UNIVERSITY OF CAMBRIDGE

MASTER’S THESIS

User Authentication for Pico:
When to unlock a security token

Author:
Cristian M. Toader
Churchill College

Supervisor:

Dr Frank Stajano

A dissertation submitted for the degree of
“Master of Philosophy” in Advanced Computer Science

(Option B - Research project)

Computer Security Group

Computer Laboratory

June 2014

Declaration of Originality

[, Cristian Toader of Churchill College, being a candidate for the M.Phil. in Advanced
Computer Science, hereby declare that this report and the work described in it are my
own work, unaided except as may be speciped below, and that the report does not
contain material that has already been used to any substantial extent for a comparable
purpose.

Total word count: 14911 (starting from page 1 and excluding the appendix sections and
bibliography)®.

Signed:

Date:

Word count was computed using the command: texcount -opt=tcoptions.txt Chapters/*.tex.

Abstract

Passwords are currently the most widely used authentication mechanism. However,
as shown in the literature numerous times, they have become obsolete for the current
technological context. The Pico project designed by Stajano [1] was created with the
purpose of completely replacing passwords. |t is a security token used for generating
credentials and providing authentication for the user. It has an additional layer of
security, by only being usable in the presence of its owner. This is currently achieved
using auxiliary devices called Picosiblings. The scope of this dissertation was to create a
new token unlocking mechanism that would oPer Pico a diPerent perspective to detecting
the presence of its owner.

We have started by analysing the Pico design, and identifying any requirements for the
new unlocking mechanism. In order to have a reliable way of assessing the solution, we
have selected an assessment framework developed by Bonneau et al [2]. Furthermore,
we have created a token unlocking assessment framework adapted from a subset of the
work by Bonneau et al, to which we have added additional properties.

Having identiped the set of requirements, as well the evaluation criteria, we have consid-
ered that a solution based on biometrics would be most appropriate. We have designed
a token unlocking scheme that combines multiple biometric and behavioural analysis
mechanisms in order to generate an overall conpdence level. The solution was pro-
totyped using an Android 4.4.2 smart-phone device, therefore proving that it can be
developed using existing hardware. Additional threat modelling, and power analyses
ober additional insight regarding the limitations of the scheme.

Both the token unlocking and Bonneau et al [2] frameworks were used for assessing the
proposed solution. Comparing the results with those of Picosiblings shows that we do
not completely outperform the original solution, but we do oPer an overall better result.

Acknowledgements

In writing this dissertation, | would like to thank my supervisor, Dr Frank Stajano. |
am especially grateful for providing me with with such an interesting research topic, and
including me as part of the Pico team. | appreciate all the advice and the learning en-
vironment that he has created during our weekly discussions. Furthermore, his patience
and useful suggestions while writing this dissertation are invaluable.

Without the help of the University of Cambridge Computer Laboratory, | would not
have been able to pnish this dissertation. They have provided me with all the support
necessary while conducting the research part of the project. | am especially grateful for
the creative discussions and suggestions provided by the team of Pico research assistants
during our regular meetings. | would also like to thank Laurent Simon, for invaluable
advice while developing the Android prototype.

| appreciate the hard work and dedication of the open source community. In particular
I would like to thank the developers of the Javafaces and Recognito libraries, without
which the prototype for this dissertation could not have been completed.

Finally, 1 would like to thank Stefan Saftescu and Leila Malika for proofreading and
suggestions made for a draft of my dissertation. As a non-native speaker, their advice
has considerably improved the quality of my project.

Contents

Declaration of Originality
Abstract
Acknowledgements

Contents

List of Figures

List of Tables

1 Introduction

2 Pico: no more passwords!

3 Assessment framework

3.1 UDS assessment framework
3.2 Token unlocking framework
3.3 Picosiblings evaluation
3.4 Conclusions

4 Design

41 Design requirements
4.2 Proposed solution.
4.3 Related work
4.4 Conclusions e

5 Implementation Prototype

5.1 Implementation overview
9.2 Implementation details
521 UAService e

5.2.2 Authentication mechanisms

9.2.21 Dummy mechanism

5.2.2.2 Voice recognition
9.2.2.3 Face recognition
5.2.2.4 Location analysis

Vi

Vii

Contents Vv
5.2.3 Owner conpguration 36

5.2.4 Cryptographic protection 36

5.3 Conclusion 37
9.4 Related work 37

6 Evaluation 40
6.1 Threat model 40
6.2 Functional evaluation 44
6.3 Token unlocking framework evaluation 45
6.4 UDS framework evaluation, . 47

7 Conclusion 49
A Android development and security 52
B Token Unlocking Framework evaluation examples 58
B4 PIN .. e 58
B.2 Face unlock 59

C Examples of supported Android authentication mechanisms 61
Bibliography 66

List of Figures

5.1
5.2
5.3
5.4
9.9
5.6
5.7
5.8

Authenticator design overview. 25
UAService components 26
AuthMechService components overview. 28
Dummy mechanism. 30
Voice recognition overview. 31
Face recognition overview. 33
Location analysis overview. 35
KeyManager overview. e 36

Vi

List of Tables

3.1

6.1
6.2
6.3
6.4

Initial assessment using the token unlocking framework. 16
Application propling results using Trepn 45
Timing performance results. 45
Token unlocking framework results. 47
UDS framework assessment. 48

Vii

Chapter 1

Introduction

Passwords are the most widely used electronic authentication mechanism. They are a
secret sequence of characters used for proving the identity of the user, in order to gain
access to a resource. This originally oPered a suZciently secure authentication mecha-
nism. However, their poor scalability makes them unsuitable in the current technological
context.

The main problem passwords have is the fundamental concept of remembering a secret.
According to Yan et al [3], users choose weak passwords if not given any advice to make
them memorable. This makes the mechanism more vulnerable to brute force attacks (e.g.
dictionary, pre-compiled hashes, rainbow tables [4]). As Robert Morris [5] emphasises
in his paper, there is a constant competition between attackers and security experts.
With a constant increase in computational power, additional enforcements were needed
(i.e. minimum password length, one or more numeric characters, one or more special
characters, uniqueness across diPerent accounts) in order to maintain an acceptable
security level. As shown by Adams & Sasse [6], this solution proves not to be feasible,
and leads users to poor security practices in order to maximise usability.

The Pico project was designed by Frank Stajano [1] with the purpose of replacing pass-
word based mechanisms. Pico is a hardware token that generates and manages user
authentication credentials. It has an additional layer of security by only being usable in
the presence of its owner. Therefore, a security chain is created where \who you are"
unlocks \a secret you have" which is used for authentication.

The current solution for unlocking Pico is by communicating with small auxiliary devices
called Picosiblings [7]. They are designed to be embedded in everyday items that users
can carry throughout the day (e.g. keys, necklace, rings). Each Picosibling transmits a

Chapter 1. Introduction 2

secret sequence to Pico. When all required secrets are gathered, Pico becomes unlocked
and can be used by its owner.

Picosiblings are a sensible solution to unlocking Pico. However, they are purely based on
proximity to the device. As presented in the original Pico paper [1] anyone in possession
of both Pico and its Picosiblings can have full access to the owner's accounts for a limited
amount of time. This risk is lowered by additional security features. However, the main
vulnerability of Picosiblings is that they do not re ect who the user is, but additional
things the user has.

The purpose of this dissertation is to design and prototype a better token unlocking
mechanism for Pico. According to its design, the process should be memoryless, and
enable continuous authentication. The token should lock and unlock automatically only
in the presence of its owner. The solutions that seem to best pt these requirements are
biometric authentication mechanisms. Therefore, we have explored the possibility of
combining multiple biometrics and behavioural analysis as part of an uniped solution.
The output from each mechanism is combined to generate an overall conpdence level,
re ecting that the owner is still in possession of the Pico.

A number of contributions have been made throughout this dissertation project. The
following list presents a summary of these achievements, with further details in the
following chapters.

For creating a new unlocking mechanism, we have identiped a list of requirements
by analysing how Stajano [1] designed the original Pico token.

e In order to have an evaluation platform for the solution, we have created an as-
sessment framework derived from the work by Bonneau et al [2]. This is used to
evaluate a couple of existing token unlocking mechanisms, including Picosiblings.
The results are used as a benchmark when evaluating the proposed solution.

e We have designed a new token unlocking mechanism. The solution may be used
in any type of user authentication, but it is presented in the context of unlocking
the Pico token.

e We have developed an Android application prototype. The purpose of the imple-
mentation is to check that the design can be developed using existing hardware.

e We have analysed the prototype's power consumption as well as timings of diPerent
authentication stages. These results should reveal any limitations and downsides
of the scheme.

Chapter 1. Introduction 3

e The scheme is evaluated using the token unlocking evaluation framework, and the
UDS framework developed by Bonneau et al. A comparison is made with Picosi-
blings in order to identify performance diPerences. We aimed for the proposed
scheme to achieve better results in at least some categories of the token unlocking

framework.

Chapter 2

Pico: no more passwords!

This dissertation project aims to design and implement a new Pico unlocking mechanism.
A better understanding of the Pico design [1] is therefore necessary. This chapter aims
to go into brief detail as to what Pico is, how it works, and what are its properties.

Pico is an user authentication hardware token, designed with the purpose of fully replac-
ing passwords. Although other alternative mechanisms exist, they are generally focused
on web based authentication. The solution described by Stajano addresses all instances
of password authentication, both web based as well as local.

The motivation behind Pico is the fact that passwords are no longer viable in the current
technological context. Computing power has grown, making simple passwords easy to
break. Longer and more complex passwords are now required. However, as shown
by Adams & Sasse [6], this has a negative ePect on the users, which have a limited
memorising capability.

Another reason why passwords are no longer viable is that they are not a scalable
solution. Security experts recommend that passwords should not be reused for multiple
accounts. However, a large number of computer based services require this type of
authentication. In order to respect security recommendations, users would be forced to
remember dozens of unique, complex passwords. A study by Florencio et al [8] conprms
the negative impact of scalability on password quality.

When designing Pico, Stajano [1] decided to have a fresh start. He describes that
an alternative for passwords needs to be at least memoryless and scalable, without
compromising security. In the case of token based authentication, the solution also needs
to be loss and theft resistant. Pico was therefore designed to satisfy these fundamental
properties. It provides a number of additional benepts also described in the work by
Bonneau et al [2].

Chapter 2. Pico 6}

As a token authentication mechanism, Pico transforms \something you know" into
\something you have". It oPers support for thousands of credentials that are kept
encrypted on the Pico device. The encryption key is also known as the \Pico Master
Key". If the Pico is not in the possession of its owner it becomes locked. In this state,
the \Pico Master Key" is unavailable and the user cannot authenticate to any app®.

Credentials are generated and managed automatically whenever the owner interacts with
an app. Therefore, the responsibility of generating a strong and unique credential, as
well as memorising it, is shifted from the user to the Pico. No additional ePort such as
searching or typing is required.

Another important feature oPered by Pico is continuous authentication. Traditional
password mechanisms provide authentication for an entire session. The user is respon-
sible of managing and closing the session when it is no longer needed. Instead, Pico
oPers the possibility of periodic re-authentication of its owner using short range radio
communication. If either the Pico or the owner are no longer present, the authentication
session is closed.

From a physical perspective, Pico is a small portable dedicated device. Its owner should
be carrying it at all times, just as they would with a car key. It contains the following
hardware components:

e Main button used for authenticating the owner to the app. This is the equivalent
of typing the password.

e Pairing button used for registering a new account with an app.
e Small display used for notipcations.

e Short range bidirectional radio interface used as a primary communication channel
with the app.

e Gamera used for receiving additional data from the app via 2-dimensional visual
codes. This serves as a secondary communication channel.

As mentioned before, the Pico main memory is encrypted using the \Pico Master Key".
The token contains thousands of slots used for storing unique credentials used in during
authentication. Each credential consists of public-private key information generated
during account creation in a key exchange protocol. The public key belongs to the
corresponding app, while the private key was generated when registering the account.

1For the purpose of brevity, any mechanism requiring user authentication will be called an “app”.
This naming convention was used in the original paper by Stajano.

Chapter 2. Pico 6

During account creation Pico scans a 2D visual code generated by the app. The image
encodes a hash of the app's certipcate that includes its name and public key. Pico starts
the registration protocol through the radio channel, and the app responds with a public
key used for communication. The key is validated using the hash from the visual code,
and the protocol continues. Pico then initiates a challenge for the app to prove that it is
in possession of the corresponding private key. It also provides to the app a temporary
public key used for communication. Once the app is authenticated, Pico generates a key
pair and sends the account public key to the app. To complete the registration it stores
the generated private key and the app's public key.

The account authentication process starts when the user presses the main button and
scans the app 2D code. The hash of the app's name and public key are extracted from the
2D image. This information is used to pnd the corresponding credentials. An ephemeral
public key encrypted with the app's public key is sent via the radio channel. The app
is authenticated by using this key to require the corresponding (user id, credential)
pair. Only after the app is authenticated Pico uses the public key generated during the
registration process and authenticates itself to the app.

The locking process is an important aspect of Pico that was not yet fully described.
Currently this is achieved by using bidirectional radio communication with small devices
called Picosiblings [7]. These are meant to be embedded in everyday items that the owner
carries around, such as earrings, keys, chains, and rings.

The Pico authentication credentials are encrypted using the \Pico Master Key". The
key is not available on the token and can only be reconstructed using k-out-of-n secret
sharing, as described by Shamir [9]. Except for two shares which will be discussed later,
gach k-out-of-n secret is held by a Picosibling.

Using an initialisation process based on the \resurrecting duckling" [10] policy, each
Picosibling is securely paired with Pico. The token sends periodic ping requests to
which all initialised Picosiblings are expected to respond. During a successful ping, each
Picosibling sends its k-out-of-n share to Pico. Given enough secrets, the \Pico Master
Key" is reconstructed and Pico becomes unlocked.

Internally, Pico keeps a slot array for each paired Picosibling. Each slot contains a
countdown value, and the key share provided by the Picosibling. When the countdown
value expires, the share becomes deleted. Similarly, if k shares are not acquired before
a predepned time-out period, all shares are removed.

Except for the Picosiblings, two additional special shares with a larger time-out period
are described by the paper:

Chapter 2. Pico 7

e Biometric measurement used for authenticating the owner to Pico.

e A server network connection used for locking Pico remotely.

The possibility of using a smart phone as a Pico is brie y considered in the paper. This
would have the advantage of not requiring any additional devices from the user. Modern
smart phones provide all the necessary hardware required by Pico. However, this would
be a security trade-oP in exchange for usability. Mobile phones are an ecosystem for
malware, and they present uncertainty regarding the privacy of encrypted data. This
option may still be used as a cheap alternative to prototype and test.

Chapter 3

Assessment framework

The purpose of this chapter is to create an assessment framework for token unlocking
mechanisms. This will be used to evaluate the Picosiblings scheme used by Pico. The
results serve as a benchmark when comparing to the alternative mechanism proposed in
this dissertation.

3.1 UDS assessment framework

Similar work to what we are trying to achieve in this chapter was performed by Bonneau
et al [2]. The authors create a framework for evaluating web based authentication
mechanisms. However, this is not entirely compatible for token unlocking schemes.
Properties such as \Browser-compatible" do not apply, while others need to be redepned
to pt our context. However, this paper is a good starting point for our token unlocking
gvaluation framework.

The motivation behind this paper is to gain insight to the diZculty of replacing pass-
words. An assessment framework is created, and a number of web authentication mech-
anisms are evaluated. It is a useful tool in identifying key properties of web based
authentication schemes. The framework is intended to provide a benchmark for future
proposals.

The framework consists of 25 properties divided into three categories: usability, deploya-
bility, and security. Therefore, it is abbreviated by the authors as the \UDS framework",
and it will be referred to as such throughout this dissertation. An authentication scheme
is evaluated by assessing whether each property is oPered. If a scheme almost oPers a
property, it is marked as quasi-oPered. To simplify the evaluation, properties that are
not applicable are marked as oPered.

Chapter 3. Assessment framework 9

After evaluating 35 schemes, the conclusion is that passwords are not completely domi-
nated by any mechanism. They satisfy all the properties in the deployability category.
They score reasonably well in terms of usability, excelling in properties such as: \nothing-
to-carry", \eZcient-to-use", and \easy-recovery-from-loss'. However, from a security
perspective passwords don't perform well. They only oPer the \resilience-to-theft!",
\no-trusted-third-party", \requiring-explicit-consent”, and \unlinkable" properties.

Biometric mechanisms receive mixed scores on usability. None of them oPer \infrequent-
errors" due to false negative precision. They score poorly in deployability, partially
because they often require additional hardware. In terms of security they perform
worse than passwords. Replay attacks can be performed using pre-recording data of
the user, making them not \resilient-to-targeted-impersonation" and not \resilient-to-
theft". Thereisaonetoone correlation between the owner and their biometric recording,
and therefore they are not \unlinkable".

By analysing the framework results, we see that mechanisms such as security tokens
oPer \memory-ePortless" in exchange for \nothing-to-carry". The only schemes that
oPer both are biometric mechanisms. This is a consequence of replacing \something you
know" with \something you are" instead of have. For diPerent reasons no mechanism
oPers both \memory-ePortless" and \resilient-to-theft".

When computing an aggregate score using the UDS framework, properties should have
diPerent weights depending on the purpose of the assessment. For example, when search-
ing for the most secure authentication mechanism, security properties would have a larger
weight in the overall evaluation. For this reason, the authors only provide the means for
others to make an evaluation based on their needs. No aggregate scores or rankings are
provided in the paper.

The authors mention the option of combining mechanisms as part of a two factor authen-
tication. In terms of deployability and usability, the overall scheme oPers a property if it
is oPered by both authentication mechanisms. In terms of security, only one of the two
mechanisms needs to oPer the property in order for the two factor combination to obPer
it as well. However, Wimberly & Liebrock [11] observe that combining passwords with
a second authentication mechanism scheme leads to weaker credentials and implicitly
less security.

Not applicable to passwords

Chapter 3. Assessment framework 10

3.2 Token unlocking framework

Token unlocking and web based authentication mechanisms are similar in concept. The
diPerence between the two is that on a token data is collected and processed locally.
Therefore, a subset of the UDS framework is included in the token unlocking framework
we have developed. Properties that do not apply, or would apply to every mechanism,
were removed. Other properties needed to be adapted to the context of a token, and
therefore have a diPerent meaning.

The following list contains the subset of the UDS framework developed by Bonneau et
al [2] that is relevant to token unlocking mechanisms. A short description is included to
show how they are adapted to the new context.

Memorywise-ePortless
Users do not need to remember any type of secret (e.g. passwords, physical sig-
natures, drawings). The original property was quasi-oPered if one secret would
be used with multiple accounts, but this will not apply for security tokens. As
an example the RSA SecurID? is used in conjunction with a password in order to
authenticate the user, and therefore does not oPer this property.

Nothing-to-carry
The unlocking mechanism does not require any additional hardware except for
the token. The property is quasi-satisped in the case of hardware the user would
have carried on a normal basis such as a mobile phone. An example mechanism
that quasi-oPers the property is Picosiblings, which uses small devices embedded
in everyday items. Biometric mechanisms that require additional sensors such as
a pngerprint reader do not satisfy this property.

Easy-to-learn
Users that want to use the unlocking mechanism would be able to learn it with ease.
For example, Picosiblings do not oPer this property because of the complexity of
their management3. However, PINs or passwords do, as users are already familiar
with this type of authentication.

E Zcient-to-use
The amount of time the user needs to wait for the token to be unlocked is rea-
sonably short. This includes the time required to provide authentication input,

http://www.emc.com/domains/rsa/index.htm?id=1156

3 As discussed in chapter 2, each Picosibling contains a k-out-of-n secret used to reconstruct the “Pico
Master Key”. The owner needs to choose the right combination of Picosiblings in order to unlock the
Pico, which may prove difficult.

Chapter 3. Assessment framework 11

and set up the unlocking mechanism. As an example, the input and processing
time for PINs is very low, and therefore the scheme oPers the property. However,
mechanisms based on biometrics may not, depending on the implementation.

Infrequent-errors

The rightful owner should generally be able to successfully unlock the token. Any
delays resulted from the scheme (e.g. typos during typing, biometric false nega-
tives) contribute to the mechanism's inability to oPer this property. For example,
PINs have a limited input length and character set size. This makes frequent errors
unlikely and therefore they oPer the property. Biometric mechanisms, depending
on the type and implementation may quasi-oPer the property, but they generally
do not.

Easy-recovery-from-loss
The meaning of this property was modiped to re ect the context of token unlock-
ing. It is oPered if the user may easily recover from the loss of authentication
credentials. This may include the loss of auxiliary devices, forgotten credentials,
diPerence in biometric features. For example, forgotten PINs oPer the property as
they generally require a simple reset using an online service.

Accessible
The mechanism is usable regardless of any user disability or physical condition. As
an example, passwords oPer this property, while gait recognition unlocking does
not.

Negligible-cost-per-user
The total cost per user of using the scheme, enquired by both the user and the
veriper, is negligible.

Mature
A large number of users have successfully used the scheme. Any participation
not involving its creators, such as open source projects, that use or extend the
mechanism contribute to this property. For example, passwords are widely used
and implemented and therefore oPer the property.

Non-proprietary
Anyone can implement the token unlocking scheme without having to make any
payment, such as royalties. The technologies involved in the scheme are publicly
known and do not rely on any secrets.

Resilient-to-physical-observation
An attacker is not able to impersonate the token owner after observing them

Chapter 3. Assessment framework 12

authenticate. Based on the number of observations required for the attacker to
unlock the token, the scheme may quasi-oPer the property. The original paper
suggests 10-20 times to be suZcient. Physical observation attacks include shoulder
surpng, video cameras, keystroke sound analysis, and thermal imaging of the PIN
pad.

Resilient-to-targeted-impersonation
An attacker is not able to impersonate the token owner by exploiting knowledge
of personal details (i.e. birthday, full name, family details, and other sensitive
information). In the case of biometrics, this property is satisped if the scheme is
resilient to replay attacks based on pre-recordings.

Resilient-to-throttled-guessing
The scheme is resilient to attacks with a guessing rate restricted by the mech-
anism. The process cannot be automated due to the lack of physical access to
authentication data. This may be achieved using tamper resistant memory. For
example, PINs oPer this property as tokens such as SIM cards become locked after
only three unsuccessful attempts.

Resilient-to-unthrottled-guessing
The scheme is resilient to attacks with a guessing rate unrestricted by the mech-
anism. The UDS framework suggests that if the attacker may process 240 to 264
guesses per account, they would only be able to compromise less than 1% of ac-
counts. Since tokens are generally designed to have one owner, the property needs
to be adapted. It is oPered only if an attacker requires more than 240 attempts to
unlock the token.

Resilient-to-theft

This property is relevant to schemes that use additional hardware other than the
token. If the additional devices become in the possession of an attacker, they
are not suZcient to unlock the token. For example, auxiliary biometric devices
used in the conjunction with the token oPer this property. The token would not
be unlocked using the hardware alone. However, Picosiblings only quasi-oPer the
property. Although they generally rely on proximity to the Pico, the two special
shares allow the owner to lock the token.

Unlinkable
Using the authentication input with any veriper using the same authentication
mechanism* does not compromise the identity of the token owner. For example,

4The authentication mechanism is not necessarily used for token unlocking. Any sort of mechanism
which requires user authentication is a valid option.

Chapter 3. Assessment framework 13

the link between a PIN and its owner is not strong enough to make a clear link
between the two. However, biometrics are a prime example of schemes which do
not oPer this property.

We have selected and adapted a subset of the UDS framework properties. To this we
add a number of original properties relevant for token unlocking mechanisms. These are
part of the project's contribution to the evaluation framework. They are presented in
the following list.

Continuous-authentication

The token unlocking scheme enables periodic re-authentication of the user. The
process is not necessarily hidden to the user, but it does need to be ePortless. The
scheme needs to detect the presence of the owner, and lock the device accordingly.
When locked, any open authentication session managed by the security token
should be closed. The concept is mentioned by Bonneau et al [2], but not included
in the UDS framework. It is discussed in more detail by Stajano [1] as one of the
benepts of the Pico project. Using the UDS classipcation of the original framework,
the property belongs to the Security category.

Multi-level-unlocking

The unlocking scheme provides quantipable feedback, not just a locked or unlocked
state. |t oPers support for multiple token security permission levels. These are
granted based on the conpdence that the user of the token is its owner. For exam-
ple, a 70% conpdence level that the owner is present may allow the user to access
an email account, but not make payments or banking transactions. Passwords
only provide a \yes" or \no" answer and therefore do not oPer this property. Bio-
metric mechanisms can oPer this property. Their output is either a quantipable
probability or a distance metric that data was collected from the owner. DiPerent
conpdence levels could therefore enable diPerent security permissions. Using the
UDS classipcation of the original framework, the property belongs to the Security
category.

Non-disclosability
The owner may not disclose authentication details neither intentionally or unin-
tentionally. This is a broader version of the \resilient-to-phishing" and \Resilient-
to-physical-observation" properties from the original UDS framework. The focus
of this property is that the token may only be used by its owner. This is important
in enterprise situations where the security token should not be shared. Passwords
and other schemes based on secrets do not oPer the property, as the owner can
share it with another user with no diZculty. Biometric mechanisms however are

Chapter 3. Assessment framework 14

harder to disclose. Based on the UDS classipcation, the property belongs to the
Security category.

Availability

The owner has the ability of using the scheme regardless of external factors. The
ability to authenticate should not be impaired by the authentication context (i.e.
traZc noise, diPerent light intensities, restricted movement space, etc.). The prop-
erty is not related to physical disabilities preventing the user from using the scheme
but only on contextual in uences on data collection. For example, gait recognition
would only function while moving on foot and therefore does not oPer the property.
However, a mechanism requiring a PIN hand would work in any circumstance. Us-
ing the UDS classipcation of the original framework, the property belongs to the
Usability category.

3.3 Picosiblings evaluation

We continue by evaluating the Picosiblings scheme using the token unlocking assessment
framework. Results in this section will be used for comparison with the scheme designed
in this dissertation project.

The scheme doesn't require remembering any secret and is therefore \memorywise-
ePortless". Since it relies on devices embedded in everyday items, it quasi-oPers \nothing-
to-carry". Bonneau et al [2] evaluate Pico as not \easy-to-learn" due to the Picosiblings
unlocking mechanism. In the lack of user studies it only quasi-oPers \eZcient-to-use"
and \infrequent-errors". It does not oPer the \easy-recovery-from-loss" property. The
unlocking mechanism is invariable to external factors, therefore oPering the \availabil-

ity" property.

The original paper marks Pico as not \accessible" due to the coordinated use of camera,
display, and buttons. However, Picosiblings are \accessible" because they are embed-
ded in everyday accessories that any user can wear. Pico doesn't aim to satisfy the
\negligible-cost-per-user" property, and in the lack of a realistic Picosiblings cost esti-
mate we will consider the property is not oPered. The scheme is at the stage of a proto-
type, with no external open source contributions, and little user testing. Therefore, it is
not considered to be \mature". Frank Stajano [1] states that the only requirement for
implementing the Pico design is to cite the paper, which makes the unlocking mechanism
\non-proprietary".

Chapter 3. Assessment framework 15

Since the scheme does not rely on user input, it is \resilient-to-physical-observations".
Based on the Picosiblings description given by Stajano [1] the scheme oPers \resilient-to-
targeted-impersonation”, \resilience-to-throttled-guessing", and \resilient-to-unthrottled-
guessing". Any attacker can unlock Pico if they are also in possession its Picosiblings.
However due to the auxiliary shared secrets® the scheme quasi-oPers \resilient-to-theft".
Each Picosibling only works with one veriper (i.e. its master Pico), and therefore is \un-
linkable". The scheme was designed to provide \continuous-authentication". Because
of the k-out-of-n master key reconstruction mechanism, Picosiblings can only have the
locked and unlocked states. Therefore they do not oPer \multi-level-unlocking". The
scheme does not satisfy the \non-disclosability" property, because the owner is free to
give away the Pico with its Picosiblings.

3.4 Conclusions

We have developed a token unlocking evaluation framework. The result is strongly
related to similar work by Bonneau et al [2] which was summarised at the beginning
of the chapter. Some properties needed to be adapted to pt the context of a security
token. In addition we have contributed with 4 original properties.

The Picosiblings scheme was evaluated using the token unlocking framework. This will
serve as a benchmark when comparing to the new solution proposed in this disserta-
tion. Two additional example mechanisms were assessed, with details in appendix B.
A summary of the results is posted in table 3.1. Each property is highlighted with an
appropriate colour in order to allow for quicker analysis.

As the table shows, none of the evaluated schemes completely dominates the others.
They receive mixed scores in terms of availability and security. PINs dominate in terms
of deployability, receiving a perfect score due to their similarity with passwords.

®Picosiblings also relies on two special shares. One is unlocked using biometric authentication, and
the other is provided by an external server. Using these shares would only grant the thief a limited time
window before the token is either locked remotely or the shares expire.

Chapter 3. Assessment framework

16

Property PIN Picosiblings Face recognition
Memorywise-ePortless Not-oPered OPered OPered
Nothing-to-carry OPered Quasi-oPered | OPered
Easy-to-learn OPered Not-oPered OPered

E Zcient-to-use OPered Quasi-oPered | OPered
Infrequent-errors Quasi-oPered | Quasi-oPered | Not-oPered
Easy-recovery-from-loss OPered Not-oPered OPered
Availability OPered OPered Not-oPered
Accessible OPered OPered OPered
Negligible-cost-per-user OPered Not-oPered OPered
Mature OPered Not-oPered Quasi-oPered
Non-proprietary OPered OPered Not-oPered
Resilient-to-physical-observations Not-oPered OPered OPered
Resilient-to-targeted-impersonation | Quasi-oPered | OPered Not-oPered
Resilient-to-throttled-guessing OPered OPered OPered
Resilient-to-unthrottled-guessing OPered OPered OPered
Resilient-to-theft OPered Quasi-oPered | OPered
Unlinkable OPered OPered Not-oPered
Continuous-authentication Not-oPered OPered Not-oPered
Multi-level-unlocking Not-oPered Not-oPered Not-oPered
Non-disclosability Not-oPered Not-oPered Quasi-oPered

TaBLE 3.1: Initial assessment using the token unlocking framework.

Chapter 4

Design

4.1 Design requirements

The framework evaluation of Picosiblings provides insight as to how the scheme can
be improved. We identify as a key downside that it does not guarantee the identity of
the owner. This information is mainly inferred from the number of Picosibling shares
in the proximity of the Pico. However, anyone may be in possession of the shares,
therefore being temporarily granted full authentication privileges. Thisisre ected in the
evaluation by failing to fully oPer “resilient-to-theft" and \non-disclosability". Another
improvement can be made by introducing \multi-level-unlocking", allowing for multiple
levels of authentication depending on the conpdence in the owner's presence.

The Pico design proposed by Stajano [1] claims two properties that need to be supported
by the token unlocking mechanism: memory ePortless authentication, and continuous
authentication®.

A requirement when designing the new Pico unlocking mechanism is to fully satisfy the
the properties presented in this section.

4.2 Proposed solution

The idea explored in this dissertation is to simultaneously use multiple memoryless con-
tinuous authentication mechanisms. Each mechanism needs to provide a quantipable
conpdence level that will be used in calculating a combined score. This satispes the

! Continuous authentication is defined by the ability to re-authenticate the user without the need for
any physical effort.

17

Chapter 4. Design 18

Pico design requirements. By combining mechanisms we achieve a higher conpdence
of correctly identifying the owner. Furthermore, given that each individual mechanism
supports continuous authentication, using them simultaneously does not create any in-
convenience for the owner.

Multi-level unlocking model

The Pico token should no longer enter a general locked or unlocked state. Its most
important secret, the \Pico Master Key" should be kept in tamper resistant memory, and
be accessible at all times. Using the overall score computed by the proposed mechanism,
Pico should oPer granular user authentication. Each app needs to be associated with a
conpdence level depned during the registration process. If the overall conpdence of the
token exceeds the app's conpdence level, then it becomes \unlocked" for that specipc app.
All authentication sessions between Pico and apps need to be managed independently
based on this model.

The scheme should achieve continuous authentication, while correctly identifying the
owner of the token. Therefore, we have decided that authentication mechanisms com-
bined in the scheme need to be based either on biometrics or behavioural analysis. Bio-
metric features that can be used include iris, face, voice, and gait. Behavioural sources
of data can be obtained from frequent GPS location, travel paths, wireless network
connections, and others.

The solution oPered in this project is diPerent from simply stating that Pico is using
biometric data as an unlocking mechanism. The novelty in the design is based on how
data is combined in order to compute the overall conpdence level.

Decaying weights

Each mechanism of the scheme is assigned a predepned initial weight based on the level
of trust it oPers in identifying the owner. This doesn't necessarily need to be related to
the precision of the mechanism, but it would be a good indicator for choosing the value.

Data samples captured for authentication are not always meaningful. For example, ac-
celerometer values for gait recognition are only usable when the user is walking. Depend-
ing on how the sensors are integrated with the Pico, camera input for face recognition
may not always capture a valid image. The conpdence of each mechanism should there-
fore decrease in time from the last valid authentication sample. This introduces another
original feature of this scheme, which is having a decaying weight. Each mechanism

Chapter 4. Design 19

starts with a predepned initial value that is decreases in time until a valid user data
sample is recorded.

Let us take for example a voice recognition mechanism which samples data every minute.
The current weight of the mechanism is 0 so its output is completely ignored. The next
sample is recorded, and the voice recognition mechanism outputs a conpdence of 70%
that the owner is present. After the successful recording, the mechanism weight is
updated to its predepned starting value of 30. For the next 10 minutes the owner will
be silently reading a book. Since the mechanism only identipes background noise, the
weight value of 30 decreases in time. This will induce a smaller impact of the mechanism
on the overall score. Each mechanism weight can decrease down to 0, at which point
the mechanism is ignored. Computing the overall score will be explained in more detail
later in the chapter.

Explicit authentication

We need to consider the case where the owner wants to use Pico to authenticate to a
high security app, given a low conpdence level from the authenticator. As an example,
the Pico owner wants to access their bank account after sitting silent in a dark room
for the past hour. Let us say the app requires a conpdence level of 95%. Due to
the lack of valid authentication data, the authenticator only outputs a 20% overall
conpdence that the owner is present. To solve this problem we have introduced the
concept of explicit authentication mechanisms. When the conpdence score drops below
the threshold required by an app, the user is given the chance to provide valid data
samples to one or more mechanisms through an explicit request.

Combining explicit and continuous authentication can be performed consistently with
the current design. Whenever explicit authentication is required, the only diPerence is
that the owner becomes aware of the authentication process. Given that prior to the
explicit authentication request the unlocking mechanism didn't produce a high enough
conpdence, it is assumed that this will also happen prior to that. Therefore, explicit
authentication requests need to have a slower decay rate. This will enable the continuous
authentication process.

Authentication result

Each mechanism calculates the probability that the data sample belongs to the owner
of the token. After each recording, this probability is updated using Bayes' Law. The
process is also known as a Bayesian update, and is descried in the following equation:

Chapter 4. Design

20

Chapter 4. Design 21

P(H) + P(E|H)
P(H) « P(E|H) + P(—H) * P(E|-H)

P(H|E) = (4.4)
Equation 4.4 represents the pnal probability that the owner is present given the sampled
data. All the variables in this equation are known, for reasons explained above.

We have depned how individual scores are calculated, and that each mechanism has a
decaying weight. Using this data we can calculate the overall score of the scheme. This
is performed by using the following modiped weighted sum:

" (wiqx Pi(H|E;
Prota = ZZI(USTL* ,w(|)) (45)
i=1 "1

In equation 4.5, w;4 represents the decayed weight of mechanism ¢, and w; is its original
weight. We have chosen this model because in a scenario where the token has no sample
data to collect, all mechanisms would decrease their weights simultaneously. Using a
simple weighted sum, this would misleadingly provide a high overall result, even though
all decayed weights would be low.

4.3 Related work

Clarke et al [12] present statistics conprming the need for an unlocking scheme diPerent
from PINs. They conduct a couple of surveys trying to evaluate the reliability of a PIN
in unlocking a mobile phone. The paper reveals a high number of bad practices involved
in PIN authentication: reusing the PIN with other authenticators, forgetting the PIN,
sharing the PIN with someone else, 45% of owners never change the default factory code,
42% only change it once after buying the device.

A promising result showed in the paper is that 83% of users are willing to accept a
biometric authentication mechanism to unlock their devices. The following biometric
mechanisms were included in the study: pngerprint analysis, voice recognition, iris recog-
nition, hand recognition, keystroke analysis [13], and face recognition. The paper also
shows that 61% of users would accept an unobtrusive biometric continuous authentica-
tion mechanism. Using multiple biometrics for continuous authentication is mentioned
brie y, but each mechanism is used individually based on what the user is doing. As an
example, when the user walks he is authenticated using gait recognition, and while he
is speaking on the phone, voice recognition.

In a diPerent paper, Clarke et al [14] study PIN alternatives for mobile phone unlocking.
The authors conduct a survey with interesting results. A remarkable 11% of participants

Chapter 4. Design 22

were not aware of PIN authentication. An average of 81% of participants agree that
PINs should be replaced with a mechanism that provides better security. Although they
report the need and desire for a diPerent type of phone unlocking, many of them do not
use currently available alternatives.

Gregory Williamson [15] writes in his PhD dissertation about the need for an enhanced
security authentication mechanism for on-line banking. He proposes a multi-factor au-
thentication model, and presents two interesting options: the traditional one where
both mechanisms are required in the multi-factor model (blanket authentication), and
one where the second authentication mechanism is only requested from the user if the
transaction appears to be risky (risk mode authentication). A risky situation is depned
as either an important transaction like withdrawing money, or a transaction made under
unusual circumstances such as using an unknown device.

Risk mode authentication is similar in concept with the explicit authentication request
used in our proposed token unlocking scheme. Furthermore, Williamson shows that 75%
of users agree with having biometric authentication as a second factor authentication
for passwords. This shows promising results in adopting our scheme for token unlocking
purposes.

Elena Vildjiounaite et al describe in their paper [16] a similar authentication mechanism
based on combining biometric authentication data on mobile phone devices. The authors
explore an alternative to PINs based on a two stage \risk mode authentication". The
prst stage combines biometric data in order to achieve continuous authentication. This
is achieved by training a cascade classiper to a target false acceptance rate (FAR)3.
Data from mechanisms is merged using a weighted sum fusion rule. Mechanism weights
are chosen based on their error rates. The second stage is only enabled if the cascade
classiper does not identify the owner as being present. In low noise scenarios, continuous
authentication is achieved without the need for an explicit challenge 80% of the time. In
noisy situations (city and car noise), the percentage drops ranging from 40 to 60%. The
cascade classiper was trained with a FAR of 1%, with results showing a false rejection
rate (FRR)* of only 3 to 7%.

The paper by Elena Vildjiounaite et al [16] is similar with the solution proposed in this
dissertation. It also combines multiple authentication mechanisms, each being assigned
diPerent weights. DiPerences between the two are the fact that weights are maintained
static over time. The overall sum is computed diPerently, and there is no mention of
Bayesian updates or probabilities. Furthermore, the authors use a classiper instead

3The false acceptance rate is the equivalent of false positive precision. It is the probability of incor-
rectly granting authentication privileges to an user
4The false rejection rate is the probability of incorrectly denying access to the rightful owner.

Chapter 4. Design 23

of producing a conpdence level, which cannot be used for granting diPerent levels of
security. The results presented by this paper are however encouraging, showing that
continuous authentication presents good results using multiple biometric authentication
mechanisms.

4.4 Conclusions

We have designed a new Pico unlocking mechanism that supports Pico's claims for con-
tinuous and memory ePortless authentication. The scheme is guaranteed to improve on
the existing Picosiblings solution at least by oPering a better way of correctly identifying
its owner.

An evaluation of the scheme is not yet oPered because mechanisms such as \Negligible-
cost-per-user" are implementation dependent. The next chapter will present a prototype
solution. This oPers a better depnition of the scheme, that can be evaluated using the
token unlocking assessment framework. The results will be compared with the current
Picosiblings implementation allowing for further analysis and conclusions.

Chapter 5

Implementation Prototype

In this chapter we present the prototype developed for the scheme proposed in section
4.2. We have chosen as an implementation platform the Android Nexus 5 smart phone.
The device oPers enough sensors to perform biometric and behavioural analysis'. These
resources will be used to demonstrate that the scheme can be implemented using similar
dedicated hardware that may oPer more security features.

We have included a brief overview of the Android development model and the plat-
form's security features in appendix A. This information provides an introduction for
understanding the principles used in the implementation of the prototype.

5.1 Implementation overview

The Android token unlocking scheme is designed to work as a bound service. It is
implemented in the UAService?® class. Feedback is provided to clients either after an
explicit request or through periodic broadcasts.

Each authentication mechanism that participates in the scheme may have diPerent re-
quirements for sampling and processing data. As an example, voice recognition can
gather optimal data during a phone call®, while face recognition when the phone screen
is unlocked. Therefore, to enable more exibility in the individual mechanisms' imple-
mentation, they are developed as independent services.

!The full range of sensors supported by the Android platform can be found here:
http://developer.android.com/guide/topics/sensors/sensors_overview.html (accessed on 28.05.2014)

2The name of the class stands for User Authentication Service

3Phone call events can be intercepted by registering a listener for the PHONE_STATE event.

24

Chapter 5. Implementation Prototype 25

UAService communicates with the authentication mechanisms by binding to their ser-
vice. On predepned time intervals it requests the conpdence level and weight of each
mechanism. Using this data it then calculates the overall result according to the design
in section 4.2. Feedback is sent back to each registered client for interpretation.

5.2 Implementation details

This section presents the implementation of the design proposed in section 4.2. The full
source code for the prototype can be downloaded from Github®.

The structure of the Android application is presented in pgure 5.1. Each colour repre-
sents an Android component (e.g. activity, service). A full detailed UML diagram can
be downloaded from Github®.

PicoUserAuthenticator
<Activity>

UAService

<Service>

UserAuthenticator I

) s ‘ -

AuthMech AuthMech AuthMech
FaceService VoiceService LocationService
<Service> <Service> <Service>

AuthThread [AuthThread | [AuthThread]

FIiGurE 5.1: Authenticator design overview

5.2.1 UAService

The token unlocking mechanism is started using the PicoMainActivity class, which acts
as a Pico client. The scheme itself is developed to be used by binding the UAService

“https://github.com/cristiantoader /fyp-pico
®https://github.com/cristiantoader/fyp-pico/blob/master/PicoUser Authenticator /dissertation/Pictures/detailed-
uml.png

Chapter 5. Implementation Prototype 26

component. An UML diagram of the diPerent components related to UAService is
attached in pgure 5.2.

Reference
1 1 .References
uaservice 1
zerviceThread
UAService AuthenticatorThread
Referer
1 1
¥ «References ua\|/
1
= xAnnotationss
IncomingHandler
= UserAuthenticator «References AuthMech
LinkedList
P References
1 h ocREferencEx-\l/
1 mechanisms

xReferences
ServiceConnection

FI1GURE 5.2: UAService components

PicoMainActivity Starts UAService using the Context.startService () method. Com-
munication is enabled by binding to UAService using Context.bindService(). This
approach protects the lifetime of the authenticator. When PicoMainActivity gets sent
to background and loses control of the screen, UAService is not explicitly unbound.
This guarantees that the service will continue running in the background, and should
also prevent malicious components from stopping it.

Clients need to bind UAService to receive authentication updates. When bound, com-
munication is enabled by exchanging Messenger objects using the IBinder interface. A
Messenger allows another component to send Message objects, and depnes how they
are handled by the receiver through an IncomingHandler. The Messenger queues all
requests on a single thread, and therefore the application does not require to be thread
safe.

When bound by a client, the IncomingHandler used by UAService exposes the following
APl depned by the what parameter of a received Message:

Chapter 5. Implementation Prototype 27

MSG_REGISTER_CLIENT
Used for registering a client for periodic broadcasts of the current authentication
conpdence level. Feedback is provided at a pxed time interval of 1000ms®.

MSG_UNREGISTER_CLIENT
Used for any application component to unregister as a listener from UAService.

MSG_GET_STATUS
Used by a client for requesting an explicit authentication status update.

The UAService service wraps an UserAuthenticator proxy object that implements
most of its functionality. The UserAuthenticator is responsible for collecting data
from authentication services, and computing the pnal conpdence level. The fact that
the mechanisms are independent services is hidden from the UserAuthenticator using
AuthMech observer objects. Each AuthMech starts and binds an authentication mecha-
nism, listens for conpdence level updates, and keeps track of the most recent value.

Each authentication mechanism service extends the AuthMechService abstract class.
This depnes them as bound services with the same IncomingHandler implementation.
The communication with AuthMech is therefore standardized, providing the following
Messenger API:

AUTH_MECH_REGISTER
Used for registering the UAService client to the AuthMechService.

AUTH_MECH_UNREGISTER
Used for unregistering the UAService client from the AuthMechService.

5.2.2 Authentication mechanisms

In order to create a functional prototype, we have implemented a number user authen-
tication mechanisms. The result quality of each mechanisms is outside the scope of this
project. Their sole purpose is to demonstrate that sensor data oPered by smart phones
can be used to implement biometric and behavioural analysis.

SAn alternative implementation explored in the project was to have each client also register a confi-
dence level using the argl parameter of a Message. In this case, the authenticator would only provide
each client with a locked/unlocked result. However, this would shift the meaning of client to that of
an authentication session, with state managed by the unlocking scheme. A client would therefore have
multiple connections, requiring more ICC. Since all Messenger requests made to UAService are queued
to a single thread, this would slow down the feedback process and possibly lead to a denial of service
attack. Therefore we have chosen to reduce the communication overhead, and have each client manage
the status of its authentication sessions based on the confidence level provided by the unlocking scheme.

Chapter 5. Implementation Prototype 28

When developing an individual authentication mechanism, the following abstract re-
quirements need to be satisped:

1. The result needs to be quantipable in the form of a percentage ranging from 0 to
100, where 100 means that the mechanism has 100% conpdence that the owner of
the token is present.

2. The mechanism needs to support continuous authentication.

3. The authentication process needs to be ePortless and preferably unobtrusive for
the user.

A list of authentication mechanism examples that can be implemented on the Android
platform is presented in appendix C.

Each mechanism developed for this scheme extends the AuthMechService abstract class.
As mentioned, this class depnes the mechanism as a bound service. The communica-
tion with UAService is standardized by implementing Service.onBind() to register
the same IncomingHandler implementation. Furthermore, AuthMechService depnes
the decay implementation of a mechanism's weight. This is developed using a Handler
object that schedules a Runnable to execute at a predepned time interval. The Runnable
is responsible for decreasing the mechanism's weight and sending the result to the cor-
responding AuthMech. Figure 5.3 provides an overview of the components interacting
with AuthMechService.

1 Reference
ﬁl:'l\ ¥ «References
DecayTimer AuthMechService P References 1
Referer 1
\l-’ clientReader
1 «References
decayTimer Messenger
clientWriter
1
DummyService LocationService FaceService VoiceService

FIGURE 5.3: AuthMechService components overview.

Chapter 5. Implementation Prototype 29

Although it is not enforced, each authentication mechanism has the same general de-
sign. The mechanism's Service.onCreate() method initialises the weight of the mech-
anism, and starts a thread responsible for periodically collecting sensor data using an
access object (DAO). The samples are analysed using a class that mediates interac-
tion with other components and libraries. After each successful analysis, the result
is sent back to the corresponding AuthMech and the decay process is started using
AuthMechService.startDecay().

The biometric libraries used in the prototype provide feedback as a Euclidean distance.
To convert it to a percentage conpdence level, we depne for each mechanism an accept-
able threshold. Any result above the threshold is considered too high and is truncated
to its value. Using equation 5.1 we convert the Euclidean distance to a conpdence level.
Dividing the distance over the threshold yields a value between 0 and 1, where 1 is a
very large distance and hence a bad result. By using one minus this value we invert the
meaning. Values will range between 0 and 1, and 1 corresponds to a conpdence level of
100%. This result is P(F|H) from equation 4.4.

distance

THRESHOLD

P(E|H) =1- (5.1)
Given P(E|H) we can calculate P(H|FE) using the Bayesian update formula depned in
equation 4.4. When calculating the pnal value of the mechanism, we multiply P(H|E)
with the current decayed weight.

The following mechanisms have been implemented as part of the prototype: voice recog-
nition, face recognition, location analysis, and a dummy mechanism used for testing.
The next sections will provide details regarding their functionality and implementation
process.

5.2.2.1 Dummy mechanism

A dummy authentication mechanism was developed for testing the overall scheme. It
produces random conpdence levels within a predepned range, which provides a controlled
testing environment. An overview of the components involved in the dummy mechanism
are shown in pgure 5.4

The mechanism was developed in the DummyService class and was designed consis-
tently with the application model. 1t DummyService.onCreate() method creates an
authentication thread that periodically generates random values and sends them to
UAService. It does not use any DAO, in order not to over complicate its implemen-
tation. The random values are generated using a DummyAuthMediator object. Once

Chapter 5. Implementation Prototype 30

Reference =References
Messenger
1 ’f'l\‘ «Referencey!
DecayTimer AuthMechService 1
—
Referer «References [1
1 Z%‘ 1 clientReader
decayTimer client\Writer
DummyService
x«References 1 1
authThread
1
DummyAuthMediator AuthenticatorThread

tEE‘F Eren

FIGURE 5.4: Dummy mechanism

the mechanism's conpdence level is calculated, the weight decay process is started using
AuthMechService.startDecay () and result updates are sent back to UAService.

5.2.2.2 Voice recognition

The voice recognition mechanism is implemented in the VoiceService class and extends
the AuthMechService abstract class. The VoiceService.onCreate() method starts a
thread that periodically gathers data from the microphone, performs biometric authen-
tication, and produces a conpdence level. An overview of the components involved in
this mechanism is presented in pgure 5.5.

The library used for biometric voice recognition is called Recognito?, developed by
Amaury Crickx. It uses a text independent speaker recognition algorithm developed

"The library can be downloaded using Github from the following link:
https://github.com/amaurycrickx /recognito

Chapter 5. Implementation Prototype 31

— = 3 Boforr e - e T i
= —
1 _I Tis g s . apl o Sofewli e .
ot [T TR D - o
— B T - 5
* aRedorencos
Hai | S
«=References 4 :References
1
VoiceService .
Reference
1
«=Reference= ‘L) 1 J/l -
recopnito '
a 2 voiceThread
b References Reference 1
| VoiceDAO VoiceAuthMediator AuthenticatorThread [
1 -
_ Referer
1
1)
mediator
record

FIGUuRE 5.5: Voice recognition overview.

in Java (SE). Its author claims very good results in scenarios with minimal background
noise®.

Porting Recognito for Android required no changes. However, in order to package the
library, a subset of the rt.jar Java (SE) library is needed for sound ple formats. In-
cluding the full rt.jar is not possible due to a package name collision with Android
javax.* system libraries. Therefore, we have included only the javax.sound.* package
using a custom jar. This was purely done to allow the Android Java compiler to build
the application. Using javax.sound features would generate a runtime error. Therefore,
we only use Recognito functions which require direct data input, without any knowledge
of sound ple formats.

In order to gather and manage samples compatible with the Recognito library we have
created the VoiceDAO class. Microphone input is gathered using the following predepned
conpguration:

8Tt was tested by its author on TED talks such as: https://www.ted.com /talks/browse (visited on
06.01.2014)

Chapter 5. Implementation Prototype 32

e Sample rate: 44100
e Ghannel conpguration: AudioFormat. CHANNEL_IN_.MONO

e Audio format: AudioFormat.ENCODING_PCM_16BIT

The minimum buPer size required by VoiceDAQ is device dependant and pre-calculated
when data recording is initiated using VoiceDAO.startRecord(). The class wraps an
Android AudioRecord object used for gathering microphone data. When the recording
is stopped, data is stored in the object with the option of saving to disk by calling

VoiceDAOD.saveRecording().

The VoiceAuthMediator class was created to mediate calls to the Recognito library.
When initialised, it loads the owner conpguration, and a predepned set of background
noises. It then creates a Recognito object and trains it using the data. This is performed
using the Recognito.createVocalPrint () method.

Every predepned time interval, the VoiceService authentication thread records data in
double[] format using a VoiceDAO object. It uses the VoiceAuthMediator to analyse
the sample. This returns the Euclidean distance to the closest match, which is either
the owner, or one of the background noises used for training. We convert the Euclidean
distance from VoiceAuthMediator to a percentage using equation 5.1. The pnal con-
pdence is computed, stored in the service, and the decay process is started. Whenever
the weight is modiped, a Message is sent to the corresponding AuthMech and updates
its value.

5.2.2.3 Face recognition

The face recognition mechanism was implemented in the FaceService class and ex-
tends AuthMechService. When created, the service starts an authentication thread
that periodically collects data from the camera, performs biometric face recognition,
and produces a conpdence level. An overview of the components involved in the face
recognition mechanism is shown in pgure 5.6.

Face recognition is implemented using a modiped version of the Javafaces library?. It
is written entirely using Java (SE), but unfortunately uses the javax.imageio. package
that is not available in the Android API. A considerable amount of code needed to be
ported for the Android platform. Although not currently optimised for public use, we
have made the new library publicly available on Github'.

The original JavaFaces library is maintained at the following address:
https://code.google.com/p/javafaces/
%Can be downloaded from the following link: https://github.com/cristiantoader/JavafacesLib

Chapter 5. Implementation Prototype 33

1

clientReader

1 Reference xReferences

decayTimer 1" | Messenger
-f—"- P Heferences
DecayTimer AuthMechService 1 4 cReferences
«Feferen
1
1
ﬁ“l clientWriter
FaceService
«References
FaceRec
1
T 1 — 1
i 1 NREJI/EFEHEEJ‘? faceThread
FaceAuthMediator AuthenticatorThread FaceDADQ
«=Reference
.._::_
:Referer
1
1 cameraltil
mediator

FIGURE 5.6: Face recognition overview.

We will brie y present the changes made when porting the Javafaces library. The
BufferedImage class had to be replaced by its closest Android equivalent, which is
Bitmap. This required a number of adaptations due to diPerences between the two
classes. For example, BufferedImage grey-scale images use a single colour channel for
the grey intensity value. This had to be changed to the Bitmap format that uses all 3
channels. Additional modipcations were required due to data type mismatches, as well
as other related issues. Furthermore, The APl was modiped to support direct Bitmap
input in order to add more exibility and lighten the main code of the authenticator.

Each predepned time interval the FaceService authentication thread collects a picture
from the camera. Its validity is determined using the Android FaceDetector class. If
the image contains a face it continues to be processed, otherwise the weight decays until
a new data sample is collected. The image collection and validation was simpliped by
developing the CameraDAQO class.

Chapter 5. Implementation Prototype 34

The FaceAuthMediator class was implemented to mediate calls to the Javafaces library.
When the authentication thread is started, a FaceAuthMediator is created and used for
training the biometric recognizer. It then analyses face data sampled from CameraDAO in
order to produce a result. The return value represents the Euclidean distance between
the face captured from the camera and the registered owner face. This distance is
transformed into a percentage conpdence level using equation 5.1, and the decay process
is restarted.

The Android API does not easily allow for a Camera picture to be taken without any
sort of notipcation to the user. Both a shutter sound and a visual preview display should
be present. The sound can be disabled by not providing a shutter callback function when
calling the Camera.takePicture() method.

Disabling the user preview of the camera was more diZ cult to achieve. The solution was
to use an Android feature that allows rendering of the preview in a SurfaceTexture
object. This satispes the API's requirement to have a visual display preview for the cam-
era, while the SurfaceTexture itself does not need to be displayed on screen. Therefore
a picture can be taken from a background service without any interruption to the user.

Another problem encountered by the face recognition service is data sizes. When the
Javafaces library performed face recognition, the device was running out of memory.
This caused the app to be closed by the Android OS. To px this issue, all images collected
from the camera are resized to 50% before they are processed.

The library combined with the Android SDK does not provide accurate results. The
reason is that it requires an input image perfectly embedding the face of the user.
Unfortunately, although the Android SDK oPers face detection, it only provides the
location of the midway coordinate, and distance between the eyes. Using this data
alone, an accurate crop cannot be made. As a solution, yet another library is needed
to properly detect face regions. This would provide better input data and increase the
precision of the mechanism.

5.2.2.4 Location analysis

This mechanism is based on gathering location data and using it to generate a prob-
ability that the owner is present. This is implemented in the LocationService class
and extends the AuthMechService abstract class. Data is collected periodically using
the LocationManager provided by the Android API. An overview of the components
involved in the location analysis mechanism is shown in pgure 5.7.

Chapter 5. Implementation Prototype 35

Reference «=References
Messenger
4 .References
il . .
DecayTimer AuthMechService 1 _
1 clientReader
o
«Feferences
— = «Refelences
1 1
decayTimer clientWriter
LocationService LocationRecorder

1 1
L L ¥ sReferences
locationThread

LocationAuthMediator AuthenticatorThread LocationDAD
x=Referent x=Referen:
.{.—
1
1
, dao
mediator 1

FIGURE 5.7: Location analysis overview.

A DAO object is used to mediate Android API calls and manage the existing owner
conpguration. It is implemented in the LocationDAO class. It oPers functionality for
gathering and saving location updates. It is developed to use the most accurate data
provider. The Android API oPers the following sources of collecting Location data:

e GPS_PROVIDER: Collects data from the GPS.
e NETWORK_PROVIDER: Collects data from cell tower and WiFi access points.

e PASSIVE_PROVIDER: Passively collects data from other applications which re-
ceive Location updates.

External libraries were not used for the authentication process. We have developed a
primitive location analysis algorithm in the LocationAuthMediator class. During the
conpguration stage, which is a process managed by LocationActivity, location data is
sampled every 5 minutes and saved in internal storage. After the process has ended, each
time a Location is sent for authentication it is compared with all the locations saved
during the conpguration process. The pnal result is the minimum number of meters
between the current Location and any other saved Location.

Chapter 5. Implementation Prototype 36

When the LocationService mechanism is started, its onCreate() method spawns an
authentication thread. This thread periodically requests the current location using the
LocationDAO. Data is returned in a Location object and is provided as input to the
LocationAuthMediator. Although the result is represented in meters, and is not a
Euclidean distance, it can be converted to a percentage using equation 5.1. Once the
pnal probability is calculated, the weight decay process is restarted.

5.2.3 Owner configuration

There are a number of components that are used in the conpguration of the prototype.
Each authentication mechanism has a corresponding Activity that can be started from
the main Activity called PicoUserAuthenticator. These are used to register owner
biometrics needed by the mechanisms.

Each conpguration Activity uses the same DAOQ class as its corresponding authentication
mechanism. The DAO is used for collecting and storing owner data. Given that the
overall size is relatively small, ples are kept in internal storage.

5.2.4 Cryptographic protection

All biometric data registered by the owner and used by the mechanisms is stored in
internal memory. This is protected by the Linux permissions model, and provides suZ-
cient security from other applications. However, if an attacker acquires root privileges,
the biometric ples would be completely exposed. To add an additional layer of security,
we have included cryptographic protection of owner data.

x=Feferences
| 1
KeyManager

«References
SecretKey

7

1+ . References

FIGURE 5.8: KeyManager overview.

The cryptographic layer is implemented in the KeyManager class. An overview of the
class structure can be seen in pgure 5.8. It uses the KeyStore API in order to keep
an RSA key pair securely stored. Starting with Android 4.3, credentials stored in the

Chapter 5. Implementation Prototype 37

Android KeyStore are not extractable because they are hardware secured using: Secure
Element, TPM, or TrustZone. The securely stored RSA key pair is used to decrypt
an AES master key that is kept encrypted in the app's internal memory. Once it is
retrieved, the AES master key is used for encryption/decryption of conpguration ples.

All mechanisms except for face recognition use this cryptographic layer to keep data
encrypted in internal memory. The face recognition mechanism does not support this
feature due to the Javafaces library, which is implemented to process image ples inde-
pendently with no cryptographic support.

5.3 Conclusion

We have described the Activity and Service components developed for the prototype, as
well as their communication ow. We have ported two biometric libraries and developed
a location analysis mechanism. DAO objects facilitate cryptographic access to owner
conpguration ples, and additional classes mediate the calls to external libraries. An
overview of the app design is available on Github''.

One of the limitations of the prototype is the lack of explicit authentication mecha-
nisms. Another issue is the precision of the biometric mechanisms, in the lack of better
libraries. However, due to the modular design of the application, existing mechanisms
can be improved simply by importing a new library and modifying the correspond-
ing mediator class. The existing set of mechanisms can be increased by creating a
new class that extends AuthMechService and implements the algorithm's logic. In or-
der to be managed by UAService, the new mechanism needs to be included in the
UserAuthenticator.initAvailableDevices() method.

5.4 Related work

Liang Cai et al [17] analyse ways of protecting users from mobile phone sensor sniZng
attacks. The authors design a framework used for protecting sensor data from being
leaked. From a security perspective the user should not to be trusted with granting
permissions to diPerent applications. A solution provided in the paper is for sensors
to become locked once they are used. A downside to this is that malware may deny
service to legitimate applications by creating a race condition for acquiring a sensor

"https://github.com/cristiantoader /fyp-pico/blob/master/PicoUser Authenticator/dissertation/Pictures/detailed-
uml.png

Chapter 5. Implementation Prototype 38

lock. This can be solved by using an user notipcation, allowing for the owner to decide
which application acquires the lock.

The paper by Derawi et al [18] presents the feasibility of implementing gait authentica-
tion on Android as an unobtrusive unlocking mechanism. According to the depnition
obered by the authors, \gait recognition describes a biometric method which allows an
automatic veripcation of the identity of a person by the way he walks". The Android im-
plementation developed by the authors has an equal error rate (EER) of 20%. Dedicated
devices have an EER of only 12.9%, and the main cause for this is the sampling rate
available at that time (2010). The authors have used a Google G1 phone with approxi-
mately 40-50 samples per second. This is much inferior to dedicated accelerometers that
sample data at 100 samples per second. However, by conducting personal experiments
with the accelerometer of a Google Nexus 5 phone, the rates of the highest sampling
setting (SENSOR_DELAY_FASTEST) are over 100 samples per second. Therefore the
current performance of the prototype developed in this paper should be closer to 12.9%.

Ming et al [19] present in their paper how to improve speaker recognition accuracy on
mobile phone devices in noisy conditions. This approach uses a model training technique
based on which missing features may be used to identify noise. The focus of the paper
is designing and implementing the biometric mechanism.

Another way of performing speaker recognition involves using voiceprints. These are
a set of features extracted from the speaker sample data. Kersta [20] explains the
mechanism in more detail. The benept of having feature extraction, as opposed to a
diPerent voice recognition mechanism, is that voiceprints do not require any secrets.
This increases the usability of the mechanism in diPerent scenarios required by the Pico
authenticator. However, a downside to this approach is that it makes replay attacks
easier to perform. Any recording of the user is suZcient for an attacker to trick the
biometric mechanism.

A popular face recognition paper was written by Turk and Pentland [21]. The biometric
authentication process is based on the concept of \eigenfaces". This is a name given
for the eigenvectors that are used to characterise the features of a face. These values
are projected onto the feature space. Using Euclidean distances in the feature space,
classipcation can be performed in order to identify users. An implementation of this
mechanism was used with the Pico unlocking scheme prototype.

An unconventional authenticating mechanism is presented by Clarke and Furnell [22].
They use keystroke analysis in order to make predictions regarding the user of a phone.
This mechanism is unobtrusive and gathers data during normal user interactions such
as typing a text message or phone number. It is based on a neural network classiper,

Chapter 5. Implementation Prototype 39

reporting an EER of 12.8%. Input data used for classipcation is composed out of timings
between successive keystrokes, and the hold time of a pressed key.

Chapter 6

Evaluation

This chapter presents an evaluation of the proposed token unlocking mechanism. We
start by performing a threat model of the Android prototype. This should reveal any
security limitations of the implementation, as well as the overall scheme. We continue
by analysing the performance of the prototype and discuss how it can be improved.

Given a well depned implementation (5), we assess the scheme using the token unlocking
framework (3.2), and compare the results with the Picosiblings solution. In order to
check for overall improvements, we use the UDS framework to evaluate a Pico token that
uses the proposed token unlocking scheme, and compare the results with the original
work by Bonneau et al [2].

6.1 Threat model

The threat analysis is performed from an availability, integrity, and conpdentiality per-
spective. We consider the security mechanisms of the Android platform presented in
appendix B as predepned assumptions used in this model. Attack paths are analysed
in diPerent scenarios based on whether an attacker has physical access to the token or
not. Although we are making a security assessment for a prototype developed on the
commercial Android platform, similar issues may arise for a future implementation that
uses dedicated hardware.

Availability

Breaking the scheme's availability while the device is in the possession of the attacker
is relatively trivial. The application can be uninstalled, or the application data cache

40

Chapter 6. Evaluation 41

can be cleared, therefore removing the owner biometric models used by the individual
mechanisms. Furthermore, in this scenario the owner is no longer in possession of their
Pico, so basically the device is already unavailable.

Let us analyse what denial of service (DoS) exploits can be achieved by a remote at-
tacker. Removing the owner conpguration data from internal storage would make the
authenticator unusable. This can only be achieved if the attacker (or a malware appli-
cation designed by the attacker) manages to get root access on the device. Given the
Linux permissions model, there would be no way to protect this data from deletion.
However, without root access the application data cannot be accessed or modiped.

Based on each device platform, multiple apps recording data from a sensor may not
be possible. This can enable a DoS attack on the prototype by having malware lock-
ing sensors before the authenticator. This would make data collection impossible, and
therefore the mechanisms' weights would gradually decrease to 0. The overall conpdence
level would be lowered, preventing the user from authenticating. After performing ex-
periments, we can conprm this problem for the Google Nexus 5 smart phone when two
applications try to record microphone data using diPerent sampling rates’.

The current prototype is susceptible to a DoS attack caused by too many clients reg-
istered with the authenticator. Given that no permission is required to register to the
UAService component, an unlimited number of connections can be made. Therefore,
broadcasting the authentication status to each client may cause considerable delays.
Furthermore, in order to unburden the developer from developing thread-safe code, ICC
is performed on a single thread. This means that by spamming UAService with requests,
the attacker can achieve a DoS attack for legitimate Pico clients. This can be pxed if
we only allow access to application developed by the same author as the authenticator

app.

Integrity

The prototype stores data in internal storage, and cannot be accessed by other applica-
tions due to the Linux permissions mechanism. However, as mentioned in the previous
section, if the attacker gains root privileges it may modify any data on the device. The
attack can be performed regardless of physical access.

1The apps were trying to record microphone data using the AudioRecord class; application one was
using a sampling rate of 44100 and application two 22050.

Chapter 6. Evaluation 42

From a data ow point of view, ICC is performed using the /dev/binder node driver.
According to the oZcial Android source code?, although the node is readable and write-
able by any application, communication is performed using IOCTL calls. Data is trans-
ferred from one component to the other without the possibility to intercept or modify.
Given that Android ICC is secure, data either from the sensors or from app components
cannot be tampered.

Conpdentiality

Android apps may share private resources only if developed by the same author. This
is determined by verifying the signature of the app, which is performed using a private
key specipc to each developer. Therefore, an attack where owner conpguration data is
leaked due to private resource sharing would only be possible if the attacker manages
to acquire the private key that was used for signing the authenticator app. We will
consider this to be a scenario outside the scope of the project.

Another case where owner authentication data can be accessed is having malware run
with root privileges. This would allow an attacker the rights to read any application's
data. However, the owner's biometric ples would not be compromised, as they are kept
encrypted using the Android Keychain API. Although the data can be read from internal
storage, it cannot be interpreted in a meaningful way. Starting with Android 4.3, the
Keychain API has hardware support, making the encryption keys non-extractable.

On Android versions earlier than 4.3, the following conpdentiality attack path can be
performed. Given root access, the attacker may retrieve the AES master key used
by the keychain manager to store credentials. Using this key they can then retrieve
the authenticator's application key used for encrypting owner conpguration ples. By
retrieving this pnal key, the attacker may decode sensitive data (i.e. biometric data)
and leak it outside of the system, therefore compromising conpdentiality.

A solution to this problem is not keeping the key used for decryption on the device.
It should be generated on the app's prst run, and communicated securely back to a
credentials server. Whenever the authenticator app starts, it would request the key
remotely via a secure connection, use it to decrypt owner authentication ples, and discard
it without saving.

From a data ow perspective, ICC should oPer full conpdentiality. As previously men-
tioned, the /dev/binder device node used for ICC is managed by a driver which listens

2For convenience, a link to the binder driver is found here:
https://android.googlesource.com/kernel /common.git/+/android-3.0/drivers/staging/android /binder.c
(visited on 06.02.2014).

Chapter 6. Evaluation 43

for ioctl requests. Data cannot be compromised as it is transferred from one compo-
nent to the other. Only UAService is an exported component that may be accessed
by other apps. It only provides pnal authentication feedback from the mechanisms,
and only exposes a limited APl through the IBinder interface object used for Message
passing.

The communication between the authenticator and Pico can be secured, preventing other
applications to register for updates. This can be achieved using runtime permission label
checks. Both Pico and its authenticator would need to depne these permission in their
manifest ples. Additional checks would need to be added for ICC in UAService.

Liang Cai et al [17] presents the problem of sensor sniZng. A malware application may
collect all relevant data on its own from the user, using the same functionality as the
prototype. This would allow for a powerful replay attack in the future. Adrienne Porter
Felt et al [23] show that when installing an app only 17% of users pay attention to the
Android permissions dialogue, and only 3% understand what each permission represents.

Design model attacks

Pico needs to be unlocked only in the presence of its owner. In order to do so, the token
unlocking scheme needs to gather valid sample data. Let us consider a few scenarios
and assess any design issues.

The most unfavourable scenario is to have the owner silently sitting at work with their
smart phone on the table. Voice and face recognition mechanisms would not gather any
valid samples. Location data can be collected, oPering some conpdence that the owner is
present. If authentication is required for a high security transaction, such as logging in to
an online banking account, the overall score outputted by the scheme would not be high
enough to grant access. The scheme would therefore make an explicit authentication
request, oPering the user the possibility to generate valid data.

The main problem with the scheme is not denying service to the owner, but rather
falsely granting it. Given the same situation as before, let us assume the owner forgets
the smart phone on their desk and leaves the oZce for a break. Just as before, only
location data can be collected, providing some conpdence that the owner is present.
Ideally as the owner leaves, most authentication sessions managed by the Pico should
be closed. This should happen once the conpdence level becomes too low, and the
explicit authentication mechanisms are ignored.

From the authenticator's perspective there is no diPerence between the two scenarios
presented above. The prst suggests that non biometric mechanisms should provide

Chapter 6. Evaluation 44

suZcient conpdence to provide authentication when the owner \goes silent". The second
scenario requires the opposite; when the owner can no longer provide biometric data,
they are likely no longer with the token and Pico should lock.

A compromise solution is needed for the two scenarios. Non-biometric mechanisms
need to provide a conpdence level that is almost suZcient to grant access to most
medium-level security accounts. Periodically, explicit authentication requests will be
made by the mechanism in order to provide a suZciently high score. Given the decaying
weights, the conpdence level will gradually drop until another explicit authentication is
required. The weights and decay rates need to be conpgured in such a way that the time
interval between two explicit authentication requests is acceptable for the user, without
compromising security. We suggest the time interval of 1 minute, but a user study would
be more appropriate to determine this value.

An alternative solution to the problem presented above is to have an auxiliary biometric
sensor that the owner would carry at all times. A good example is a heartbeat monitor.
This can be embedded in an every day item such as a watch. The heartbeat authentica-
tion mechanism combined with the existing location analysis mechanism should provide
a suZciently high conpdence level to unlock Pico for any medium-security authentication
session.

6.2 Functional evaluation

We have performed a series of tests in order to assess the usability and performance of
the scheme's prototype.

Battery power is a scarce resource for hand-held devices. The amount of time they can
function without recharging directly determines their availability. The token unlock-
ing scheme we have proposed requires periodic sampling of sensor data. This can be a
power consuming task, if not managed appropriately. Given that the prototype's indi-
vidual mechanisms use a conpgurable sampling rate, we continue by analysing the power
consumption for diPerent time intervals. The analysis was performed using the Trepn
propling tool developed by Qualcomms3. Results for the application's average CPU and
Power usage are posted in table 6.1.

Results from table 6.1 show a high CPU and Power usage for a small sampling rate
of 5 seconds. This drops considerably as the sampling time interval increases. In or-
der to have the prototype constantly functional, sampling rates need to be conpgured in

3The tool’s official website can be found at the following address:
https://developer.qualcomm.com/mobile-development /increase-app-performance/trepn-profiler

Chapter 6. Evaluation 45

Test number | Sampling rate (s) | Average CPU (%) | Average Power (mW)
1 5 10.61 313.17
2 10 4.68 279.48
3 15 4.04 192.61
4 20 3.27 81.57
5 25 2.62 111.93
6 30 2.34 72.86

TABLE 6.1: Application propling results using Trepn

conjunction with the decay process and initial weights of the mechanisms. This is a mul-
tivariate optimisation problem, where we are trying to minimise the power consumption
and error rate of mechanism.

In order to assess the time performance of the prototype, we have recorded key stages
for each mechanism in table 6.2.

Mechanism | Initialisation (s) | Authentication (s)
Voice recognition | 2.586 0.897
Face recognition | 18.134 1.951
Location analysis | 0.192 0.012

TABLE 6.2: Timing performance results.

Results show a high initialisation time for the face recognition mechanism. This has
a direct impact on the token's usability, as the owner has to wait during the prst use
of the unlocking mechanism. However, authentication time is relatively small with a
maximum of 2 seconds. With the current periodic sampling implementation, the delay
can be hidden from the user by adjusting the sampling rate of each mechanism. However,
results from table 6.2 can be relevant for implementations that do not sample data at
pxed time intervals.

The precision of each authentication mechanism used in the scheme is outside the scope
of this project. However, we have performed a series of informal tests showing that data
validation is performed accurately. The face recognition mechanism correctly identipes
when a face is not present in the camera image, and background noise is correctly
detected by the voice recognition mechanism.

6.3 Token unlocking framework evaluation

We will continue by evaluating the proposed scheme with the token unlocking framework
depned in section 3.2.

Chapter 6. Evaluation 46

The scheme is \memorywise-ePortless" because it doesn't require any secrets to pro-
vide authentication. The sensors used for authentication are embedded in the token,
therefore oPering \nothing-to-carry". It is also \easy-to-learn", as user authentication
is performed non-obtrusively. As shown in the evaluation from table 6.2, although user
authentication is performed in a timely manner, setting up the scheme may take some
time. Therefore, the \eZcient-to-use" property is only quasi-oPered. The scheme only
quasi-oPers \infrequent errors" because of the underlying biometric and behavioural au-
thentication. Any diPerences in biometric features that may occur can be resolved by
re-conpguring the authenticator. The prototype does not have a well depned secure
process for this task. In the lack of additional details we mark the scheme to only quasi-
ober \easy-recovery-from-loss". As brie y shown in section 6.1, even in unfavourable
scenarios the scheme may still provide authentication to the token. The \availability"
property is therefore satisped.

Given that multiple continuous authentication mechanisms are combined, the scheme
obPers \accessibility" to any user, regardless of disabilities. Since it is implemented as an
Android app, it has a \negligible-cost-per-user" both for the owner and the developer.
[t is not \mature" since it has only been prototyped. The \non-proprietary" property is
obered, as long as the individual mechanisms are developed using free to use algorithms
and libraries.

From a security perspective the scheme is \resilient-to-physical-observations”. If an at-
tacker would have valid pre-recordings of the owner for all biometric mechanisms, they
would still need to perform these in a location considered safe by the authenticator.
Furthermore, the replays would have to be performed periodically in order to keep the
authentication session alive. Therefore, due to the diZcuIty to perform a replay attack,
the scheme is considered to be \resilient-to-targeted-impersonation". The \resilient-to-
throttled-guessing", \resilient-to-unthrottled-guessing", and \resilient-to-theft" proper-
ties do not apply. The scheme is not \unlinkable" because biometric data is unique
for each individual. In order to satisfy the Pico requirements, all mechanism involved
in the token unlocking process support \continuous-authentication". The authenticator
provides as pnal feedback a conpdence level, which allows for \multi-level-unlocking".
Intentional disclosure of authentication credentials would pose the same diZculties as a
replay attack, and therefore the scheme oPers \non-disclosability".

The results are summarised in table 6.3. Column properties are highlighted to facilitate
the comparison with the Picosiblings solution®.

4The colours have the following meanings based on the result: green - offered, red - not offered, and
yellow - quasi offered.

Chapter 6. Evaluation

47

Property Picosiblings Proposed scheme
Memorywise-ePortless OPered OPered
Nothing-to-carry Quasi-oPered | OPered
Easy-to-learn Not-oPered OPered

E Zcient-to-use Quasi-oPered | Quasi-oPered
Infrequent-errors Quasi-oPered | Quasi-oPered
Easy-recovery-from-loss Not-oPered Quasi-oPered
Availability OPered OPered
Accessible OPered OPered
Negligible-cost-per-user Not-oPered OPered
Mature Not-oPered Not-oPered
Non-proprietary OPered OPered
Resilient-to-physical-observations OPered OPered
Resilient-to-targeted-impersonation | OPered OPered
Resilient-to-throttled-guessing OPered OPered
Resilient-to-unthrottled-guessing OPered OPered
Resilient-to-theft Quasi-oPered | OPered
Unlinkable OPered Not-oPered
Continuous-authentication OPered OPered
Multi-level-unlocking Not-oPered OPered
Non-disclosability Not-oPered OPered

TABLE 6.3: Token unlocking framework results.

The proposed solution does not completely dominate Picosiblings. This is only because
the scheme is not \unlinkable". It performs better by oPering \nothing-to-carry" and
quasi-oPering \easy-recovery-from-loss". The prototype also has a \negligible-cost-per-
user", which is something Picosiblings do not aim to achieve. In terms of security
it is also better by oPering the \resilient-to-theft", \multi-level-unlocking", and \non-
disclosability properties.

In conclusion, we achieve our proposed goal of providing a solution that is better than
Picosiblings in at least one property.

6.4 UDS framework evaluation

We now perform the reassessment of a Pico that uses our proposed token unlocking
mechanism. The evaluation is performed using the UDS framework developed by Bon-
neau et al [2]. We will compare the result with the original Pico assessment in order to
check for improvements. A summary is presented in table 6.4.

The UDS framework assessment shows similar results to the token unlocking framework.
By using the new scheme, Pico achieves a better overall score by improving two properties
in exchange for one. It now oPers \easy-to-learn", as it no longer requires Picosibling

Chapter 6. Evaluation

48

Property Picosiblings Proposed scheme
Usability Memorywise-ePortless OPered OPered
Scalable-for-users OPered OPered
Nothing-to-carry Not-oPered Not-oPered
Physically-ePortless OPered OPered
Easy-to-learn Not-oPered OPered
E Zcient-to-use Quasi-oPered | Quasi-oPered
Infrequent-errors Quasi-oPered | Quasi-oPered
Easy-recovery-from-loss Not-oPered Not-oPered
Deployability | Accessible Not-oPered Not-oPered
Negligible-cost-per-user Not-oPered Not-oPered
Server-compatible Not-oPered Not-oPered
Browser-compatible Not-oPered Not-oPered
Mature Not-oPered Not-oPered
Non-proprietary OPered OPered
Security Resilient-to-physical-observations OPered OPered
Resilient-to-targeted-impersonation OPered OPered
Resilient-to-throttled-guessing OPered OPered
Resilient-to-unthrottled-guessing OPered OPered
Resilient-to-internal-observaions OPered OPered
Resilient-to-leaks-from-other-veripers | OPered OPered
Resilient-to-phising OPered OPered
Resilient-to-theft Quasi-oPered | OPered
No-trusted-third-party OPered OPered
Requiring-explicit-consent OPered OPered
Unlinkable OPered Not-oPered

TaBLE 6.4: UDS framework assessment.

secret share management. In the lack of a cost analysis, we will consider that even with
the new scheme the \negligible-cost-per-user" property is not oPered. By relying on
more than auxiliary devices, a Pico that uses the proposed scheme does oPer \resilient-

to-theft".

The only property where Picosiblings outperforms the scheme presented in this disser-
tation is \unlinkable". Unfortunately, this trade-oP cannot be pxed as the mechanisms
combined in the scheme need to rely on biometrics and behavioural analysis, which are
unique for each individual.

Chapter 7

Conclusion

The purpose of this dissertation was to provide an alternative unlocking scheme for
the Pico token [1]. By analysing its design in chapter 2, we have concluded that an
alternative mechanism requires to be memorywise ePortless, and provide support for
continuous authentication.

We have identiped and brie y presented the web authentication UDS assessment frame-
work developed by Bonneau et al [2]. This work provided an initial evaluation of Pico
using Picosiblings. Analysing the paper revealed issues of the Pico token, some of which
directly related to its unlocking mechanism (e.g. not easy to learn).

To have a better way of evaluating a token unlocking scheme, in section 3.2 we have
created a derivation of the original framework by Bonneau et al. Some properties were
removed, and others were changed in order to pt the context of token unlocking mecha-
nisms. Furthermore, we have extended the framework by adding four original properties.

Having a list of requirements, and a way of assessing the new solution, we have designed
a scheme based on combining biometric and behavioural analysis mechanisms. Each
mechanism generates a probability that the owner is in possession of the token. These
probabilities are combined using a modiped weighted sum, in order to generate an overall
conpdence level. Another original contribution is that each mechanism has an initial
weight that decays in time from one valid data sample to the other.

Given a well depned design of the new scheme, we have successfully developed a proto-
type using a Google Nexus 5 device that runs an Android 4.4.2 operating system. This
has proven that the solution can be implemented using existing hardware. Furthermore,
the prototype oPered useful insight for future implementations of the scheme. We have
concluded that an eZcient implementation requires authentication mechanisms to run
as independent processes. We have presented a basic application design, and showed

49

Chapter 7. Conclusion 50

how diPerent components should interact. As presented, data should be validated prior
to analysis, and in the lack of a valid sample, the weight decay process should continue.
An unexpected problem was that although the Android platform oPers a wide range of
sensors for the implementation of multiple mechanisms (details in appendix C), the lack
of open source biometric libraries has lead to a low precision of the overall scheme.

The proposed unlocking mechanism was evaluated using the UDS framework developed
by Bonneau et al, and the token unlocking framework developed in section 3.2. The
results of the analysis have shown that the new proposed scheme cannot completely
outperform Picosiblings due to the \unlinkable" property. Otherwise, an overall im-
provement is achieved in the number of oPered properties. In addition, the new unlock-
ing mechanism oPers the possibility of having granular unlocking, where the Pico token
could oPer individual locked and unlocked states based on the current conpdence level
and the security level required by the account.

A threat model of the prototype has shown a number of attacks that may be performed
on the Android application. Important insight was provided when studying design model
attacks in section 6.1. This has shown that in scenarios where no valid data can be
collected, a compromise needs to be made regarding the time interval between successful
explicit authentication requests. Together with the power consumption analysis from
section 6.2, this essentially becomes a multivariate optimisation problem where we need
to minimise power consumption and user inconvenience, while maximising accuracy.

Future work

As shown in the previous section, the new token unlocking scheme oPers Pico an overall
improvement. However, additional work is required in order to improve details of the
design, as well as the prototype. Additional details are presented in this section.

The Android prototype was developed as a proof of concept. Further experiments need
to be performed using diPerent weights and decay functions. A user study is required in
order to determine the acceptable time interval between consecutive explicit authentica-
tion requests, and the implementation needs to be adapted accordingly. When perform-
ing this analysis, the power consumption results from section 6.2 need to be considered,
in order to improve the lifetime of the device.

The set of individual mechanisms used with the scheme's prototype can be improved.
Explicit authentication mechanisms are not currently supported and need to be imple-
mented. Better biometric libraries should be either developed or imported in order to

Chapter 7. Conclusion 51

increase accuracy. Furthermore, additional mechanisms should be added for the plat-
form. A number of viable suggestions are made in appendix C.

With the current prototype, the voice and face recognition mechanisms sample data at
pxed time intervals. This should be change by taking advantage of user behaviour and
Android events. Examples for this were given in section 5.1.

The face recognition mechanism can be improved either by introducing another library
that performs face detection, or by using a diPerent face recognition library that oPers
both features. Cryptographic support needs to be added for this mechanism. It can be
performed through additional modipcations of the Javafaces library, that would allow
it to use raw binary data during the training process.

A safer prototype would be to develop a root system service using the Android NDK C
compiler. The binary has to be included in the system partition of the boot image in
order to be accessible by the init process during start up. The init.rc conpguration
ple used by init also needs to be conpgured to start the service. This implementation
requires modipcations to the /system partition. The process does not limit to simply
gaining root privileges. The root / directory is mounted as ramdisk, and therefore any
modipcations will be reverted once the device is rebooted. In order to make persistent
changes, the boot image needs to be modiped and re- ashed on the device.

Appendix A

Android development and

security

To gain a better understanding of diPerent design decisions and limitations of our imple-
mentation, we will present a brief literature review of the Android development platform.
Mechanisms and components will be described with an emphasis on security.

William Enck et al [24] oPer a good introduction to Android application development.
They focus on the security aspects of the development platform. It is a relatively old pa-
per (2008), from the same year of the Android initial release. However, the fundamental
design principles and security concepts that are discussed did not change considerably.
The platform's open standards were made public in November 2007. This allowed re-
searchers such as the authors of this paper to perform a pre-release analysis of the
system.

Android uses as a core operating system a port of the Linux kernel. This introduces to
the platform some of the Linux security mechanisms (i.e. ple permissions, access control
policies). On top of the kernel there is an application middleware layer composed out
of the Java Dalvik virtual machine, core Java application libraries, as well as libraries
which obPer support for storage, sensors, display, and other device features. Applications
are supported by the middleware and developed using the Android Java SDK.

The Android development model is based on building an application from multiple com-
ponents. Depending on their purpose, the SDK depnes four types: activity, service,

52

Appendix B. Android development and security 93

content provider, and broadcast receiver. For the purpose of brevity we will not dis-
cuss each individual component!. To allow meaningful interaction, Inter Component
Communication (ICC) is enabled using special objects called Intents.

The application we are developing needs to perform most of its processing in the back-
ground. It does not require any explicit user interaction. According to the Android
model, this should be achieved using Services. To enable convenient component inter-
action, services can be bound engaging in a client-server communication. An important
note made in the paper is that while a Service is bound, it cannot be terminated by an
explicit stop action. According to the Android development API guide 2 there are two
independent scenarios describing the lifetime of a bound service:

1. If the service was not previously running, and a \bindService()" command is issued
by a component, the service is kept alive for as long as clients are still bound. A
client becomes unbound by calling \unbindService()".

2. If the service is started using \onStartCommand()
has no bound clients and an explicit request is made either via \stopSelf()
\stopService". Unlike the previous case, its lifetime persists even with no bound
components.

it can only be stopped if it

or

The paper discusses two types of Android security enforcements: 1CC, and system level.
System level security is based on the Linux permission model. When installed, each app
is allocated an UID and GID. This allows internal storage access control restrictions,
keeping application data sandboxed from other apps.

ICC security is the main focus of the paper. Intent communication is based on commands
sent to the \/dev/binder" device node. The node needs to be world readable and
writeable by any application. Therefore, Android cannot mediate ICC using the Linux
permissions model. Security relies on a Mandatory Access Control (MAC) framework
enforced by a reference monitor. This protection isimplemented by the driver responsible
for processing IOCTL calls for the \/dev/binder" node.

During development, each application needs to depne a manifest ple3. Some of the se-
curity conpgurations depned in this ple are: declared components and their capabilities,
permissions required by the app, and permissions other apps need to have in order to
interact with app components. These entries are used as labels for the MAC framework.

'More details on the role of each component can be found on the Android website:
http://developer.android.com/guide/components/fundamentals.html

http://developer.android.com/guide/components/bound-services.html

3Full details regarding the manifest file can be found on the Android website:
http://developer.android.com/guide/topics/manifest /manifest-intro.html

Appendix B. Android development and security 94

Using the app manifest ple, each component can be depned as either public or private.
This repnement is conpgured by the \exported" peld. It depnes whether or not another
application may launch or interact with one of its components. When this paper was
written, the \exported" peld was defaulted to \true". However, as shown by StePen and
Mathias [25] in 2013, starting with Android 4.2 the default of this value was changed to
\false", and now conforms to the \principle of least privilege".

Components listening for Intents need to have an intent-plter registered in the appli-
cation manifest ple. This allows them to export only a limited set of intents to other
applications. Further restrictions to Intent objects are oPered by the SDK using per-
mission labels. This mechanism provides runtime security checks for the application.
It is an additional prevention mechanism for data leaks through ICC. An application
may broadcast an event throughout the system. By using permission labels, only apps
that have the respective permission may process the event. Furthermore, Services may
check for permissions when they are bound by another component. This allows them to
expose diPerent APIs depending on the binder.

StePen and Mathias [25] focus on deeper issues of the Android platform. They show
how problems are solved from one Android version to the other. Unfortunately, OEMs
tend not to update the software of their devices once they have shipped, which creates
a high security risk.

The starting point of understanding Android security is learning how it is bootstrapped
during the pve step booting process:

1. Initial bootloader (IBL) is loaded from RO M.

2. IBL checks the signature of the bootloader (BL) and loads it into RAM.

3. BL checks the signature of the linux kernel (LK) and loads it into RAM.

4. LK initialises all existing hardware and starts the linux \init" process.

5. The init process reads a conpguration ple and boots the rest of LA.
The android security model is split by the paper in two categories: system security, and
application security.

Android provides a keychain AP used for storing sensitive material such as certipcates
and other credentials. These are encrypted using a master key, which is stored using
AES encryption. Security needs to begin somewhere. An assumption has to be made
about a state being secure from which multiple security extensions can be made. In
this case, the master key is considered to be that point of security. However, given

Appendix B. Android development and security 55

a rooted device, the master key itself can be retrieved from the system and therefore
compromising all other credentials. The Android base system (libraries, app framework,
and app runtime) is located in the \system" partition. Although it is writeable only by
the root user, as mentioned before, exploits which grant this privilege exist.

From the user's perspective, an interesting \feature" which may aPect the ow of in-
formation within Android is the fact that applications from the same author may share
private resources. When installing an app the user needs to accept its predepned set of
permissions. Due to resource sharing, a situation may present itself where an applica-
tion that has permissions for the owner's contacts may communicate with an application
that has permissions for internet in order to leak conpdential data. A developer may
therefore construct pairs of legitimate applications in order to mask a data ow attack.

The Android OS oPers a number of memory corruption mitigations in order to avoid
buber over ow attacks, or return oriented programming. The following list presents
these low level security mechanisms:

e Implements mmap_min_addr which restricts mmap memory mapping calls. This
prevents NULL pointer related attacks.

e Implements XN (execute never) bit to mark memory as non-executable. The
mechanism prevents attackers from executing remote code passed as data.

Appendix B. Android development and security 56

the bouncer is to verify apps prior to installation by checking for malware signatures
and patterns.

Secure USB debugging was introduced starting with Android 4.4.2. This only allows
hosts registered with the device to have USB debugging permissions. The mechanism is
circumvented if the user does not have a screen lock.

According to the paper, the Android OS is responsible for 96% of mobile phone malware.
The authors claim that this is the case due to 4 big issues of the Android platform:

1. Security updates are delayed or never deployed. This is due to a number of ap-
provals that an update needs to receive prior to deployment. This introduces
an additional cost to the manufacturer (OEM), that does not generate any rev-
enue. The majority of teams working on the Android platform are focusing on
current releases. In most cases there are simply not enough resources to merge
Google security updates to the OEM repository. Furthermore, the consequences
of a failed OS update may cause \bricking" of the device, which is a huge risk
for the manufacturer. All these issues lead to very few security updates. There-
fore, important features such as RELro are never deployed, making older Android
releases vulnerable.

2. OEMs weaken the security of Android by introducing custom modipcations before
they roll out a device.

3. The Android permission model is defective. According to Kelley et al [26], most
users do not understand the permission dialogue when installing an application.
Furthermore, even if they could understand the dialogue, most of the time it is
ignored in order to use the exciting new app. According to the same study, most
applications are over-privileged. This is due to developers not understanding what
each privilege grants. Furthermore, as previously pointed out, apps developed by
the same owner may share resources and implicitly privileges.

4. Google Play has a low barrier for malware. A developer distribution agreement
(DDA) and a developer program policy (DPP) need to be agreed to and signed by
the developer before submitting the application to the Android market. However,
Google Play does not check upfront if an application adheres to DDA and DDP.
The application is only reviewed if it becomes suspect of breaking the agreements.
Furthermore, according to [27] there are ways of circumventing the Bouncer pro-
gram?.

4An example of such an application is presented in an article written in Tech Re-
public: http://www.techrepublic.com/blog/google-in-the-enterprise/malware-in-the-google-play-store-
enemy-inside-the-gates/# (visited on 29.05.2014).

Appendix B. Android development and security o7

We have brie y presented the Android development model, existing mechanisms, and
the security of the platform. This information should be suZcient to understand the
principles involved in the design of the prototype developed for this dissertation project.

Appendix B

Token Unlocking Framework

evaluation examples

The following sections present examples of how the token unlocking framework should be
used. We will be assessing PINs, and biometric face unlock. Together with the Picosib-
lings evaluation in section 3.3, each scheme represents a diPerent type of authentication
method. Picosiblings essentially are a secret the owner has, PINs are a secret the owner
knows, and Face-unlock re ects who the owner is.

B.1 PIN

PINs are token authentication mechanisms similar to passwords. The diPerence between
the two is that they use a smaller set of input characters. Additional protection comes
from steep security measures when the authentication challenge has failed. As an exam-
ple, typing 3 wrong PINs on a mobile phone would lock the owner's SIM card. A lot of
the PIN properties should however be similar with those oPered by passwords.

The scheme relies on knowing a secret, which is not \memorywise-ePortless". It does
however oPer the \nothing-to-carry" property. Because of its similarity with passwords
users pnd it \easy-to-learn". The small character set allows for fast user input and val-
idation making PINs \eZcient-to-use". Mistakes however may still occasionally occur,
and due to the lack of visual feedback ' the scheme only quasi-oPers \infrequent-errors".

k9

'If existent, visual feedback for PINs generally consists of ‘“*’ characters.

58

Appendix A. Token evaluation examples 39

PINs are generally easily reset by the manufacturer using online services, therefore hav-
ing \easy-recovery-from-loss" 2. The scheme oPers the \availability" property, as the
authentication process cannot be impaired by external factors.

Just as passwords PINs score all points in deployability. They can be used regard-
less of disabilities, making them \accessible". They have virtually no cost, satisfying
the \negligible-cost-per-user" property. Being a subset of passwords, we consider the
mechanism to be \mature" and \non-proprietary".

From a security perspective PINs score poorly. They are not \resilient-to-physical-
observation". Anyone can eavesdrop the input of a PIN either by shoulder surpng or
recording with a camera. Just as passwords, PINs are often written down in plain
sight. However, in the lack of relevant studies® we will mark the scheme to quasi-oPer
\resilient-to-targeted-impersonation”. The restricted character set makes PINs adopt
harsher security policies when provided invalid input. They are generally locked after
three bad attempts, making them \resilient-to-throttled-guessing". The \resilient-to-
unthrottled-guessing” property is implementation dependent. However, security tokens
are dedicated devices that generally have tamper resistant memory, making unthrottled
guessing not possible. Any hardware PINs may require does not compromise the mecha-
nism, therefore oPering \resilient-to-theft". Users have the freedom of choosing any PIN.
Even in situations when reused with multiple tokens, credentials are generally salted and
therefore \unlinkable". The scheme does not oPer \continuous-authentication" because
the process is not ePortless for the user. They can only provide locked or unlocked
feedback, and therefore do not oPer \multi-level-unlocking". The owner may disclose
their PIN at any time, making the \non-disclosability" property unsatisped.

B.2 Face unlock

Although not currently used as a security token unlocking mechanism, face recognition
is a viable biometric authentication scheme. It can be ported for a token such as Pico,
which is designed to have a camera. With a variety of possible implementations, for
accessibility reasons we will analyse the Android face unlocking mechanism.

Face unlock is \memorywise-ePortless", as any other biometric scheme. It oPers the
\nothing-to-carry property", the camera being embedded as part of the token. The
mechanism is \easy-to-learn", since it only needs the user to look at the camera. The

2An example of this is the RSA SecurID. An example reset procedure is described at the following
link: http://uk.emc.com/collateral/15-min-guide/h12278-am8-help-desk-administrator-guide.pdf

3Just as Bonneau et al suggest [2], a relevant study would assess acquaintances’ ability to guess the
PIN of a subject.

Appendix A. Token evaluation examples 60

authentication process is performed almost instantly, making the scheme \eZ cient-to-
use". The scheme is dependent on camera positioning, obstructing objects (e.g. glasses,
garrings), and face mimic. In conjunction with the UDS framework assessment of bio-
metrics in general, the scheme does not oPer \infrequent-errors". If the scheme no
longer functions as a result of change in facial traits, Android has a backup unlocking
mechanism. This may also be used to disable or recalibrate the scheme, therefore of-
fering \easy-recovery-from-loss". The \availability" property is not satisped due to the
dependence on external factors such as light or obstacles.

Android face recognition is \accessible" for anyone regardless of disabilities. |t oPers
the \negligible-cost-per-user" property, given that the hardware was already present
in devices without face recognition features. Due to limited user exposure it is only
quasi-\mature". On Android, the scheme is implemented as not \non-proprietary".

Observing the owner authenticate does not provide any advantage to an attacker. It
therefore oPers the \resilient-to-physical-observations" property. Targeted imperson-
ation is an issue with any biometric mechanism. The scheme is vulnerable to replay
attacks (i.e. a picture of the owner's face) and therefore does not oPer \resilient-to-
targeted-impersonation". The "resilient-to-throttled-guessing\ and \resilient-to-unthrottled-
guessing” properties do not apply. Given the Android implementation, neither does
\resilient-to-theft". The same authentication data is used with any veriper, and there-
fore the \unlinkable" property is not oPered. The scheme is implemented without
\continuous-authentication" or \multi-level-unlocking" although both can be supported
by biometric mechanisms. Given the possibility of deliberately providing data for a
replay attack, the scheme only quasi-oPers the \non-disclosability" property.

Appendix C

Examples of supported Android

authentication mechanisms

Android provides an extensive sensor API that can support the token unlocking scheme
proposed in section 4.2. This can be used to develop a number of continuous authenti-

cation mechanisms. We have listed the following non-exhaustive set of examples:

Face recognition

The mechanism is based on capturing an image of the user's face and performing
face recognition. Sampling valid face images can be performed without explicit
requests by predicting user behaviour. We will use as an example an user that
owns a phone with a front-facing camera. When the owner is unlocking the phone,

there is a high probability that they will be looking towards the screen.

provides a good opportunity for the face recognition service to capture a valid
sample. Using the Android API, this can be achieved by registering a \Broadcas-
tReceiver" to listen for the one of the following events; ACTION_SCREEN_ON,
ACTION_SCREEN_OFF, or ACTION_USER_PRESENT. The mechanism may
continue to perform face recognition based on collected data and a previously
recorded sample of the owner. A simple face recognition mechanism was also

implemented as part of the prototype.

Voice recognition

A voice recognition mechanism can record data either periodically, or based on
Android events. It may then perform voice recognition and provide a conpdence
level of the owner being present. Voice sampling does not necessarily imply a

voice password. An analysis can be performed using feature extraction.

facilitates the sampling process, which may be performed at any time. With a

61

Appendix C. Ezample authentication mechanisms 62

frequent sampling period, the owner of the device is likely to be recorded while
speaking, which would provide a valid data sample. For even better conpdence
the mechanism can be implemented to start recording when a call is either made
or received. On Android this can be achieved by listening for a PHONE_STATE
event. A simple voice recognition mechanism was implemented as part of the
prototype.

Iris scanning

Similar to face recognition, this can be implemented by taking advantage of user
behaviour while using the phone. When the phone is unlocked, the user is very
likely to face the front camera, allowing for a good capture. The only problem
with this mechanism is the quality of pictures oPered by most phones. If the
sampling quality is not suZciently good, meaningful features from the iris may not
be extracted. This would make the conpdence level of the mechanism relatively
low, but may change in the future as devices become increasingly performant.

Keystroke analysis
This mechanism was inspired from a paper by Clarke et al [22]. The principle of
keystroke analysis is based on the patterns in which the user types on his mobile
phone. DiPerent features can be extracted here, such as: letter sequence timings,
words per minute, letters per minute, frequent used words, and others. Using this
data a conpdence level can be generated.

This mechanism is harder to implement using solely the Android SDK. A good
starting point would be to have a keyboard app developed for the user that also
communicates with the authentication mechanism. If the keyboard is disabled by
an attacker this should be considered, especially if the authenticator was originally
conpgured to listen for input.

Gait recognition

This mechanism is based on analysing individual walking patterns. According
to data presented by Derawi et al [18], error rates' may vary between 5% to
20%. Android oPers native recognition support for walking, driving, or standing
still. Applications can register a sensor callback forthe TYPE_STEP_DETECTOR
composite sensor. Whenever such an event is detected, data can be recorded from
the accelerometer and validated using an algorithm similar to the one described
by Derawi et al [18].

Ear shape analysis
Research shows (i.e. Burge et al [28], Mu et al [29]) that the shape of the human

!The performance indicator used in biometric analysis is the Equal Error Rate (EER).

Appendix C. Ezample authentication mechanisms 63

ear contains enough unique features to perform biometric authentication. Taking
advantage of user behaviour, valid data can be captured and analysed using a
smart phone. We suggest that a picture is taken a few seconds after a phone call
event is detected. If no peripherals are attached, the user is likely to move the
device towards the ear. Images captured by such a mechanism could then be used
to calculate an accurate conpdence level of the user's identity. This method was
not tested, so therefore we cannot ensure whether the auto-focus of the camera is
suZciently fast to obtain a valid image.

Proximity devices

This is an original idea based on providing a conpdence level depending on the
presence of known devices. The mechanism should connect with other devices
that are also running the authenticator. The two owners don't necessarily need
to know one another for the acknowledgement to be performed. Whether regular
travel schedules, or working in an oZce, users are constantly being in the presence
of other known devices. This should provide a conpdence as to whether the device
is in the presence of its owner.

The authentication works by seeking connections with other devices. Whenever
a device is identiped, its ID is recorded. The mechanism needs to keep track
of the number of times it has connected with another device. Some connections
may be established for the prst time, and should not bring any conpdence. Other
connections, such as the Pico of a co-worker, would probably have a high number
of connections, and therefore the mechanism should output a higher conpdence
level in its presence. This mechanism is similar to the Picosiblings solution, but
with no k-out-of-n secrets. Each Pico is essentially a Picosibling for another Pico,
with each device having a diPerent weight based on familiarity.

As an example, when travelling with your family on holiday most of the devices
there are unknown. However, given that a number of frequent IDs are in the
proximity of the authenticator, the mechanism should still consider to some extent
that it is in the possession of its owner.

The mechanism can be circumvented in the scenario where co-workers or friends
try to unlock the Pico. Due to this downside, it should never have suZcient weight
to unlock the token on its own. However, in combination with other mechanisms
it would provide a good approximation of whether it is in the possession of its
owner. If the device is in good company there is a good chance the owner is also
present.

Location data
This mechanism is similar to \Proximity devices" and much easier to implement.

Appendix C. Ezample authentication mechanisms 64

Based on Android GPS and network location data, the phone may detect whether
it is in an usual location or not. Just as \Proximity devices" this should not carry
a high weight in the scheme, especially since it would not provide accurate results
in scenarios such as holidays.

Service utilisation
This mechanism exploits patterns in the Android phone's service and app utili-
sation. Based on current running applications, services, and the time they were
started we may create a model where some conpdence is given regarding the own-
ership of the device. This mechanism would only be ePective in detecting sudden
changes. It would have a low weight in the overall scheme due to its lack in
precision.

Picosiblings The original Picosiblings mechanism may also be used with this scheme.
Although not part of the standard set of Android device sensors, if available, a
Picosiblings implementation may be included as one of the authentication mecha-
nisms.

A number of continuous authentication mechanisms may also be used for explicit au-
thentication. The user can be notiped to provide accurate information for the following
mechanisms: face recognition, voice recognition, iris scanning, keystroke analysis, gait
recognition, and ear shape analysis. This creates the opportunity for a valid data sample
to be collected.

A number of explicit authentication mechanisms which do not satisfy the continuous
authentication property of Pico may be implemented for the Android platform. It is
important to note that additional mechanisms not included in this list need to satisfy
the memorywise-ePortless property of the token unlocking framework (3.2). We suggest
the following mechanisms for implementation:

Fingerprint scanner

Devices that incorporate a pngerprint scanner (such as the IPhone 5S) can use the
sensor as an explicit authentication mechanism. It cannot be used for continuous
authentication because the user doesn't come in contact with the sensors on a
regular basis. A mechanism can therefore request explicit pngerprint data, which
would then be compared with the owner's biometric model, outputting a conpdence
for the authentication. The result will be combined in the overall scheme just as
any other mechanism. The the only diPerence will be in terms of weight and decay
rate.

Appendix C. Ezample authentication mechanisms 65

Hand writing recognition
The user may be prompted to use the touch screen in order to write a word of his
choice. This would guarantee the memorywise-ePortless property because the user
doesn't need to remember any secret. The handwriting would be analysed with a
preconpgured set of handwriting samples in order to compute the conpdence level
that the owner produced the input.

Lip movement analysis

According to Faraj and Bigun [30], analysing lip movement while speaking can be
used for authentication. The user would be prompted to provide a data sample
such as reading a word provided by the authenticator. Using lip movement au-
thentication, a quantipable conpdence level would be produced. This mechanism
can also be implemented as a continuous authentication mechanism. However,
data sampling would likely have a low success rate as users tend not to have their
mouth within the camera's peld of view.

Bibliography

[1] Frank Stajano. Pico: No more passwords! In Security Protocols XIX, pages 49{81.
Springer, 2011.

[2] Joseph Bonneau, Cormac Herley, Paul C Van Qorschot, and Frank Stajano. The
quest to replace passwords: A framework for comparative evaluation of web au-
thentication schemes. In Security and Privacy (SP), 2012 IEEE Symposium on,
pages 553{567. IEEE, 2012.

[3] JeP Jianxin Yan, Alan F Blackwell, Ross J Anderson, and Alasdair Grant. Password
memorability and security: Empirical results. IEEE Security € privacy, 2(5):25{31,
2004.

[4] Philippe Oechslin. Making a faster cryptanalytic time-memory trade-oP. In Ad-
vances in Cryptology-CRYPTO 2003, pages 617{630. Springer, 2003.

[5] Robert Morris and Ken Thompson. Password security: A case history. Communi-
cations of the ACM, 22(11):594{597, 1979.

[6] Anne Adams and Martina Angela Sasse. Users are not the enemy. Communications
of the ACM, 42(12):40{46, 1999.

[7] Oliver Stannard and Frank Stajano. Am i in good company? a privacy-protecting
protocol for cooperating ubiquitous computing devices. In Security Protocols XX,
pages 223{230. Springer, 2012.

[8] Dinei Florencio and Gormac Herley. A large-scale study of web password habits.
In Proceedings of the 16th international conference on World Wide Web, pages
657{666. ACM, 2007.

[9] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612{613,
1979.

[10] Frank Stajano. The resurrecting duckling. In Security Protocols, pages 183{194.
Springer, 2000.

66

Bibliography 67

[11]

[12]

[13]

[14]

[19]

[16]

[17]

[18]

[19]

[20]

[21]

Hugh Wimberly and Lorie M Liebrock. Using pngerprint authentication to reduce
system security: An empirical study. In Security and Privacy (SP), 2011 IEEE
Symposium on, pages 32{46. IEEE, 2011.

Nathan L Clarke and Steven M Furnell. Authentication of users on mobile
telephones{a survey of attitudes and practices. Computers & Security, 24(7):519{
527, 2005.

Nathan L Clarke, SM Furnell, Benn M. Lines, and Paul L Reynolds. Using keystroke
analysis as a mechanism for subscriber authentication on mobile handsets. In Se-
curity and Privacy in the Age of Uncertainty, pages 97{108. Springer, 2003.

Nathan L Clarke, Steven M Furnell, Phihp M Rodwell, and Paul L. Reynolds. Ac-
ceptance of subscriber authentication methods for mobile telephony devices. Com-
puters € Security, 21(3):220{228, 2002.

Gregory D Williamson and GE Money-America's. Enhanced authentication in on-
line banking. PhD thesis, Utica College, 2006.

Elena Vildjiounaite, S-M Makela, Mikko Lindholm, Vesa Kyllonen, and Heikki
Ailisto. Increasing security of mobile devices by decreasing user ePort in verip-
cation. In Systems and Networks Communications, 2007. ICSNC 2007. Second
International Conference on, pages 80{80. IEEE, 2007.

Liang Cai, Sridhar Machiraju, and Hao Chen. Defending against sensor-sniZng
attacks on mobile phones. In Proceedings of the 1st ACM workshop on Networking,
systems, and applications for mobile handhelds, pages 31{36. ACM, 20009.

Mohammad Omar Derawi, Claudia Nickel, Patrick Bours, and Christoph Busch.
Unobtrusive user-authentication on mobile phones using biometric gait recognition.
In Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP),
2010 Sixth International Conference on, pages 306{311. IEEE, 2010.

Ji Ming, Timothy J Hazen, James R Glass, and Douglas A Reynolds. Robust
speaker recognition in noisy conditions. Audio, Speech, and Language Processing,
IEEE Transactions on, 15(5):1711{1723, 2007.

Lawrence George Kersta. Voiceprint identipcation. The Journal of the Acoustical
Society of America, 34(9):725{725, 2005.

Matthew A Turk and Alex P Pentland. Face recognition using eigenfaces. In Com-
puter Vision and Pattern Recognition, 1991. Proceedings CVPR’91., IEEE Com-
puter Society Conference on, pages 586{591. IEEE, 1991.

Bibliography 68

[22] Nathan L Clarke and SM Furnell. Authenticating mobile phone users using
keystroke analysis. International Journal of Information Security, 6(1):1{14, 2007.

[23] Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney, Erika Chin, and
David Wagner. Android permissions: User attention, comprehension, and behavior.

In Proceedings of the Fighth Symposium on Usable Privacy and Security, page 3.
ACM, 2012.

[24] William Enck, Machigar Ongtang, Patrick Drew McDaniel, et al. Understanding
android security. IEEE Security & Privacy, 7(1):50{57, 20009.

[25] StePen Liebergeld and Matthias Lange. Android security, pitfalls and lessons
learned. In Information Sciences and Systems 2013, pages 409{417. Springer, 2013.

[26] Patrick Gage Kelley, Sunny Consolvo, Lorrie Faith Cranor, Jaeyeon Jung, Norman
Sadeh, and David Wetherall. A conundrum of permissions: Installing applications
on an android smartphone. In Financial Cryptography and Data Security, pages
68{79. Springer, 2012.

[27] NJ Percoco and S Schulte. Adventures in bouncerland: Failures of automated
malware detection within mobile application markets. Black Hat USA 2012, 2012.

[28] Mark Burge and Wilhelm Burger. Ear biometrics. In Biometrics, pages 273{285.
Springer, 1996.

[29] Zhichun Mu, Li Yuan, Zhengguang Xu, Dechun Xi, and Shuai Qi. Shape and struc-
tural feature based ear recognition. In Advances in biometric person authentication,
pages 663{670. Springer, 2005.

[30] Maycel Isaac Faraj and Josef Bigun. Motion features from lip movement for per-
son authentication. In Pattern Recognition, 2006. ICPR 2006. 18th International
Conference on, volume 3, pages 1059{1062. I[EEE, 2006.

	Declaration of Originality
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Pico: no more passwords!
	3 Assessment framework
	3.1 UDS assessment framework
	3.2 Token unlocking framework
	3.3 Picosiblings evaluation
	3.4 Conclusions

	4 Design
	4.1 Design requirements
	4.2 Proposed solution
	4.3 Related work
	4.4 Conclusions

	5 Implementation Prototype
	5.1 Implementation overview
	5.2 Implementation details
	5.2.1 UAService
	5.2.2 Authentication mechanisms
	5.2.2.1 Dummy mechanism
	5.2.2.2 Voice recognition
	5.2.2.3 Face recognition
	5.2.2.4 Location analysis

	5.2.3 Owner configuration
	5.2.4 Cryptographic protection

	5.3 Conclusion
	5.4 Related work

	6 Evaluation
	6.1 Threat model
	6.2 Functional evaluation
	6.3 Token unlocking framework evaluation
	6.4 UDS framework evaluation

	7 Conclusion
	A Android development and security
	B Token Unlocking Framework evaluation examples
	B.1 PIN
	B.2 Face unlock

	C Examples of supported Android authentication mechanisms
	Bibliography

