion of lane width from 16 to 32 bits

Accelerating post-quantum cryptography 13

Table 2. Instruction Set Extensions

Instruction Description Latency (Cycles)

BN.LSHI Concatenates contents of 2 WDRs and shifts
right by an immediate. Truncates to 256 bits.

1

BN.MULVEC Vectorized signed multiplication on the low 16
bits of each 32-bit lane.

1

BN.MULVEC32 Vectorized multiplication on each 32-bit lane.
Truncates to 32 bits.

1

BN.ADDVEC Vectorized addition on each 16-bit lane. 1
BN.SUBVEC Vectorized subtraction on each 16-bit lane. 1
BN.RSHIFTVEC Vectorized right shift on each 32-bit lane. 1
BN.LSHIFTVEC Vectorized left shift on each 32-bit lane. 1
BN.BROADCAST Replicate value in selected GPR in each 32-bit

lane of WDR.
1

5 Instruction Set Extensions for OTBN

The new instruction set extensions are outlined in Table 1. This section describes
the reasoning used to estimate cycle counts, including details of how existing
hardware components are leveraged and hardware modifications required.

BN.LSHI: operates in the same way as the existing BN.RSHI instruction for
OTBN which executes in one cycle, but performs a left shift instead of right.

BN.MULVEC: Existing 64-bit multiplication units would need to be reconfig-
ured to operate independently on 32-bit segments and truncate results to 32
bits. Due to the shorter combinatorial path for 32-bit lanes, the critical path
should execute within the single cycle required for current 64-bit operations.

BN.MULVEC32: The sign bit of each 16-bit input should be isolated (using
a simple shift) and replicated across bits 17-31 of each lane using a series of
multiplexers. The same logic as in BN.MULVEC can then be followed. Given
that the existing BN.MULQACC can multiply and add to an accumulator
within a single cycle, it is reasonable to assume single-cycle latency in this
case.

BN.ADDVEC and BN.SUBVEC: OTBN features a 256-bit adder, which
add/subtract in one cycle. Therefore, it should be possible to perform vec-
torized addition/subtraction on a 256-bit register within a single cycle.

BN.RSHIFTVEC and BN.LSHIFTVEC: OTBN features a 512-bit barrel
shifter that produces a 256-bit output within one cycle. This is more complex
than a 256-bit barrel shifter, which would be sufficient for this instruction.
Vectorized shifts would be performed across 256-bit registers, in parallel
lanes of 32 bits. The combinatorial path of each of these shifts would be
much shorter than that of a full 256-bit shift as computations within each
lane can be computed independently. Therefore it would execute in one cycle.

BN.BROADCAST: OTBN features a GPR selector multiplexer. The GPR
value should be replicated 8 times across the destination WDR, which would

14 Urquhart, Stajano

require a simple fanout of wires. The existing WDR input multiplexer would
need to be extended by one input to accept data from GPRs. The criti-
cal path requirements are relatively simple in the context of the existing
instruction set, so this instruction should execute in one cycle.

6 Evaluation and Results

We extensively validated the correctness of our implementations using the gold-
standard input/output value pairs generated by NIST test vectors. We captured
the expected input and output value pairs upon entry to and exit from the
NTT function during execution of the official reference implementation on a
regular laptop. We used the test_vectors$ALG executable upon compiling the
reference C code on Linux. This generates 10,000 sets of test vectors which
contain keys, ciphertexts and shared secrets. The $ALG variable is used to identify
the parameter set, which represents the security level in Kyber. We gathered
values for all 3 parameter sets and for each set, tested our implementations in a
black-box test setting, comparing expected and generated output values.

Our optimised implementation of NTT demonstrates a 21.1× speed-up over
our OTBN baseline. It should be noted that the reference implementation that
we translated to OTBN assembly was not optimised for any platform. We did not
invest efforts into manual optimisation of the baseline OTBN implementation
using the existing instruction set. This may be an avenue for further research,
which may more precisely quantify the performance benefits added solely by
our new instructions and the optimisations they enable. However, it is worth
noting that the limited nature of the existing OTBN instruction set constrains
optimisation potential without introducing new instructions.

Given that we implemented our baseline ourselves1, we sought an additional
benchmark to ensure an objective comparison. The most similar platform to
OTBN on which we could execute the reference implementation directly was
the RISC-V Ibex core. Our optimised OTBN implementation uses 10.7× fewer
cycles.

To estimate the performance improvement for the entire Kyber algorithm,
we profiled the reference implementation on a regular (Core i7) laptop. As a full
implementation of Kyber was not available in OTBN assembly, we made the
assumption that the distribution of computational effort within Kyber would
be approximately equal across both platforms. Approximately 32% of execution
time was spent in the ntt() and montgomery_reduce() functions. If our op-
timisations speed up these functions by 21.1×, their contribution will reduce
to 32%/21.1 = 1.5% and the overall runtime will be dominated by the remain-
ing non-accelerated 68%. Thus the overall speed-up for Kyber would be 1.43×,
obtained as T/T ′ = 100%/(1.5 + 68)% = 1.43.

The cycle counts spent in the execution of each implementation are presented
in Table 3. The performance improvement factors achieved by the optimised im-
1 We had to manually translate the Kyber reference from C to OTBN assembly be-

cause a C compiler was not yet available for this new platform.

Accelerating post-quantum cryptography 15

plementations over the baseline implementations are shown in Table 4. Because
the new vectorised implementation required a complete redesign of the algo-
rithm, incremental performance measurements would not have led to meaningful
results. Therefore, only the final results are reported for implementations that
had been fully functionally verified.

Table 3. Comparison of Implementation Cycle Counts

Implementation Cycle Count
otbn_ntt_baseline 91939
ibex_ntt_baseline 46497
otbn_ntt_optimised 4356

Table 4. Performance Improvements over Baseline Implementation

Implementation OTBN Baseline Ibex Baseline
OTBN Optimised NTT 21.1x 10.7x

The montgomery_reduce() function is also invoked by the INTT, so our
approach would need to be extended to encompass this function to fully exploit
this acceleration. This would also lead to greater performance improvements in
the overall algorithmic context.

7 Related Work

Previous research has explored acceleration methods for lattice-based PQC in
three categories: pure software, custom hardware and hardware/software co-
design.

Software approaches leverage features of modern instruction sets such as
fixed-point arithmetic in Armv8-A Neon (Becker et al. [1]) and blend/shuffle
instructions in Intel-AVX2 (Seiler [14]). For more limited resource-constrained
settings, there is increasing interest in hardware and co-design approaches to
acceleration.

A custom polynomial multiplier using bitwise modular reduction is presented
by Yaman et al. [16] as an embedded hardware accelerator. In other work, Ya-
man et al. [11] incorporate a combination of inter- and intra-module pipelining
optimizations into a custom hardware module.

Hardware-software co-designs have proposed instruction set extensions for
the acceleration of the NTT, with a strong emphasis on extensions to the RISC-V
target architecture. Among these, Fritzmann et al. [6] embedded tightly-coupled
hardware accelerators into a RISC-V processing pipeline. Nannipieri et al. [10]

16 Urquhart, Stajano

presented instruction set extensions based on a post-quantum arithmetic logical
unit for acceleration of Kyber and Dilithium on RISC-V.

In contrast, our work tightly aligns with the architecture of OTBN and is
designed to propose feasible extensions that could be incorporated without the
requirement for custom hardware components.

8 Limitations

As mentioned, the OTBN chip was still being taped out during our develop-
ment and therefore we could only measure performance through a cycle-accurate
simulator. Other potentially useful measurements such as memory and power
consumption were not reported by the simulator but it will be interesting to
measure them on the physical chip once samples are available. It is possible that
performance differences between the simulation and physical deployment may be
observed. In addition, certain hardware-specific implementation challenges may
arise during physical hardware development, which may not have been fully
reflected in the simulated implementation. However, the simulator provided var-
ious advantages such as access to an accurate model of the entire OTBN block
while the physical chip did not exist yet. It facilitated low-cost and efficient ex-
perimentation for early development. The flexibility afforded by the simulator
facilitated relatively fast testing of different implementation strategies and en-
abled us to validate the functionality of our instructions and implementations
without access to the physical chip.

9 Conclusions and Future Work

We documented and demonstrated how we achieved a substantial speed-up for
the Number Theoretic Transform (an important primitive for lattice-based PQC
algorithms including ML-KEM Kyber and ML-DSA Dilithium) by recasting the
implementation in vectorized form and incorporating minor architectural modi-
fications to our target processor to enable vectorized processing. Our instruction
set extensions allow the programmer to make full use of OTBN’s wide data path.

We have open-sourced our own contributions and made them publicly avail-
able at https://github.com/emmau678/opentitan/tree/mphil_thesis_pqc_
acceleration.

Future work might investigate the general applicability of our techniques to
other cryptographic contexts. Minor modifications to our implementation would
enable straightforward translation to the INTT in Kyber and the (I)NTT in
Dilithium, with the potential to serve as a foundation for optimisation of other
PQC functions on modern cryptographic co-processors.

https://github.com/emmau678/opentitan/tree/mphil_thesis_pqc_acceleration
https://github.com/emmau678/opentitan/tree/mphil_thesis_pqc_acceleration

Accelerating post-quantum cryptography 17

Acknowledgements

We are grateful to Robert Mullins and particularly Andreas Kurth at lowRISC
C.I.C. for helping to define the project, offering access to relevant resources and
supporting the implementation efforts of the first author.

References

1. Hanno Becker, Vincent Hwang, Matthias J. Kannwischer, Bo-Yin Yang and Shang-
Yi Yang. “Neon NTT: Faster Dilithium, Kyber, and Saber on Cortex-A72 and
Apple M1”. IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems, 2022(1):221–244, Nov. 2021. https://doi.org/10.46586/tches.v2022.i1.
221-244. URL https://eprint.iacr.org/2021/986.

2. Guido Bertoni, Joan Daemen, Michaël Peeters and Gilles Van Assche. “Keccak”.
In Thomas Johansson and Phong Q. Nguyen (Editors), “Advances in Cryptology –
EUROCRYPT 2013”, pages 313–314. Springer, Berlin, Heidelberg, 2013. ISBN 978-
3-642-38348-9. https://doi.org/10.1007/978-3-642-38348-9_19. URL https:
//eprint.iacr.org/2015/389.

3. Joppe Bos, Leo Ducas, Eike Kiltz, T Lepoint, Vadim Lyubashevsky, John M.
Schanck, Peter Schwabe, Gregor Seiler and Damien Stehle. “CRYSTALS - Kyber:
A CCA-Secure Module-Lattice-Based KEM”. In “2018 IEEE European Sympo-
sium on Security and Privacy (EuroS&P)”, pages 353–367. IEEE, 2018. https:
//doi.org/10.1109/EuroSP.2018.00032. URL https://eprint.iacr.org/2017/
634.pdf.

4. Léo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim Lyubashevsky, Peter Schwabe,
Gregor Seiler and Damien Stehlé. “CRYSTALS-Dilithium: A Lattice-Based Digital
Signature Scheme”. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2018(1):238–268, Feb. 2018. https://doi.org/10.13154/tches.v2018.
i1.238-268. URL https://eprint.iacr.org/2017/633.pdf.

5. Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky,
Thomas Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler, William Whyte
and Zhenfei Zhang. “Falcon: Fast-Fourier lattice-based compact signatures over
NTRU”, 2018. URL https://www.di.ens.fr/~prest/Publications/falcon.pdf.
Submission to the NIST’s post-quantum cryptography standardization process.

6. Tim Fritzmann, Georg Sigl and Johanna Sepúlveda. “RISQ-V: Tightly Cou-
pled RISC-V Accelerators for Post-Quantum Cryptography”. IACR Transactions
on Cryptographic Hardware and Embedded Systems, 2020(4):239–280, Aug. 2020.
https://doi.org/10.13154/tches.v2020.i4.239-280.

7. lowRISC. “OpenTitan”, 2024. URL https://opentitan.org/.
8. lowRISC. “OTBN - OpenTitan Documentation”, 2024. URL https://opentitan.

org/book/hw/ip/otbn/.
9. Victor S. Miller. “Use of Elliptic Curves in Cryptography”. In Hugh C. Williams

(Editor), “Advances in Cryptology — CRYPTO ’85 Proceedings”, pages 417–426.
Springer, Berlin, Heidelberg, 1986. ISBN 978-3-540-39799-1. URL https://link.
springer.com/content/pdf/10.1007/3-540-39799-X_31.pdf.

10. Pietro Nannipieri, Stefano Di Matteo, Luca Zulberti, Francesco Albicocchi, Sergio
Saponara and Luca Fanucci. “A RISC-V Post Quantum Cryptography Instruc-
tion Set Extension for Number Theoretic Transform to Speed-Up CRYSTALS
Algorithms”. IEEE Access, 9:150798–150808, 2021. https://doi.org/10.1109/
ACCESS.2021.3126208.

https://doi.org/10.46586/tches.v2022.i1.221-244
https://doi.org/10.46586/tches.v2022.i1.221-244
https://doi.org/10.46586/tches.v2022.i1.221-244
https://doi.org/10.46586/tches.v2022.i1.221-244
https://eprint.iacr.org/2021/986
https://doi.org/10.1007/978-3-642-38348-9_19
https://doi.org/10.1007/978-3-642-38348-9_19
https://eprint.iacr.org/2015/389
https://eprint.iacr.org/2015/389
https://doi.org/10.1109/EuroSP.2018.00032
https://doi.org/10.1109/EuroSP.2018.00032
https://doi.org/10.1109/EuroSP.2018.00032
https://doi.org/10.1109/EuroSP.2018.00032
https://eprint.iacr.org/2017/634.pdf
https://eprint.iacr.org/2017/634.pdf
https://doi.org/10.13154/tches.v2018.i1.238-268
https://doi.org/10.13154/tches.v2018.i1.238-268
https://doi.org/10.13154/tches.v2018.i1.238-268
https://doi.org/10.13154/tches.v2018.i1.238-268
https://eprint.iacr.org/2017/633.pdf
https://www.di.ens.fr/~prest/Publications/falcon.pdf
https://doi.org/10.13154/tches.v2020.i4.239-280
https://doi.org/10.13154/tches.v2020.i4.239-280
https://opentitan.org/
https://opentitan.org/book/hw/ip/otbn/
https://opentitan.org/book/hw/ip/otbn/
https://link.springer.com/content/pdf/10.1007/3-540-39799-X_31.pdf
https://link.springer.com/content/pdf/10.1007/3-540-39799-X_31.pdf
https://doi.org/10.1109/ACCESS.2021.3126208
https://doi.org/10.1109/ACCESS.2021.3126208
https://doi.org/10.1109/ACCESS.2021.3126208
https://doi.org/10.1109/ACCESS.2021.3126208

18 Urquhart, Stajano

11. Ziying Ni, Ayesha Khalid, Dur e Shahwar Kundi, Máire O’Neill and Weiqiang Liu.
“HPKA: A High-Performance CRYSTALS-Kyber Accelerator Exploring Efficient
Pipelining”. IEEE Transactions on Computers, 72(12):3340–3353, Dec 2023. ISSN
1557-9956. https://doi.org/10.1109/TC.2023.3296899. URL https://eprint.
iacr.org/2022/1093.

12. PQ-CRYSTALS. “Kyber”. GitHub, Aug 2022. URL https://github.com/
pq-crystals/kyber.

13. Ronald L Rivest, Adi Shamir and Leonard Adleman. “A method for obtaining
digital signatures and public-key cryptosystems”. Communications of the ACM,
21(2):120–126, Feb 1978. ISSN 0001-0782. https://doi.org/10.1145/359340.
359342.

14. Gregor Seiler. “Faster AVX2 optimized NTT multiplication for Ring-LWE lattice
cryptography”. IACR Cryptology ePrint Archive, 2018. URL http://eprint.
iacr.org/2018/039.

15. Peter W Shor. “Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer”. SIAM J. Comput., 26(5):1484–1509, Oct
1997. ISSN 0097-5397. https://doi.org/10.1137/S0097539795293172.

16. Ferhat Yaman, Ahmet Can Mert, Erdinç Öztürk and Erkay Savaş. “A Hardware
Accelerator for Polynomial Multiplication Operation of CRYSTALS-KYBER PQC
Scheme”. In “2021 Design, Automation & Test in Europe Conference & Exhibition
(DATE)”, pages 1020–1025. IEEE, 2021. https://doi.org/10.23919/DATE51398.
2021.9474139. URL https://eprint.iacr.org/2021/485.

https://doi.org/10.1109/TC.2023.3296899
https://doi.org/10.1109/TC.2023.3296899
https://eprint.iacr.org/2022/1093
https://eprint.iacr.org/2022/1093
https://github.com/pq-crystals/kyber
https://github.com/pq-crystals/kyber
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
http://eprint.iacr.org/2018/039
http://eprint.iacr.org/2018/039
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.23919/DATE51398.2021.9474139
https://doi.org/10.23919/DATE51398.2021.9474139
https://doi.org/10.23919/DATE51398.2021.9474139
https://doi.org/10.23919/DATE51398.2021.9474139
https://eprint.iacr.org/2021/485

Accelerating post-quantum cryptography 19

Algorithm 1: Vectorized NTT Implementation
1 Masks[mask_len8] ← [0x00000000] * 4 + [0xFFFFFFFF] * 4
2 Masks[mask_len4] ← ([0x00000000] * 2 + [0xFFFFFFFF] * 2) * 2
3 Masks[mask_len2] ← [0x00000000FFFFFFFF] * 4
4 Function mont_reduce_vec(a):
5 for i ← 0 to 7 do
6 t[i] ← a[i] × QINV
7 t[i] ← t[i] × KYBER_Q
8 t[i] ← a[i] - t[i]
9 t[i] ← t[i] ≫ 16

10 return t

11 Function fqmulvec(vec_a, vec_b):
12 return mont_reduce_vec(a[i]&0xFFFF × b[i]&0xFFFF for i ← 0 to 7)

13 Function ntt_vec(r[256]):
14 for len in {128, 64, 32, 16} do
15 for start ← 0 to 255 by 2×len do
16 zetavec ← broadcast zeta[k++]
17 for i ← 0 to 15 do
18 idx ← i×16 + start
19 Vec[rj_vec] ← r[idx . . . idx+15]
20 Vec[rjlen_vec] ← r[idx+len . . . idx+len+15]
21 Vec[rjlen_vec_low] ← rjlen_vec AND [0x0000FFFF] * 8
22 Vec[rjlen_vec_upp] ← rjlen_vec ≫ 16
23 t_low ← fqmulvec(zetavec, rjlen_vec_low)
24 t_upp ← fqmulvec(zetavec, rjlen_vec_upp)
25 t ← t_low XOR t_upp
26 rjlen_vec_new ← rj_vec - t
27 rj_vec_new ← rj_vec + t
28 store rjlen_vec_new, rj_vec_new to r[idx+len], r[idx]

29 for len in {8, 4, 2} do
30 for i ← 0 to 15 do
31 num_zetas ← 8 / len
32 zetavec ← 0
33 zeta_mask ← (1 ≪ (len ≪ 4)) - 1
34 for z ← 0 to num_zetas - 1 do
35 tmp ← broadcast zeta[k++]
36 tmp ← tmp AND zeta_mask
37 zetavec ← zetavec XOR tmp
38 zeta_mask ← zeta_mask ≪ (len ≪ 5)

39 idx ← i × 16
40 Vec[rjvec] ← r[idx . . . idx+15]
41 Vec[nextvec] ← r[idx+16 . . . idx+31]
42 Vec[rjlen_vec] ← (nextvec ⊕ rjvec) ≫ (len ≪ 4)
43 Vec[rjlen_vec_low] ← rjlen_vec AND [0x0000FFFF] * 8
44 Vec[rjlen_vec_upp] ← rjlen_vec ≫ 16
45 t_low ← fqmulvec(zetavec, rjlen_vec_low)
46 t_upp ← fqmulvec(zetavec, rjlen_vec_upp)
47 t ← t_low XOR t_upp
48 Vec[rjlen_vec_new] ← rjvec - t
49 rjlen_vec_new ← rjlen_vec_new AND Masks[mask_len{len}]
50 rjlen_vec_new ← rjlen_vec_new ≪ (len ≪ 4)
51 Vec[rjvec_new] ← rjvec + t
52 rjvec_new ← rjvec_new AND Masks[mask_len{len}]
53 res ← rjvec_new XOR rjlen_vec_new
54 store res to r[idx]

	Acceleration of core post-quantum cryptography primitive on open-source silicon platform through hardware/software co-design

