
Designing Secure & Usable Picosiblings
An exploration of potential pairing mechanisms

Fabian Matthias Andre Krause
Wolfson College

14th June 2014

Dissertation
MPhil Advanced Computer Science (Option B)

Easter Term 2014

Supervisor Dr. Frank Stajano (University of Cambridge)

by: Fabian Matthias Andre Krause
Email: fabianmakrause@me.com

Course of Study: MPhil Advanced Computer Science (Option B)

University: University of Cambridge
Department: Computer Laboratory

Address: 15 JJ Thomson Avenue, Cambridge CB3 0FD

College: Wolfson College
Address: Barton Road, Cambridge CB3 9BB

Statement

I, Fabian Krause of Wolfson College, being a candidate for the
M.Phil in Advanced Computer Science, hereby declare that this re-
port and the work described in it are my own work, unaided except
as may be specified below, and that the report does not contain
material that has already been used to any substantial extent for a
comparable purpose.

Place, Date Signature

Word count:
14970

Word count retrieved using TeXcount1.
from p. 1 excluding appendix2, bibliography, and figures, but including tables and footnotes.

1TeXcount 3.0.0.24: http://app.uio.no/ifi/texcount/online.php. Used commands %TC:group tabular 1 1 and
%TC:group table 0 1 to include tables. Figures were manually removed from the TeX -file.

2As stated in III.c of http://www.cl.cam.ac.uk/teaching/acs_projects/proj-guidelines.html, appendices can be
excluded from the word count if they merely consist of supporting or verbose material that is not directly
relevant for understanding the thesis. This is the case in this thesis.

http://app.uio.no/ifi/texcount/online.php
http://www.cl.cam.ac.uk/teaching/acs_projects/proj-guidelines.html

Abstract

The security of token-based authentication systems relies heavily on their resilience to
theft and loss. The Pico’s approach to preventing user impersonation are Picosiblings:
small devices the user carries that are in permanent contact with the Pico. Outside the
Picosiblings’ range, the Pico locks itself, thereby preventing abuse.
Protocols for communication between the Pico and its Picosiblings have previously been

proposed, unlike usability and management factors. Bootstrapping the security relation-
ship is crucial to security and usability.
A comparative usability analysis was performed between the most promising Picosibling

pairing mechanisms. The findings inform the design of a system that avoids common
usability flaws and promotes an appealing user experience. Users were found to prefer
scanning QR codes over typing passwords, using cables, and pairing inside a Faraday
cage. Furthermore, protocols were developed for the addition and removal of Picosiblings,
periodic resharing, and the integration of backups. Combined, the protocols provide the
foundation for an integrated, secure, and usable Picosibling design.
The subsequent development of a management framework can build on these results

and benefit from the findings of this thesis. Further user studies will benefit from the
developed Android prototype that includes the major protocols described in this thesis,
allowing for a more realistic user experience.

Keywords

Pico, Authentication, Token-based authentication,
Usability, Android prototyping,

Pairing, Bootstrapping, Secret Sharing

Acknowledgements

Firstly, I wish to thank my supervisor, Dr. Frank Stajano, who guided me through this
challenging project. He hinted me at material to close my gaps in knowledge and motivated
me to complete this project. I further thank Jeunese Payne and Dr. Alan Blackwell. They
taught me the basics of HCI and helped me to design, execute, and evaluate an experiment
in a field that I was unfamiliar with prior to this project. I also thank the whole Pico team
for the valuable insights and discussions during our supervisions.
I extend gratitude to Mason Gordon, Kamleshan Pillay, Victoria Quast, and the Cam-

bridge language centre’s director of English for Academic Purposes (EAP), Dr. Karen
Ottewell, for proofreading parts of my thesis.
Furthermore, I thank the developers of ZXing, whose QR code scanner I integrated in

my implementation, and the stackoverflow3 community. Even though I have never asked
them for help, their feedback on other’s problems allowed me to understand the underlying
basics of the Android environment.

3http://stackoverflow.com

http://stackoverflow.com

Table of Contents

Table of Contents

1. Introduction 1
1.1. Contributions . 2

2. Theoretical Background 3
2.1. Introduction to the Pico . 3
2.2. Picosiblings . 3

2.2.1. Pairing of Picosiblings . 4
2.3. Secret Sharing . 5
2.4. Threat Model for Pico . 5

3. Bootstrapping the Relationship between Pico and Picosiblings 7
3.1. The Resurrecting Duckling . 7
3.2. Requirements Analysis . 7
3.3. Existing Pairing Mechanisms . 8
3.4. Suitable Mechanisms . 12

3.4.1. Physical Contact . 13
3.4.2. QR Code Scanning . 13
3.4.3. Pre-defined Passkey . 14
3.4.4. Faraday Cage . 14

3.5. Management Options for Picosiblings . 15

4. User Study 16
4.1. Experimental Design . 16
4.2. Statistical Results . 19

4.2.1. Techniques . 19
4.2.2. General Results . 20
4.2.3. Scenario Effects . 21
4.2.4. Gender Effects . 24
4.2.5. Experience Effects . 26

4.3. Qualitative Results . 28
4.4. Discussion of the Study . 30

5. Picosibling Management 31
5.1. Attacks on Picosiblings . 31
5.2. Pairing . 32

5.2.1. Resharing and Changing the Threshold Boundaries 33
5.3. Adding and Removing Picosiblings . 35

V

Table of Contents

5.4. Backups . 36
5.5. Special Shares . 37

6. Prototype Implementation 40
6.1. Components . 40
6.2. Protocols . 41
6.3. Testing . 42
6.4. Discussion . 43
6.5. Future Work . 44

7. Conclusions 45

A. Appendix 48
A.1. Content of the Uploaded Material . 48
A.2. Notation . 49
A.3. Storage Structure . 50
A.4. Discussion . 52

A.4.1. Deployment . 52
A.4.2. Pico . 52

A.5. Implementation . 53
A.5.1. Architecture of the Prototypes used in the User Study 53
A.5.2. Architecture of the Final Prototype . 54

A.6. Experiment Material . 56
A.6.1. Graphs for Statistical Analysis . 56
A.6.2. Pictures of the Experimental Setup . 59
A.6.3. Screenshots of the User Study Prototype 60
A.6.4. Flow Charts of the Scenarios . 61
A.6.5. Pilot Study Flow Charts . 63

References 66

VI

List of Figures

List of Figures

1. Setup for the User Study . 16
2. Flow Chart of the User Study’s QR Code Scenario 18
3. Summary of SUS Scores . 21
4. Boxplot Transformed SUS Scores by Scenario 22
5. Summary of SUS Transformation . 23
6. Boxplot of Task Completion Times by Scenario 24
7. Gender Effects . 25
8. Experience Effects . 27
9. Pico State Diagram . 33
10. Pico Prototype UI . 40
11. LogCat Output of the Pico while Executing the Pairing Protocol 42
12. LogCat Output of the Picosibling while Executing the Pairing Protocol 43
13. Boxplots of SUS Data by Gender . 56
14. Boxplots of Time Data by Gender . 56
15. Boxplots of Normalised Time Data by Gender 57
16. Boxplots of SUS Scores by Experience . 57
17. Boxplots of Task Completion Times by Experience 58
18. Boxplots of Normalised Task Completion Times by Experience 58
19. Setup of Pico, Laptop, and Picosibling Sheet 59
20. Physical Connection between Pico and Picosibling 59
21. User Interface of the Pico . 60
22. User Interface of the Application . 60
23. Flow Chart of the User Study’s Cable Scenario 61
24. Flow Chart of the User Study’s Passkey Scenario 61
25. Flow Chart of the User Study’s Faraday Scenario 62
26. Flow Chart of the Pilot’s Cable Scenario . 63
27. Flow Chart of the Pilot’s QR Code Scenario . 64
28. Flow Chart of the Pilot’s Passkey Scenario . 65

VII

List of Tables

List of Tables

1. Balanced Latin Square Design . 18
2. Preference Rating Results . 20
3. SUS Scores by Scenario . 21
4. Pairwise T-Tests between Normalised Task Completion Times 23
5. Comparison Normalised Task Completion Times by Gender 26
6. Comparison Normalised Task Completion Times by Experience 28
7. Structure of the Backup Repository . 37
8. Completed Deliverables of this Project . 46
9. Storage Structure of the Pico’s Outer Core . 50
10. Storage Structure of the Picosibling . 51

VIII

List of Tables

List of Abbreviations

BEDA Button-Enabled Device
Association

d2d device-to-device
DoS Denial of Service
GPS Global Positioning System
h2d human-to-device
HMAC Hash Message Authentication

Code
LED Light Emitting Diode
MAC Message Authentication Code
MANA Manual Authentication
MiB Message in a Bottle
NFC Near Field Communication
OOB Out of Band

PAKE Password Authenticated Key
Exchange

PGP Pretty Good Privacy
PIN Personal Identification Number
POS Point of Sale
QR Code Quick Response Code
RFC Request for Comments
RFID Radio-Frequency Identification
SiB Seeing is Believing
SAS Short Authenticated Strings
SMS Short Message Service
SUS System Usability Scale
UDS Usability-Deployability-Security

Framework

Definitions

Host The object with which the Picosibling is incorporated.
Pairing Associating two objects with each other, e.g. by exchanging

cryptographic keys.
QUASI NO-TYPING A Pico setup that requires entering a passkey only for setup

operations but not authentication.
Secure core of the Pico The part of the Pico that contains the credentials of the user that

are encrypted under the master-key
Outer core of the Pico The part of the Pico that contains the key material to

communicate with the Picosiblings and to recreate the master-key

IX

1 Introduction

1. Introduction

Besides its predominance, the quality of passwords as an authentication scheme is dubious.
Morris and Thompson [55] found in 1979 that password security depends on the correct im-
plementation and the user’s behaviour. Users circumvent cumbersome password guidelines
to mitigate mental overhead (Florencio and Herley [29]) and to focus on their primary tasks
(Adams and Sasse [1]). Furthermore, service providers’ implementations are often flawed (Bon-
neau and Preibusch [13]) leading to data leaks - as seen in the case of LinkedIn [5].
Stajano [77] proposed the Pico as a token-based authentication scheme that strives to over-

come these shortcomings. However secure an authentication scheme, it has to provide other
usability or deployability benefits to become an alternative to passwords (Bonneau et al. [14]).
The Pico’s approach to usability is predicted on reducing users’ mental overhead.
The security of token-based authentication schemes4 relies heavily on its resilience to theft

and loss [14]. When a token is stolen, the perpetrator should be prevented from accessing a
user’s credentials. The Pico’s approach to preventing loss comprises an innovative self-locking
mechanism that becomes activated when the user is not in the immediate proximity. A set
of Picosiblings, small devices incorporated in a user’s belongings, enables “telepathic locking”.
Whenever a sufficient number of Picosiblings are not in proximity to the Pico5, the Pico locks
its secure core and wipes the key to it from memory.
Picosiblings are based on threshold security, a concept with which the majority of users are

not familiar. It is essential to the success of Pico that the design space of handling, managing,
and using Picosiblings is explored thoroughly prior to deployment to prevent the Pico’s benefits
from being compromised [8, 77, 81]. Usability studies are to explore users’ attitude towards
Picosiblings, their understanding of the underlying concepts, and develop an overall usable
system. The focus of this thesis lies in the management of Picosiblings.
I will explore the protocol design space of managing the set of Picosiblings from a security

and usability point of view.

4The Usability-Deployability-Security (UDS) framework of Bonneau et al. [14] discusses the benefits of token-
based authentication systems.

5Picosiblings implement a form of threshold security such that a threshold of k out of a set of n Picosiblings
have to be in close proximity of the Pico to unlock it.

1

1.1 Contributions

1.1. Contributions

Following a discussion of background material to understand this thesis (section 2), I will
analyse which existing pairing mechanisms are suitable for associating the Picosiblings and
the Pico through an

• extensive literature review (section 3).

Such an analysis accounting for the constraints and goals of the Pico project has not been
done before and will allow for a narrowing down of the set of potential pairing mechanisms.
The most appropriate pairing mechanisms will be analysed within a

• comparative usability study (section 4)

which accounts for the overarching goal of the Pico to outperform passwords in terms of
usability. The study captures the preferences of potential users and their thoughts on the
pairing process to shape future implementations. Further, it leads to the

• development of secure and usable protocols for managing Picosiblings (section 5).

These protocols are implemented as an Android prototype (section 6) to allow the Pico
project to build on my work in later stages, e.g. by using the prototype in future user stu-
dies. While an Android prototype had been developed before, it focused primarily on the
communication between Pico and Picosiblings and not the management process.
Besides from the above, protocols for removing, resharing, and adding Picosiblings as well

as for integrating the management of Picosiblings into the ideas for backups are presented.

2

2 Theoretical Background

2. Theoretical Background

The following sections introduce the main concepts on which this thesis is building. For an
explanation of the used notation see appendix A.2.

2.1. Introduction to the Pico

Stajano [77] developed the Pico to reduce the mental burden on the user of remembering an
increasing number of passwords. Users can use the Pico to store all of their credentials and
access their accounts online as well as offline. As a clean slate design to replace passwords its
main goals are to be memoryless, scalable, and secure. It is memoryless in that users do not
have to remember any password. It is scalable in that any number of the user’s accounts can
be effortlessly accessed via the Pico. And it is secure by using multi-level security (use of a
visual channel as well as radio) and providing continuous authentication.6

Continuous authentication between the Pico and a service is accomplished by using a short-
range radio protocol after the user has initially logged in. The initial login requires users to
scan a QR code of the service with their Pico. The scanning of the QR code enables the Pico
also to authenticate the application or service before providing the user’s credentials. For an
extensive discussion of the communication protocol between Pico and application see the work
of Bentzon [8].
The user’s credentials are stored securely inside the Pico and can only be accessed if the

Pico is unlocked with a master key. This master key is shared among a number of Picosiblings
that form a presence aura around the user. Thereby the Pico implements “family feelings” as
introduced by Stajano [76]: The Pico only unlocks if a sufficient number of Picosiblings are in
close proximity.

2.2. Picosiblings

A major problem of token-based authentication is the uncertainty manifesting regarding whe-
ther the person in possession of the token is also the legitimate owner. Picosiblings are the Pi-
co’s way of approaching this uncertainty and to realise theft-resistance as well as loss-resistance
by what is called telepathic locking. Whenever there is an insufficient number of Picosiblings
near the Pico, the Pico locks itself and wipes the master key securely from memory.
The master key is secured through a k-out-of-n secret sharing scheme in which the Picosib-

lings are the shareholders that have to collaborate in order to recreate the key. To ascertain the
presence of a sufficient number of Picosiblings, the Pico pings Picosiblings in its surrounding,
prompting them to send their share. Internally, the Pico is implemented to have a decay timer
for each Picosibling which triggers the ping protocol.

6A more thorough discussion of its security benefits can be found on page 6 of Stajano [77].

3

2.2 Picosiblings

It is envisioned that Picosiblings are digitally enhanced objects users wear or carry with
them. Picosiblings interact with the Pico over short-range radio. They are designed without a
user interface to allow for embedding them completely in their hosts. Two special shares can
enhance security even further: a share that is stored on a remote server and a share yielded
from biometric scans. These special shares have more weight and could be explicitly required
for certain actions or to use the Pico at all. They could allow remote deactivation of the Pico,
tracing online login attempts, and special use cases.
Stannard and Stajano [82][81] developed the ping-protocol between Pico and Picosiblings

to ascertain the presence of Picosiblings and to acquire their shares. Bentzon [8] added a check
that prevents Picosiblings from sending their share if only their presence is requested.
The Pico sends a nonce Ni, the current value of a counter ci, and a boolean value “KReq”

that indicates whether the Pico requests the share of the ith Picosibling. This message is
encrypted under the shared symmetric key KP,PSi,1. A MAC of the resulting ciphertext com-
pletes the Encrypt-then-MAC mechanism used in this step.

P → PSi: {Ni, ci,KReq}KP,PSi,1

Consequently, if the MAC authenticates the message, the ith Picosibling sends back the nonce
and its share (if requested). The share is encrypted under an ephemeral key KP,PSi,2 that is
refreshed by hashing it according to the counter.

PSi → P : {si}KP,PSi,2
, Ni

This is the protocol described by Stannard [81].

2.2.1. Pairing of Picosiblings

A crucial step in using Picosiblings has not received much attention thus far: setting up the
set of Picosiblings and managing them over the lifecycle of the Pico. Originally, a variant of
the resurrecting duckling protocol of Stajano and Anderson [78] was proposed to bootstrap
the relationship between Pico and Picosiblings. Undoubtedly, pairing7 is an essential part of
ensuring that the Pico communicates only with legitimate devices and provides no others with
a share of the master key. Stannard [81] proposed a protocol for the initial pairing process
based on a physical connection between Pico and Picosibling.

P → PSi: PAIR, si,KP,PSi,1,KP,PSi,2, ci

However, this does not account for removing Picosiblings when they are lost or stolen. A
physical connection might not even be possible when the vision of embedding Picosiblings in
their hosts8 is realised.

7Pairing describes the process of establishing a secure association between two devices, here Pico and Pico-
sibling.

8The host of a Picosibling is defined as the object the Picosibling is attached to or interwoven with.

4

2.3 Secret Sharing

2.3. Secret Sharing

Two properties of a secret sharing scheme are essential for Picosiblings: security and flexibility.
Assuming a (k, n)-threshold scheme, an attacker with less than k shares must not be able to
reconstruct the secret. Further, flexibility is needed because Picosiblings need to be unpaired
from the Pico if the host of the Picosibling is sold to another person or lost.

Several secret sharing schemes have been proposed from which Shamir’s [71] seems to be
the most appropriate. Blakley [11] proposed a scheme based on the intersection of (k − 1)-
dimensional hyperplanes. However, this scheme is less flexible and requires k-times more space
to save the shares. General access structure secret sharing schemes such as presented by Ito
et al. [39] also require an increasing share size with an increasing participant number as noted
by Beimel [6]. Weighted share threshold schemes9 could model the special shares of the Pico
and provide a meaningful representation of domain aspects. Nevertheless, Shamir’s scheme is
used here since it is ideal10, well studied, and has beneficial security and resource properties.
Further, weighting can also be modelled in Shamir’s scheme by handing out several shares to
one party or changing the implementation accordingly as presented by Dawson and Donovan
[24].

Shamir’s (k, n) secret sharing scheme is based upon the interpolation of polynomials in finite
fields. A polynomial of degree k − 1 is uniquely identified by k points in the 2-dimensional
plane. To share a secret S, one has to choose an arbitrary polynomial of degree k − 1: q(x) =
a0 + a1x + ... + ak−1x

k−1 in which S is represented by a0. The n shares si that are to be
distributed among the involved parties can be calculated by solving s1 = q(1), ...sn = q(n).

This scheme guarantees perfect secrecy when using finite fields. Knowledge of k−1 or fewer
shares leaves the attacker with no information about the secret S while k shares or more
allow the recomputation of S by interpolation. In addition to perfect secrecy, it also allows for
flexibility to add shares and perform resharing while keeping k fixed.

2.4. Threat Model for Pico

An attacker is allowed to seize control of k − 1 Picosiblings at a single point of time as they
do not reveal sufficient information to recreate the shared secret. Furthermore, the adversary
can obtain possession of the Pico when it is locked. The adversary is even allowed to obtain
possession of the Pico when it is unlocked. In this case, he or she must not be in possession
of a sufficient number of Picosiblings nor able to use the Pico in time to access the user’s
accounts before it locks. The attacker can have control over the computer used for logging in
the user, the remote service, and the wireless channel.

9For a discussion of weighted threshold schemes and their information rate properties see Morilla et al. [54].
10A secret sharing scheme is ideal if its information rate is equal to 1. See Stinson [83] for more details.

5

2.4 Threat Model for Pico

Re-pairing attacks as described in Stannard and Stajano [82] are countered by requesting
the received shares again each time the Pico switches to pairing mode.11

The attacker model during pairing is the Dolev-Yao [27] model assuming an omnipotent
attacker who can overhear, intercept, create, and modify any messages sent over the wireless
channel before, during, and after pairing.

11In this case the pairing mode is the mode the Pico is in when clicking “Pair”, not the state for the initial
pairing.

6

3 Bootstrapping the Relationship between Pico and Picosiblings

3. Bootstrapping the Relationship between Pico and
Picosiblings

In the following, the most common pairing mechanisms will be presented and analysed. Re-
quirements and constraints of pairing Picosiblings to the Pico will be used to determine which
pairing mechanisms are or could become applicable.

3.1. The Resurrecting Duckling

The resurrecting duckling security policy had been used as a way to model the Picosiblings.
Its main concepts are outlined below to enhance the understanding of constraints and requi-
rements with regard to pairing.
Stajano and Anderson [78, 79] developed the resurrecting duckling as a security policy for

transient association of constrained devices in wireless ad hoc networks focusing on master-
slave relationships. Stajano [76] then expanded the idea to peer-relationships.
The core idea is that a duckling (slave device) identifies its mother (master device) as the first

thing it recognises visually and audibly (which sends the ignition key). This association lasts
until the duckling “dies”, setting the duckling back to its imprintable pre-birth state. In this
pre-birth state the duckling could be sold or associated to another master device. Imprinting
is to be accomplished via physical contact because of the limited capabilities of ducklings.
Delegation from a position of strength and multiple souls (imprinted states) occupying one
body (device) resemble the Biba integrity model [9].

3.2. Requirements Analysis

Stannard [81] has considered three requirements for pairing Picosiblings to the Pico:

• Transferring the data to run the ping protocol.

• Preventing eavesdroppers from impersonating a paired Picosibling.

• The user must know which devices are being paired, even in the presence of an attacker.

Aside from these,

• pairing must only be possible when in possession of k Picosiblings.

Furthermore, hardware constraints must be accounted for. The Pico only consists of a display,
two buttons (“Main”, “Pair”), a camera, and a short-range radio. Pairing mechanisms can
exploit one bidirectional human-to-device (h2d) channel provided by the Pico and one device-
to-device (d2d) channel between the Pico and Picosibling. Picosiblings are designed to be small
and cheap. Thus, they are limited in terms of power supply and computation capabilities. The
cost and size aspects further prohibit visual interfaces, accelerometers, GPS, audio input or

7

3.3 Existing Pairing Mechanisms

output, and other sensors or technologies. All of these are either impractical, too expensive,
or would drain the power of the Picosibling too quickly.

• Picosiblings are resource-constrained and have limited capabilities. However, realistic
technological advancement can be incorporated into the design.

The design of the pairing process must be guided by the long-term vision of the Pico. Pi-
cosiblings could be incorporated into objects the user carries around [77]. If a Picosibling is
contained in a watch or within a piece of jewellery, it is impractical to have a visual interface
or a physical link between Pico and Picosibling.

• Picosibling might be physically inaccessible.

3.3. Existing Pairing Mechanisms

The pairing problem in wireless networks is concerned with choosing the right device out of
potentially many with which to communicate. Evil twin attacks, accidentally pairing a device
controlled by an adversary, and man-in-the-middle attacks are to be prevented. It is well
established that some kind of user involvement is unavoidable, e.g. using an auxiliary OOB
(out-of-band) channel, as stated by Kumar et al. [45]. Physical contact as proposed for the
resurrecting duckling is said to defeat the benefits of wireless networks [45]. However, users are
used to connecting devices to computers to set them up. For this reason, physical connection
is not discarded prematurely in this thesis.
Public key infrastructures, PGP, or Needham-Schroeder (Kerberos) as authentication bases

would simplify the problem drastically. Unfortunately, they are inapplicable due to the lack of
internet connectivity, service availability, and non-scaling costs. The well-studied key exchange
protocols like Diffie-Hellman [26] lack authentication of the communication partners in an
offline scenario.
The goal is thus to find a pairing mechanism that minimises usability costs under the

constraints and requirements of the Pico (see section 3.2).

Visualisation Perrig and Song [61] presented Random Art to encode hashes of the devices’
public keys as images. Ellison and Dohrmann [28] introduced Flags as hash visualisations of the
process output. These hash visualisations are compared by the user and require both devices
to have a display. Roth et al. [66] presented a solution based on blinking lights representing
colours of a short authentication string (SAS). Picosiblings do not provide such interfaces.
When Picosiblings become inaccessible, sending and capturing of lights is infeasible as is
providing a display.
SiB (Seeing is believing) of McCune et al. [53] fits the context better. One device has to

be equipped with a camera to scan a QR-code that contains the hash of the other device’s
public key. The other device presents the QR code on its display. Even though Picosiblings do

8

3.3 Existing Pairing Mechanisms

not provide a display, the QR code could be delivered on a tag by the manufacturer together
with the host. Such a system was proposed by Hanna [34]. While SiB was found to have poor
usability characteristics by Kumar et al. [45], Pico users will use QR codes for authentication
purposes. Using a similar technique for pairing might generate synergies and enhance the
system’s overall usability.
The system of Saxena et al. [69] also requires both devices to display hashcodes dynamically

during protocol execution. Saxena and Uddin [67] relax the display requirement by having one
device supporting blinking LEDs. Picosiblings neither provide a display nor an interface to
capture LED (potential inaccessibility).

Special Technologies Balfanz et al. [4] proposed Talking to strangers. Audio or infrared is
utilised in a pre-authentication phase to transmit bits for authenticating the key. Like Proximal
Interactions of Rekimoto et al. [64] and the idea of Swindells et al. [84], which both rely on
pointing infrared devices at each other, Talking to strangers is not applicable because of its
use of infrared. The technological requirements would force the Picosiblings to become more
expensive and be accessible for visual channel support.
Picosiblings do not contain specialised hardware (costs), making approaches based on special

OOB channels infeasible. Kindberg and Zhang [44] proposed to use ultrasound and lasers [43]
as a means to guarantee the physical proximity of the devices. The approach of Buhan et al.
[17] models trust relationships of people on their devices using biometrics. Users take pictures
of each other that the devices use in their protocol for authentication. Apart from the fact
that Pico and Picosibling are owned by the same person, the Picosiblings cannot capture
biometrics since they lack specialised hardware. Setting up Picosiblings to be able to send
and receive SMS to exchange secret information as in LoKey of Nicholson et al. [56] is also
impractical and expensive. Further, vibration (or measuring vibration by the Picosibling) is
not supported which is required by Saxena et al. [70] in their PIN-Vibra to transfer secrets
over the vibration OOB channel.
MiB of Kuo et al. [46] requires a Faraday cage and a keying beacon for pairing. Pico and

Picosibling are placed in the cage to perform a pairing protocol while the keying beacon
outside the cage jams signals and serves as an indicator as to whether the cage is closed
or not. This initially suggests a cost and usability overhead as users would have to own a
Faraday cage and remember to place the keying beacon outside the cage for pairing. However,
the Faraday cage allows the pairing of several Picosiblings simultaneously and requires only
an initial investment. As the Pico becomes widely used, the cost of Faraday cages would drop
and even low-cost alternatives shielding electric fields could be explored.

Audio Methods using audio to transfer key information as by Soriente et al. [74], audio-based
OOB channels for secure transmission of key information as by Goodrich et al. [32], or audio
for SAS validation to complete the protocol as by Goodrich et al. [33] encounter the same

9

3.3 Existing Pairing Mechanisms

constraint the other additional technologies encounter. Audio-visual pattern recognition as by
Prasad and Saxena [62] requires additional hardware and physical access to the Picosibling.
Assuming the cost of the additional hardware for Pico and Picosiblings was acceptable, the
Picosibling’s host could potentially block audio signals and compromise the reliability of these
approaches. Audio-based approaches also require the user to push buttons on the Picosibling
to validate or initiate the protocol.

Shaking and Gestures Acceleration-based pairing methods using shaking are inapplicable
because Picosiblings might be embedded in valuable hosts that could break if the user slips whi-
le shaking. Hosts could further be bulky, which makes shaking cumbersome and could lead to
bad pairing input. Moreover, the Picosibling needs to be equipped with a 2-axis-accelerometer.
Mayrhofer and Gellersen [52] developed a pairing protocol based on users shaking the devices
together. Smart-Its of Holmquist et al. [38] recognise their “friends” by comparing accelero-
meter data. Hence, a user shakes both Smart-Its to establish a connection. Another approach
by Castelluccia and Mutaf [21] relies on shaking devices to randomise the reception power
and thus to incrementally establish a secret by transferring bits. It does not require additio-
nal hardware but is questionable in terms of usability since the devices have to be shaken
randomly until a secret is established, which can take minutes. Gesture-based pairing mecha-
nisms underly similar constraints as they require either accelerometers or audio capabilities.
Hinckley [37] developed a pairing mechanism that allows bumping devices together to create
a shared secret while Peng et al. [60] created a protocol that identifies the device to pair with
by pointing at it and calculating the reception times of audio signals.

Buttons In an effort to create a pairing method that does not require special hardware,
BEDA by Soriente et al. [73] and other button-based techniques by Rekimoto et al. [63] and
Iwasaki et al. [40] have been developed. They require the devices to only provide buttons for
pairing. Users click the buttons synchronously or when prompted. Even this minimal interface
is not guaranteed for potentially inaccessible Picosiblings. Other variants that only require
one device to provide a button require the other device to provide sensors, accelerometers, or
LEDs. Similarly, RhythmLink by Lin et al. [49] prompts the user to tap a sequence or melody.
Besides the Picosibling’s lack of a button, microphone, and sensors required for RythmLink,
users have to remember the tapped sequence, defeating the Pico’s benefit of being memoryless.

Proximity Methods based on proximity estimate the distance between devices or use an
additional near frequency channel, e.g. NFC. The issue of the former lies in its increased
computational effort that the Picosiblings have to cope with and the increased duration the
user has to have Pico and Picosibling in close proximity to reduce error rates and attacks.
Varshavsky et al. [88] approach the pairing problem by comparing the devices’ radio environ-
ment in their Amigo system, Rekimoto et al. [65] utilise the signal strength of the pairing

10

3.3 Existing Pairing Mechanisms

devices, and Mathur et al. [51] establish a key based on the shared fluctuations in the wireless
environment. Switching to near frequency channels only shifts the pairing problem to another
medium. While it can be argued that pairing Picosiblings using NFC is a neat idea, eaves-
dropping – for example by using an antenna – cannot be completely prevented. Furthermore,
this would require Picosiblings to support an additional communication channel which will
likely increase their costs. Distance bounding could also be achieved by using ultrawide-band
or ultrasound as shown by Cagalj et al. [19].

Amariucai et al. [2] proposed the idea of an RFID-tag as an Adopted Pet that is imprinted
by spending a long time in range of its owner (the reader). For the Pico, this period might
be too long because users always need to be able to access their credentials. Noisy Tags by
Castelluccia and Avoine [20] utilise noise tags that are placed near the devices the user pairs to
generate sufficient noise such that an adversary cannot identify the messages used for pairing.

Short Authenticated Strings (SAS) approaches introduced by Vaudenay [89] and expan-
ded by Pasini and Vaudenay [58] include “Compare-and-Confirm”, “Copy-and-Confirm”, and
“Select-and-Confirm” of checksums. They all require a display and “Copy-and-Confirm” even
an input device to copy the other device’s checksum. Since the user’s involvement is high
in these cases, a rushing user [25] who is task-focused could defeat the security benefits of
“Compare-and-Confirm” while “Select-and-Confirm” and “Copy-and-Confirm” were found to
be too cumbersome to use in a usability analysis by Uzun et al. [87]. Saxena and Uddin [68]
analysed the usability of number comparisons and colour comparisons with regard to rushing
users. Dynamic schemes that require the user to check results on both devices are not suitable
for the Pico’s case.

MANA (manual authentication) schemes MANA I-IV by Gehrmann and Mitchell [30] and
Gehrmann and Nyberg [31] have different requirements on the devices and rely on user invol-
vement in the form of entering check values and confirming the success of the protocol (MANA
I). MANA I is not appropriate for Picosiblings as it requires one device to have a display and
the other to have a keypad that the user can use to enter a check-value displayed by the other
device. MANA II can be executed by devices that both have output interfaces and a simple
input interface for the user to confirm success. MANA IV of Laur and Nyberg [47] depends
on the user comparing strings on displays. Lastly, MANA III requires both devices to have
a keypad to enter a passkey generated by the user as well as a way for the user to confirm
success. Chong et al. [23] provide an overview over MANA schemes.

Even though Picosiblings have neither a keypad nor a way of indicating the success of the
protocol, a variant of MANA III as proposed by Jakobsson [41] allows it to run without the
user confirming the success of the protocol. The shared secret is split and shares are only
revealed in succeeding protocol rounds. This idea is similar to Bluetooth’s Simple Pairing [12].

11

3.4 Suitable Mechanisms

A “Copy” variant of this scheme presented by Uzun et al. [87] might be appropriate. The user
only copies the passkey that was delivered together with the Picosibling.

Physical Connection Similar to physical connection as suggested by Stajano and Anderson
[78], tranSticks of Ayatsuka and Rekimoto [3] allow cable-like connections between two devices.
Pre-paired tranSticks are connected to each device thereby establishing a wireless connection
between the devices. A variant of this could be suitable for the Pico in that the Picosibling is
pre-paired to a tranStick that the user connects to the Pico to complete the pairing.

Using the body as a physical connection to transfer data as in TAP of Park et al. [57] or
the approach of Soriente et al. [75] would, similar to the connection via cable, be an approach
that works until the Picosiblings are inaccessible. Personal area networks (Zimmermann [90])
have limited bandwidth and the user would have to connect the Pico and Picosibling for a
longer time period. Other than the time-factor, it might also raise user concerns or interfere
with other devices worn on or inside the user’s body.

Discussion Typing a passkey into one device violates the no-typing benefit of the Pico. For
an initial setup this violation might be acceptable which is why setups that require typing for
the initial pairing are referred to as quasi-no-typing and are not discarded.

This section illustrates why most pairing categories fail to model pairing between the Pico
and Picosiblings adequately. Capabilities and the interface of Picosiblings are limited. Dynamic
checksum comparisons or sophisticated sensor technologies are further infeasible leaving the
OOB-channel to be either a physical channel, if we relax the constraint of Picosiblings being
inaccessible, or to be a static channel that allows information exchange prior to running the
protocol.

3.4. Suitable Mechanisms

As a result of the literature review, the QR code option of SiB, the physical connection á
la resurrecting duckling, entering a passkey, and the usage of a Faraday cage as in MiB are
chosen to be explored further in user studies.

Physical connection, despite its obvious disadvantages, can be beneficial to use in the early
stages of Pico’s deployment, although it might become obsolete when Picosiblings become
inaccessibly interwoven with their hosts. It has low computational demands on the Picosiblings
and is similar to other use cases with which the user is familiar. Furthermore, it can be
substituted by a tranSticks variant for inaccessible Picosiblings as discussed in the previous
chapter.

Protocols for each of the chosen mechanisms are outlined below.

12

3.4.1 Physical Contact

3.4.1. Physical Contact

After establishing a physical connection the data is exchanged in a manner similar to that
proposed by Stannard [81]:

P → PSi: PAIR

PSi → P : desci

Fresh key material and a share si for the Picosibling are created by the Pico. The Pico stores
the description12, a distinctive ID for the Picosibling, the x-coordinate xi of the share si, the
key materialKP,PSi,1,KP,PSi,2, ci, and a slot used for nonces of the ping protocol. It then sends
the Picosibling the required key material together with the counter and the y-coordinate yi of
the share13:

P → PSi: PAIR, yi, KP,PSi,1, KP,PSi,2, ci

3.4.2. QR Code Scanning

The user scans a QR code of the Picosibling that contains a code identifier, the hash of the
Picosibling’s public key h(Ki) and a secret to authenticate the Pico to the Picosibling Si.
The Pico prompts all unpaired Picosiblings in its environment to respond to a pairing

broadcast.

P → PSi ∀i ∈ PS: PAIR, Ni, KP

Picosiblings that have not been paired respond by sending their public key together with the
received nonce and a new nonce encrypted under the Pico’s public key KP .

PSi → P : KPSi , {Ni, Nj}KP

To authenticate the received public key of the ith Picosibling, the Pico hashes it and compares
it to the one contained in the QR code. If they match, the Pico knows that it is communicating
with the legitimate Picosibling14.
The Pico hashes the secret from the QR code of the Picosibling together with a nonce to

authenticate the Pico to the Picosibling. A newly created session key KP,PSi,1, which is sent
encrypted under the Picosibling’s public key, encrypts this hash. The Pico uses the received
nonce Nj to link the message containing the secret to the public key of the Pico that has been
used in the previous message.

12See section 3.5 for more information regarding the description.
13Section 5.3 explains the idea behind only sending the y-coordinate of the share.
14Here, legitimate means: The one that is associated with the QR code scanned by the user. If the user is

deceived into scanning a bogus code, the Pico would authenticate a Picosibling that is not legitimate in
the traditional sense.

13

3.4 Suitable Mechanisms

P → PSi: {KP,PSi,1}KPSi

P → PSi: {h(Si, Nj)}KP,PSi,1

The Picosibling can now authenticate the legitimate Pico by hashing the secret Si together
with the nonce Nj and comparing the result to the received string from the Pico.
If this comparison was successful, the description of the Picosibling as well as the remainder

of the key material can be exchanged. Encrypt-than-MAC can increase the efficiency and
integrity of the final messages.

PSi → P : {desci}KP,PSi,1

P → PSi: {yi, KP,PSi,2, ci}KP,PSi,1

3.4.3. Pre-defined Passkey

This protocol builds on password-authenticated key exchange (PAKE) by Bellovin and Merritt
[7], Boyko et al. [15], and Katz et al. [42]. Yet a variant of MANA IV would also be applicable
(see section 3.3).
A hard-coded passkey is printed on a label and delivered together with the Picosibling.

Users enter the passkey into an auxiliary device that passes the passkey to the Pico. The
Pico can display the passkey to the user to implement another security check preventing an
adversary from corrupting the communication channel between auxiliary device and Pico15.
Pico and Picosibling then execute a password-authenticated key agreement protocol after

which both generate a symmetric key KP,PSi,2 to communicate with each other. Thereafter
the final stage of the previous scenario is executed.

PSi → P : {desci}KP,PSi,2

P → PSi: {yi, KP,PSi,1, ci}KP,PSi,2

To prevent offline attacks, an encrypted key exchange protocol has to be used, as discussed
by Bellovin and Merritt [7].

3.4.4. Faraday Cage

Kuo et al. [46] introduced the MiB protocol based on a Faraday cage. A keying device (Pico)
supplies the device to be paired (Picosibling) with the key material inside the Faraday cage.
A keying beacon exchanges heartbeat messages with the keying device and ensures that the
cage is closed. Once closed, the beacon jams all outside signals.
For the user study, a simplified version of this protocol was used that omitted the keying

beacon and used a box as the Faraday cage. The user places all Picosiblings to pair as well

15An attacker could still compromise the auxiliary input device and perform the pairing before the Pico had
the chance to pair the Picosibling.

14

3.5 Management Options for Picosiblings

as the Pico in the Faraday cage. Within the cage, the MiB protocol is run exchanging keying
information. The Pico indicates the success of the pairing process by displaying a success
message or emitting an alarm sound. This indicator prompts the user to extract the devices
from the cage. Once extracted, the final message to complete the MiB protocol is sent and
a common key KP,PSi,1 established between the Pico and each of the Picosiblings that had
been in the cage.
The key material is exchanged similarly to the former protocols.

PSi → P : {desci}KP,PSi,2

P → PSi: {yi, KP,PSi,2, ci}KP,PSi,1

3.5. Management Options for Picosiblings

A management layer between Pico and the user is needed to identify Picosiblings uniquely in
case they are lost or stolen. Otherwise, the removal of Picosiblings outside the user’s possession
is impossible.
An auxiliary application can be used to manage the Picosiblings. Picosiblings paired via

QR codes or passkeys could further be managed by keeping the QR code/passkey and scan-
ning/entering it again for management purposes. The latter approach requires users to keep
all the QR codes/passkeys of their Picosiblings. Users can also remove Picosiblings by re-
establishing the physical connection between Pico and Picosibling in the case of the physical
connection or the Faraday cage, unless the Picosibling is lost or stolen.

Application The auxiliary application can be run on a user’s device. If the docking station
provides I/O, it can also be used. Initial association of the Pico to such an auxiliary technology
could be established through a physical connection. A device’s internet connection can be
exploited by the Pico to validate the certificate of the application and to set up the remote
and backup server.16

During pairing, the user has to enter distinctive names for Picosiblings to allow management
of them in later stages. Aiding this, the Picosibling sends the Pico a manufacturer-provided
description of its host. This description is sent to the application by the Pico and displayed
to users giving them the opportunity to accept it or to alter it. After prompting the user to
confirm the displayed description on the Pico, the Pico continues with the pairing protocol.
Picosiblings never communicate with the application directly but use the Pico as a proxy.

This adds a layer of indirection that allows for integrity checks and enhances overall security.
The application equally never receives any secret information besides from descriptions of
Picosiblings.

16See 5.4, 5.5.

15

4.1 Experimental Design

4. User Study

A user study was performed to evaluate which of the chosen pairing mechanisms are the most
suitable for the Pico project in terms of usability. The goal of this study was to capture the
perception of a potential target group for the Pico and analyse their feedback for each of the
mechanisms. This feedback helps to not only choose a pairing mechanism that will be widely
accepted but also to adjust the design of this mechanism in a way that appeals to the user.

4.1. Experimental Design

Apparatus The four above presented techniques were simulated on a Samsung GT-S6500 in
combination with a 13-inch MacBook Air (mid 2011). Participants were provided a mouse to
minimise usability effects the Mac OS might provide. Implementations were not functional but
provided an interface that guided the participants through the pairing process. The researcher
was not actively involved during the tasks the participants performed. A watch, a belt, and a
necklace were used as Picosiblings. Ports for establishing the physical connection were modeled
with plastic modeling mass. QR-codes, passkeys, and descriptions were printed on paper and
placed next to the Picosiblings. The Faraday cage was simulated using a hand-crafted box.
Fig. 1 shows the setup for the user study and appendix A.6.2 contains screenshots of the
interfaces and further images.

Fig. 1: Setup for the User Study

This study focused on
the pairing process. Inter-
faces for all scenarios were
modelled consistently, in-
cluded safe defaults, and
were implemented on the
same devices. The scenari-
os’ task completion times
were automatically logged
to minimise human error.
Moreover, the number of
steps and the security of
each scenario was compa-
rable to achieve meaning-
ful and fair results. Pass-
keys for each pairing were 8 characters long, consisting of capital letters and numeric values.

Although the application is not the only option to manage the set of Picosiblings, it is the
only that supports all use cases discussed in this thesis. To guarantee comparability of the
scenarios, all of them used the application option for managing the Picosiblings.

16

4.1 Experimental Design

Appendix A.5.1 presents the architecture and functions of the prototypes’ implementation.

Participants 24 participants (12 male, 12 female), consisting of students from the University
of Cambridge studying subjects unrelated to computer science, were recruited. Participants
ranged from 22 to 32 years old (mean = 25.5). Younger participants, as those recruited for this
study, are most likely to be early adopters of the system and thus might become the target
group for initial deployments (see Lee et al. [48]).. The surveyed user group is potentially more
experienced and comfortable with technology including new technology such as the Pico. They
are more likely to adapt the auxiliary technologies developed by Stajano et al. [80] that allow
an incremental deployment.

Users from different age groups might prefer different pairing mechanisms, and so future
studies should explore whether the results of this thesis are transferable to other groups.

Pilot Study All of the previously discussed scenarios required the participant to confirm that
the entered description was the one displayed on the Pico. This step was simplified for the
study as it did not differ across the scenarios. Pilot interviews that were conducted to validate
the experimental procedure revealed that the simplified version still confused participants, and
so the step was omitted.

The pilot interviews further revealed that the original design of the experiment included too
many steps and confused participant by switching between the phone and laptop too often. As
a result, the design was altered to focus more on the pairing mechanisms by simplifying the
steps involved. Further, removal of Picosiblings was no longer subject of this study as two of
the scenarios used the same removal procedure while one (physical connection) used another.
The final study added a pairing scenario that involved a Faraday cage.

Procedures A within-subjects design was implemented to yield results that allow comparison
of the scenarios. Participants were subject to the same procedure. A short introduction made
them familiar with the Pico and Picosiblings. Next, a description of the pairing scenarios was
given to them on paper. Participants were asked to complete three pairing tasks for each
scenario.

The scenarios modelled the pairing mechanisms from section 3.4. As a result of the pilot
study they were simplified to focus on the differences and yield comparable results. Figure 2
shows the flow charts of the tasks the users performed on the Pico and in the desktop appli-
cation for the QR code scenario. Appendix A.6.4 contains flow charts for the other scenarios
and appendix A.6.5 shows the original flow charts of the scenarios during the pilot interviews
to emphasise the differences in complexity and number of steps involved. To counter-balance
order effects (training effects or exhaustion), a Balanced Latin Square design for the scenarios
was used as shown in table 1.

17

4.1 Experimental Design

Scenario 1 Scenario 2 Scenario 3 Scenario 4
Group 1 Physical Contact QR Code Faraday Cage Passkey
Group 2 QR Code Passkey Physical Contact Faraday Cage
Group 3 Passkey Faraday Cage QR Code Physical Contact
Group 4 Faraday Cage Physical Contact Passkey QR Code

Table 1: Balanced Latin Square Design

Fig. 2: Flow Chart of the User Study’s QR Code Scenario

While completing the
tasks, the researcher no-
ted problems encounte-
red, statements made, and
feelings expressed. After
each scenario, participants
were asked to complete
a questionnaire capturing
their subjective percepti-
on of the process. They
were also asked to iden-
tify parts of the scenario
that were most intuitive
to them, that they did not
understand, and that we-
re clearest to them. Parti-
cipants were given the op-
portunity to state what they would like to have changed about the scenario. Furthermore,
the System Usability Scale (SUS) [16] was used as a measure of usability for each scenario.
This is a 10-item Likert scale that is widely used and reliable. At the end of the experiment
the participants were asked to explain the steps involved in the scenarios in their own words.
This was used to assess participants’ mental model of the processes. The previous sheets of
paper were removed before participants answered these questions. Finally, participants were
polled on their age, gender, previous pairing experience, which scenario they perceived the
most secure, and their personal preference.

The 24 interviews lasted between 31:18 and 59:18 minutes each; participants were compen-
sated with snacks at the end of the interview. The mean duration of the interviews was 43
minutes and 4 seconds.

Usability Measures Within-subjects and between-subjects dependent variables were both
collected:

18

4.2 Statistical Results

• Within-subjects usability measures: Task Completion Time, SUS Score, Error Rate,
Preference, Security Perception

• Between-subjects factors: Gender, Prior Pairing Experience

Time measurement started as soon as the participant first clicked the "Pair“ button on the
Pico and ended once the participant confirmed the identifier of the third Picosibling in the
application. While the Samsung phone and the MacBook were not synchronised during the
experiment, clock deviation did not influence the validity of the time measurement as the task
completion time was analysed in a comparative fashion and all scenarios were subject to the
same clock deviations.

4.2. Statistical Results

The independent variables are the scenarios for pairing; the dependent variables are task
completion time, SUS score, and recall error rate. Statistical significance will be reported at
the 5% level represented by * or at the 1% level represented by **.
Error rates were calculated to measure mental model accuracy of the scenario. Each step of

the pairing process yielded one point that had to be recalled. Forgotten steps indicate steps
that were not sufficiently intuitive to remember them. The recall of the scenarios was done at
the end of the experiment to separate the tasks from recalling them. However, the error rates
did not yield reliable results. Recalling all scenarios after another helped participants remember
steps they had forgotten before because several steps were similar across the scenarios.
For conciseness, only selected graphs are presented. Appendix A.6 contains further graphs

used in the analyses. Calculations were performed using the language R.17 The scenarios are
abbreviated as QR for the QR code, Cable for the physical connection, Passkey for the passkey,
and Cage for the Faraday cage scenario.

4.2.1. Techniques

Task completion time was normalised for evaluation to adjust for differences between the
scenarios. The normalisation was performed similar to the approach of Cheng et al. [22] for
information retrieval times. I executed each scenario 10 times to retrieve measurements t1 to
t10. The average of these “expert” measurements Ne =

∑10
i=1 ti
10 was used as the numerator

of the normalised time measurement Nj = Ne
tj

where tj is the task completion time of the
participant.
Using gender and experience as between-subjects factors, the scenario as the within-subjects

factor, a mixed analysis of variance was performed on the usability measures (independent

17All scripts and generated graphs can be found in the uploaded .zip-file or at https://github.com/
fabianmakrause/MPhil.

19

https://github.com/fabianmakrause/MPhil
https://github.com/fabianmakrause/MPhil

4.2 Statistical Results

Scenario Mean Rank Std. Dev. Rank 1 Rank 2 Rank 3 Rank 4 Secure
Physical Connection 2.667 1.00722 3x 8x 7x 6x 9x
QR Code 1.792 1.06237 13x 6x 2x 3x 5x
Passkey 3.000 0.83406 1x 5x 11x 7x 5x
Faraday Cage 2.542 1.25036 7x 5x 4x 8x 5x

Table 2: Preference Rating Results

Each entry represents the number of participants who ranked the scenario as their first choice
(Rank 1), second choice (Rank 2), third choice (Rank 3), or last choice (Rank 4).

variables). Between all levels of between-subjects factors that indicated significant differences
through the ANOVA or Friedman tests, pairwise t-tests were performed on the within-subjects
measurements (task completion time, normalised task completion time, and SUS score by
scenario). Friedman tests were performed in case the data could not have been normalised.
Validation of the applicability of the t-tests was ensured by testing the datasets for normality.
Normality tests included the Shapiro-Wilk test and a graphical analysis through QQ-plots.
Non-normal datasets were adjusted via transformation when appropriate (if possible). The
whole procedure is described for scenario effects on SUS scores and normalised task completion
time. Afterwards only results are presented. Task completion time is reported in milliseconds
if not otherwise stated.

4.2.2. General Results

Nine participants rated the physical connection scenario as the most secure, whereas QR code,
passkey, and Faraday cage each received five votes to be the most secure. This difference is
not significant according to a chi-squared test (p = 0.5724). Neither are the differences when
splitting the votes by gender or experience.

Looking at the personal preferences of the participants, the QR code scenario appears to
be most appealing with an average ranking of 1.792. Table 2 summarises the results of the
preference ratings showing how many participants chose which scenario as their most favourite,
second favourite, etc. A chi-squared test found the difference to be significant (p < 0.01). Chi-
squared and fisher tests18 between all levels revealed the following significant differences:
QR >∗ Cable (p < 0.05), QR >∗∗ Pass (p < 0.01)

Pass >(∗) Cage (fisher test: p = 0.05242, chi-squared: p < 0.05)

18The small sample size and low values in some cells (more than 20% of cells contain a value of 5 or less)
require additional tests to the chi-squared test to confirm the results.

20

4.2.3 Scenario Effects

Scenario Mean Std. Dev. Min. Max.
Physical Connection 82.71 16.745 37.5 100
QR Code 86.88 11.867 60.0 100
Passkey 76.88 15.363 42.5 95
Faraday Cage 76.25 21.882 20.0 100

Table 3: SUS Scores by Scenario

SUS Score

Fr
eq
ue
nc
y

20 40 60 80 100

0
2

4
6

8
10

(a) Histogram of SUS Scores

Cable Cage Pass QR

20
40

60
80

10
0

Pairing Scenario

S
U

S
 S

co
re

(b) Boxplot SUS Scores by Scenario

Fig. 3: Summary of SUS Scores

4.2.3. Scenario Effects

Effect on SUS Score General data of SUS scores by scenario is presented in table 3. With
regard to the mean value of the SUS scores, the QR code was the most usable scenario followed
by physical connection. However, several participants stated their strong discontent with using
a cable because it is “cumbersome” and “time-consuming”.19

The boxplot of the SUS scores by scenario shown in fig. 3b indicates possible differences
between the QR code and all others as well as between the Cable scenario and the Faraday
Cage/Passkey.

Fig. 3a indicates that the SUS scores are skewed to the right (ceiling effect). Shapiro-Wilk
tests on SUS scores separated by scenario confirm that the data are not normally distributed
(p < 0.01 for Cage and Cable; p = 0.02078 for Passkey; and p = 0.01444 for QR code).

19The absolute time the participants needed to complete the cable-scenario was not significantly higher.

21

4.2 Statistical Results

Cable Cage Pass QR
0

50
00
00

10
00
00
0

15
00
00
0

Scenario

tra
ns
fo
rm
ed
S
U
S

Fig. 4: Boxplot Transformed SUS Scores by Scenario

Using the Box-Cox power
transformation (fig. 5a),
an exponent of 3.10101
is yielded to transform
the SUS scores. The re-
sulting distribution is a
lot less skewed as seen is
fig. 5b. Shapiro-Wilk tests
for transformed SUS sco-
res result in: p = 0.2139

(Cage), p = 0.1123 (Ca-
ble), p = 0.2028 (Pass-
key), p = 05301 (QR)
meaning we cannot reject
the null hypothesis that each of these datasets is normally distributed. While the boxplots of
the transformed datasets (fig. 4) still hint at possible differences between the SUS scores by sce-
nario, the one-way repeated measures ANOVA was non-significant (p = 0.542). However, the
Friedman test results in p < 0.01. As characteristic for the Friedman test, this result is connec-
ted to a loss of power. Accepting this loss of power, pairwise t-tests for the transformed datasets
show a significant difference between QR code and passkey (p < 0.05, power = 67.94%) and
borderline significance between QR code and cable (p = 0.0617, power = 44.65%).

The effect of the within-subjects factor scenario on SUS scores can be summarised as follows:
QR >(∗) Passkey

QR >((∗)) Cable

QR > Cable > Cage > Passkey

Effect on Task Completion Time As indicated by the boxplot of task completion times
by scenario (fig. 6a), there was no significant effect of scenario on task completion time.
Transforming the dataset by an exponent of -0.14141 did not reveal a signiicant effect either.

Effect on Normalised Task Completion Time Fig. 6b shows the boxplot of the normalised
task completion times by scenario. It indicates a significant advantage of the Faraday cage
scenario. However, considering the experimental design, this variation can be explained due to
a design error in the measurements as the time for the Faraday cage scenario started as soon
as the user pressed the “Pair” button. A minute after this, the alarm sound rang to notify that
the pairing was completed. More realistic would be a measurement starting as soon as the
button is pressed and waiting a minute as soon as the cage is closed. This was not possible
with the experimental setup.

22

4.2.3 Scenario Effects

1 2 3 4 5

-7
0

-6
6

-6
2

-5
8

λ

lo
g-
Li
ke
lih
oo
d

 95%

(a) Box-Cox Transformation Plot of SUS Scores

Transformed SUS Score

Fr
eq
ue
nc
y

0 500000 1000000 1500000

0
2

4
6

8
10

(b) Histogram of Transformed SUS Scores

Fig. 5: Summary of SUS Transformation

Cage Passkey QR Code
Cable < 0.01** (98.33%) < 0.05* (62.97%) < 0.01** (62.66%20)
QR Code < 0.01** (93.09%) 0.49
Passkey < 0.01** (92.44%)

Table 4: Pairwise T-Tests between Normalised Task Completion Times

Shapiro-Wilk tests show that the data is not normal for the QR code (p < 0.05) and
cable (p < 0.05) even though H0 of the Shapiro-Wilk test cannot be rejected for the passkey
(p = 0.8716) nor for the cage (p = 0.6713). The Friedman test indicates a significant effect of
scenario on normalised task completion time (p < 0.01), which leads to a transformation by
an exponent of 0.4242424 (using the Box-Cox method). Shapiro-Wilk tests and QQ-plots of
the transformed datasets confirm that they can be assumed normal.

One-way ANOVA confirms the existence of significant effects within the normalised dataset
(p < 0.01). Results of pairwise t-tests are shown in table 4 (the power of the t-test is presented
in brackets behind the α-level). In summary, the effect of the within-subjects factor scenario
on normalised task completion time is as follows:
Cage >∗∗ Cable, Cage >∗∗ QR, Cage >∗∗ Passkey

QR >(∗) Cable

Passkey >(∗) Cable

Cage >∗∗ QR > Passkey >(∗) Cage

23

4.2 Statistical Results

Cable Cage Pass QR

10
00
00

15
00
00

20
00
00

Scenario

Ta
sk

 C
om

pl
et

io
n

Ti
m

e

(a) Time (in ms) by Scenario

Cable Cage Pass QR

0.
2

0.
4

0.
6

0.
8

1.
0

Pairing Scenario
N

or
m

al
is

ed
 T

as
k

C
om

pl
et

io
n

Ti
m

e

(b) Normalised Time by Scenario

Fig. 6: Boxplot of Task Completion Times by Scenario

4.2.4. Gender Effects

The mean values of the males’ preferences ranking are: QR (1.9166) > Cable (2.25) > Cage
(2.6667) > Passkey (3.1667). The difference between QR code and passkey is significant (p <
0.05).

Females’ preferences can be summarised as follows: QR (1.6667) > Cage (2.1667) > Passkey
(2.8333) > Cable (3.0833). QR codes are rated significantly better than the passkey and the
cable (p < 0.05 in both cases).

Figures 7a, 7b, and 7c show the averages of the usability factors for each scenario by gender.

Effect on SUS Score Females generally assigned higher SUS scores (mean = 83.02, sd =
14.9996) than males (mean = 78.33, sd = 18.9437), but the effect is not significant. There
is a stark difference in SUS scores for the cage scenario (female mean: 82.5, male mean: 70,
not significant). The QR code scores of females are higher than the passkey scores of males
(p < 0.05, power = 52.15%) and the female QR code scores are higher than the male cage
scores (p < 0.05, power = 46.91%). Borderline significance is found between the passkey and
QR code SUS scores of females (p = 0.05462, power = 44.61%).

Effect on Task Completion Time The tasks were completed faster by females (female mean:
111.6s (sd = 27.476), male mean: 127.1s (sd = 36.061), p < 0.05, power = 57.51%). Pairwise
t-tests between male and female scenario task completion times show a significant difference of
the cage scenario (p < 0.05) confirmed by the Wilcoxon rank sum test (p < 0.01). The power
of the t-test was at 65.56%. Males were faster completing the cage scenario than females

24

4.2.4 Gender Effects
Sheet1

Page 1

SUS Scores

Male Female

Cable 82,92 82,5

QR Code 85,21 88,54

Passkey 75,21 78,54

Cage 70 82,5

Times

Male Female

Cable 133,3 116,1

QR Code 118,9 115,5

Passkey 120,1 108,4

Cage 136 106,2

Normalised Time

Male Female

Cable 0,4235 0,4202

QR Code 0,5262 0,5311

Passkey 0,4729 0,5434

Cage 0,634 0,8303

SUS Scores

Experienced Unexperienced

Cable 86,18 74,29

Cable QR Code Passkey Cage

0

20

40

60

80

100

Male Female

Scenario

S
U

S
 S

c
o

re

Cable QR Code Passkey Cage

0

20

40

60

80

100

120

140

160

Male Female

Scenario

T
a

s
k
 C

o
m

p
le

ti
o

n
 T

im
e
 (

in
 s

e
c
o
n

d
s
)

Cable QR Code Passkey Cage

0

0,2

0,4

0,6

0,8

1

Male Female

ScenarioN
o
rm

a
lis

e
d
 T

a
s
k
 C

o
m

p
le

ti
o
n

 T
im

e

(a) Mean SUS Scores by Gender

Sheet1

Page 1

SUS Scores

Male Female

Cable 82,92 82,5

QR Code 85,21 88,54

Passkey 75,21 78,54

Cage 70 82,5

Times

Male Female

Cable 133,3 116,1

QR Code 118,9 115,5

Passkey 120,1 108,4

Cage 136 106,2

Normalised Time

Male Female

Cable 0,4235 0,4202

QR Code 0,5262 0,5311

Passkey 0,4729 0,5434

Cage 0,634 0,8303

SUS Scores

Experienced Unexperienced

Cable 86,18 74,29

Cable QR Code Passkey Cage

0

20

40

60

80

100

Male Female

Scenario

S
U

S
 S

c
o

re

Cable QR Code Passkey Cage

0

20

40

60

80

100

120

140

160

Male Female

Scenario

T
a

s
k
 C

o
m

p
le

ti
o

n
 T

im
e
 (

in
 s

e
c
o
n

d
s
)

Cable QR Code Passkey Cage

0

0,2

0,4

0,6

0,8

1

Male Female

ScenarioN
o
rm

a
lis

e
d
 T

a
s
k
 C

o
m

p
le

ti
o
n

 T
im

e

(b) Mean Task Time by Gender

Sheet1

Page 1

SUS Scores

Male Female

Cable 82,92 82,5

QR Code 85,21 88,54

Passkey 75,21 78,54

Cage 70 82,5

Times

Male Female

Cable 133,3 116,1

QR Code 118,9 115,5

Passkey 120,1 108,4

Cage 136 106,2

Normalised Time

Male Female

Cable 0,4235 0,4202

QR Code 0,5262 0,5311

Passkey 0,4729 0,5434

Cage 0,634 0,8303

SUS Scores

Experienced Unexperienced

Cable 86,18 74,29

Cable QR Code Passkey Cage

0

20

40

60

80

100

Male Female

Scenario

S
U

S
 S

c
o

re

Cable QR Code Passkey Cage

0

20

40

60

80

100

120

140

160

Male Female

Scenario

T
a

s
k
 C

o
m

p
le

ti
o

n
 T

im
e
 (

in
 s

e
c
o
n

d
s
)

Cable QR Code Passkey Cage

0

0,2

0,4

0,6

0,8

1

Male Female

ScenarioN
o
rm

a
lis

e
d
 T

a
s
k
 C

o
m

p
le

ti
o
n

 T
im

e

(c) Mean Normalised Task Time by Gender

Fig. 7: Gender Effects

completing the cable scenario (p < 0.05, power = 47.93%), the QR code scenario (p <

0.05, power = 55.82%), and the passkey scenario (p < 0.05, power = 62.76%).

Effect on Normalised Task Completion Time Normalised task completion times confirm
that females were faster than males. Their normalised task completion time mean is 0.5812 (sd
= 0.1952), the one of the males 0.5142 (sd = 0.1547) (not significant). There was a significant
effect of gender on the normalised task completion times of the cage scenario. Females were
significantly faster (mean: 0.83 vs. 0.63, p < 0.05, power = 80.7%). Comparisons of the other
normalised times are shown in table 5 (power in brackets).

Males were faster at completing the cage scenario than the passkey (p < 0.05, power =

84.28%), the QR code (p < 0.05, power = 52.2%), and the cable scenarios (p < 0.05, power =

75.01%). Females were also faster completing the cage scenario than the passkey (p < 0.05, power =

89.97%), the QR code(p < 0.01, power = 80.15%), and the cable scenario (p < 0.01, power =

88.7%). They were also faster completing the QR code scenario then the cable (p < 0.05, power =

67.25%) and faster on the passkey than the cable (p < 0.05, power = 57.23%).

25

4.2 Statistical Results

Male
Cable QR Code Passkey Cage

Female

Cable - < 0.05 (51.83%) ↓ - < 0.05 (93.32%) ↓
QR Code - - - < 0.05 (61.4%) ↓
Passkey - - - -
Cage < 0.05 (93.91%) ↑ < 0.05 (92.49%) ↑ < 0.01 (85.26%) ↑ < 0.05 (80.7%) ↑

Table 5: Comparison Normalised Task Completion Times by Gender
Arrow up = females performed better, arrow down = males performed better.

4.2.5. Experience Effects

Experienced users ranked the QR code on average higher than the other scenarios in the
preference ranking: QR (1.7059)21 > Cage (2.4118) > Cable (2.7647) > Passkey (3.1176).
Differences between passkey and cage (p < 0.01), cable and cage (p < 0.05), cable and QR
code (p < 0.01), and passkey and QR code (p < 0.01) are significant.

The preference ranking of inexperienced users does not yield any significant effects:
QR (2) > Cable (2.4286) > Passkey (2.7143) > Cage (2.8571).

Since the sample sizes for experienced and inexperienced users differ, power analyses were
performed using Cohen’s d as an indicator of the effect size.

Figures 8a, 8b, and 8c show the averages of the usability factors for each scenario by expe-
rience.

Effect on SUS Score On average experienced users assigned a 10 point higher SUS score
(mean = 83.6, sd = 15.2735) than inexperienced users (mean = 73.57, sd = 19.57214). A
Wilcoxon rank sum test indicates that this difference is significant at the 1% α-level.

Experienced users assigned higher SUS scores for the QR code scenario than the passkey
(p < 0.05, power = 59.93%) and the cage (p = 0.05348, power = 46.82%).

They also assigned higher SUS scores to the cable scenario than inexperienced users to the
passkey (p < 0.05, power = 77.48%) and rated the QR code higher than the unexperienced
users rated the cable (p = 0.07584, power = 61.35%), the passkey (p < 0.05, power =

93.86%), and the cage (p = 0.6046, power = 69.12%).

Effect on Task Completion Time There was no significant effect of experience on task
completion time. Experienced users were on average slightly faster by less than 2 seconds with
120.4s (sd = 33.6707) opposed to 116.8s (sd = 31.1152) of inexperienced users (not significant).

21The number in brackets represent the mean values of the preference ranking.

26

4.2.5 Experience Effects
Sheet1

Page 2

QR Code 89,85 79,64

Passkey 78,97 71,79

Cage 79,41 68,57

Times

Experienced Unexperienced

Cable 128,4 115,9

QR Code 117,6 116,1

Passkey 114,6 113,5

Cage 120,8 121,7

Normalised Time

Experienced Unexperienced

Cable 0,4139 0,4413

QR Code 0,5308 0,5234

Passkey 0,4997 0,5287

Cage 0,7343 0,7271

Cable QR Code Passkey Cage

0

20

40

60

80

100

Experienced Unexperienced

Scenario

S
U

S
 S

c
o

re

Cable QR Code Passkey Cage

105

110

115

120

125

130

Experienced Unexperienced

ScenarioT
a

s
k
 C

o
m

p
le

ti
o

n
 T

im
e
 (

in
 s

e
c
o
n

d
s
)

Cable QR Code Passkey Cage

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8
Experienced

Unexperienced

Scenario

N
o
rm

a
lis

e
d
 T

a
s
k
 C

o
m

p
le

ti
o
n

 T
im

e

(a) On SUS Score

Sheet1

Page 2

QR Code 89,85 79,64

Passkey 78,97 71,79

Cage 79,41 68,57

Times

Experienced Unexperienced

Cable 128,4 115,9

QR Code 117,6 116,1

Passkey 114,6 113,5

Cage 120,8 121,7

Normalised Time

Experienced Unexperienced

Cable 0,4139 0,4413

QR Code 0,5308 0,5234

Passkey 0,4997 0,5287

Cage 0,7343 0,7271

Cable QR Code Passkey Cage

0

20

40

60

80

100

Experienced Unexperienced

Scenario

S
U

S
 S

c
o

re

Cable QR Code Passkey Cage

105

110

115

120

125

130

Experienced Unexperienced

ScenarioT
a

s
k
 C

o
m

p
le

ti
o

n
 T

im
e
 (

in
 s

e
c
o
n

d
s
)

Cable QR Code Passkey Cage

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8
Experienced

Unexperienced

Scenario

N
o
rm

a
lis

e
d
 T

a
s
k
 C

o
m

p
le

ti
o
n

 T
im

e

(b) On Task Completion Time

Sheet1

Page 2

QR Code 89,85 79,64

Passkey 78,97 71,79

Cage 79,41 68,57

Times

Experienced Unexperienced

Cable 128,4 115,9

QR Code 117,6 116,1

Passkey 114,6 113,5

Cage 120,8 121,7

Normalised Time

Experienced Unexperienced

Cable 0,4139 0,4413

QR Code 0,5308 0,5234

Passkey 0,4997 0,5287

Cage 0,7343 0,7271

Cable QR Code Passkey Cage

0

20

40

60

80

100

Experienced Unexperienced

Scenario

S
U

S
 S

c
o

re

Cable QR Code Passkey Cage

105

110

115

120

125

130

Experienced Unexperienced

ScenarioT
a

s
k
 C

o
m

p
le

ti
o

n
 T

im
e
 (

in
 s

e
c
o
n

d
s
)

Cable QR Code Passkey Cage

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8
Experienced

Unexperienced

Scenario

N
o
rm

a
lis

e
d
 T

a
s
k
 C

o
m

p
le

ti
o
n

 T
im

e

(c) On Normalised Task Completion Time

Fig. 8: Experience Effects

Effect on Normalised Task Completion Time Within the set of experienced users, signifi-
cant advantages using pairwise t-tests were found for the cage scenario compared to the cable
(p < 0.01, power = 91.36%), compared to the QR code scenario (p < 0.05, power = 90.43%),
and compared to the passkey scenario (p < 0.01, power = 82.44%). The QR code was also
completed relatively faster than the cable scenario (p < 0.05, power = 60.66%) and there was
a borderline advantage of the passkey compared to the cable scenario (p = 0.07688, power =

40.37%.
QR >(∗) Cable, Pass >(∗) Cable

Cage >∗∗ Pass, Cage >∗∗ QR, Cage >∗∗ Cable

Unexperienced users completed the cage scenario relatively faster than the cable (p <

0.05, power = 60.77%), the passkey (p < 0.05, power = 45.37%), and the QR code (p <

0.05, power = 55.9%).

Table 6 shows the results of pairwise t-tests between experienced and inexperienced users.
Besides the bias towards the cage scenario, inexperienced users completed the QR code scenario
more efficiently than experienced users completed the cable scenario.

27

4.3 Qualitative Results

Experienced
Cable QR Code Passkey Cage

In- Cable - - - < 0.01 (92.03%) ↓
Experienc- QR Code < 0.05 (44.12%) ↑ - - < 0.01 (74.84%) ↓

ed Passkey - - - < 0.05 (82.19%) ↓
Cage < 0.01 (96.8%) ↑ < 0.05 (88.25%) ↑ < 0.05 (95.92%) ↑ -

Table 6: Comparison Normalised Task Completion Times by Experience
Arrow up = unexperienced performed better, arrow down = experienced performed better.

4.3. Qualitative Results

Observing the participants, it became apparent that users rarely read instructions presented
on the Pico or in the application. This calls for implementing a pairing mechanism that is very
intuitive. After a successful first pairing, the consecutive pairings were rushed by participants.
Warnings about possible compromises of the process are likely to be ignored. In four cases,
this behaviour led to mistakes in the pairing process.

For some Participants (4)22 the connection between Pico and Picosiblings was only clear
in the physical connection scenario. They did not draw the connection between a separate
QR code (2) or passkey (2) and the Picosibling even though the description/name of the
Picosibling was clearly written on top of it. This suggests that if issuing QR codes or passkeys
for Picosiblings, they need to link to the host of the Picosibling. One participant even scanned
the same QR-code twice for different pairings.

Switching between the Pico and the application further presented a challenge for some
participants (5). While many participants expressed their content with using a management
application “like iTunes”, for some, using more than one device at a time was challenging and
cumbersome. Two participants expressed their satisfaction in having a pre-defined description
for each Picosiblings that they can confirm. However, many did not check the description
in successive pairings. This behaviour could become problematic for identifying Picosiblings
uniquely. Taking a picture of the Picosibling as discussed in section 5 could overcome this
problem.

Many participants clicked the “Pair” button on the Pico more often than necessary because
they did not know whether the Pico is already in pairing mode or not. This issue of clear
feedback could be approached by signalling the user that the Pico is in pairing mode via the
display.

Despite emphasising the connection between Pico and Picosibling while pairing, the physical
connection scenario was often seen as “unnecessary” (6), a “constraint” and one participant
even stated that “nobody would like to plug anything into their things”. Connecting two devices

22The number in brackets indicates the number of participants that were found to show this behaviour.

28

4.3 Qualitative Results

by cable was also thought to be “easier for older people” and “increases confidence in security
[sic]” (4).

A quarter of the participants (6) criticised that they had to take a picture in order to scan
a QR code. They are used to applications that scan the QR code automatically when holding
the smartphone above the QR code. Another issue that was verbalised was the lack of clarity
surrounding whether or not the picture taken by the participant covered sufficient space of the
QR code (3). An automatic scanning option would help to overcome this issue. Participants
also stated that QR codes are ubiquitous and easy to use because of their experience with
similar technologies (5). This complies with the principle of consistency in HCI. One person
stated that QR codes “increase confidence in security” while another found that a “QR code
appears to be easier to be hacked” than a passkey. The latter was due to the fact that QR
codes were often used “for fun” while passkeys have an “image [...] for security”.

During the Faraday scenario participants were often confused about why they would have to
use the Faraday cage and did not understand its purpose (9). They would prefer to “just have
devices in close proximity” (1). Six participants forgot to put the Pico into the cage despite
the instructions and others started pairing with only one Picosibling inside the Faraday cage
(5). Nonetheless, for many participants the cage was an effortless way of pairing more than
one Picosibling at a time. One explicitly stated that the time the pairing takes in the Faraday
cage “does not matter” since they “can do other things” meanwhile. Contrary to this, four
participants were discontent with the duration of the pairing and would have liked to have
an indicator of the time the pairing takes. It was also stated that an output to signal the
beginning of pairing would help them understand the process and confirm that the pairing
process started (6), and two were confused about what to do after pressing “Pair”. There was
also confusion about how to acquire a Faraday cage for pairing and how much such a cage
would cost (3).

Concerning the passkey scenario, five participants were confused about why they had to use
a passkey for a technology that aims at replacing passwords. Nevertheless, some participants
stated that using passkeys was intuitive and easy as they are used to typing passwords (6).
Two participants would have liked to enter the passkey on the Pico rather then the computer.
After correctly entering the passkey there was no confirmation that the passkey was correct.
However, the newly added Picosibling appeared in the list of Picosiblings. One participant
stated that an explicit confirmation after entering the passkey would clarify the process and
two participants did not understand the role of the Pico in the process since it was only used
for clicking “Pair” initially. A few participants also thought they were choosing passwords for
each Picosibling and three feared that “remembering many passwords will be a problem”. Two
participants started typing the name of the Picosibling instead of the passkey. However, two
also stated that passwords increase their confidence in security.

29

4.4 Discussion of the Study

Several participants in the user study reported that voice-output as guidance through the
pairing steps would be beneficial. Audio-output would possibly increase the usability of the
Pico and offer new pairing options when pairing Picosiblings that have an audio-receiver.

4.4. Discussion of the Study

While limited time and resources prevented an in depth analysis with a larger age range, the
results are a good indicator of potential pairing scenarios for a target group of young adults.
Future studies should adjust the system for users of all ages to aid wide deployment of the
Pico.
One result of this study is that users have different preferences of pairing mechanisms.

While some despise using cables for pairing, for many users the physical connection scenario
was intuitive and familiar. Statistically, the QR code scenario can be seen as the mechanism
that will most likely attract the highest number of users. It achieved the best results for SUS
scores among all tested groups and had the second best normalised task completion times.
Users tend to be experienced using QR codes. The Pico’s authentication system could further
strengthen their confidence in them. Pairing via the Faraday cage showed the best normalised
times. However, this result is biased by the measurement issues previously discussed.
I propose using a pairing framework similar to Bluetooth’s simple pairing [12] or the USB

wireless standard to offer different pairing mechanisms for different purposes and preferences.
Users would choose their preferred system and in future stages of the Pico’s deployment,
when Picosiblings become inaccessible, the pairing mechanisms can be adjusted or expanded.
It seems sensible to first implement the QR code option and the physical connection. On
the one hand, this allows for flexibility in later stages and a usable system that many users
are familiar with (QR code). On the other hand, users can choose to use a system that they
are confident in to provide security and that makes the process of pairing explicit (physical
connection).

30

5 Picosibling Management

5. Picosibling Management

The management process of Picosiblings must support at least the following use cases:

1. Pairing a set23 of Picosiblings to a blank Pico.

2. Adding Picosiblings to an existing set without changing the threshold number.

3. Removing a Picosibling from a set. This should be possible even if a user is no longer in
possession of the Picosibling.

4. Recovering from the loss of n− k + 1 Picosiblings.

5. Support the management of special shares in later stages.

Alternatives to having an auxiliary technology to support these use cases would require the
presence of all Picosiblings, including those stored in safety deposit boxes - a usability night-
mare.
Alternatively, the Pico could be used as a proxy to identify the missing Picosibling and

remove it. While the token’s I/O capabilities are limited, an Android application as envisioned
by Stajano et al. [80] offers sufficient capabilities to manage the Picosiblings.

Picosibling Identities Instead of using descriptions, Picosiblings could also be identified by
images of their hosts. These images can either be manufacturer-provided and sent to the
Pico or be taken by the users with the Pico. This could eliminate the need for an auxiliary
application altogether as the Pico could serve as the (limited) I/O device.

5.1. Attacks on Picosiblings

Tompa and Woll Tompa and Woll [86] discussed an attack in which cheating participants
deceive others by sending false shares. The aim of this is to gain access to the deceived
participants’ shares and to reconstruct the master key. A variant of this attack is a danger
for the Pico in that attackers gaining control of Picosiblings could send false shares. Such
false shares lead to a weak denial of service (DoS) attack on the Pico as the Pico would have
to determine which shares are incorrect by creating all potential polynomials. The cheating
participant could even remain undetected if only k Picosiblings sent their shares. If users had
no knowledge of the corruption of the Picosibling, they would not be able to access their
credentials.
A possible counter to this attack would be to store a salted hash h(yi, salt) of the Picosib-

ling’s share part yi in the Pico for integrity checks and to notify the user of corrupted shares.
More computationally expensive counters presented by Tompa and Woll [86] or Martin [50]
are unnecessary since the Pico serves as a trusted combiner in our case.

23Hereafter, “set” refers to the set of Picosiblings.

31

5.2 Pairing

Jamming, sleep deprivation torture attacks, and others The jamming of signals in public
places next to ATMs or points of sale (POS) would deny user-transactions. Fallback solutions
using the special shares could overcome this DoS.

Similarly, sleep deprivation torture attacks as described by Stajano and Anderson [78] could
drain the resources of Picosiblings sufficiently quickly to disable them. Users need to be notified
in cases where Picosiblings run out of energy so that they can initiate recharging. Picosiblings
could broadcast a final message encrypted under the key used for communicating with the
Pico. One solution to this is the use of a relay system through other Picosiblings. However,
specifics are yet to be developed as there are severe privacy risks involved.

Users need a way to inspect their Picosiblings. Attackers could steal Picosiblings, disable
them, and return them to users who are not aware of their altered state. An option to display
the state of all Picosiblings currently in the proximity of the Pico could hint at compromises,
power failures, and other problems that threaten the operability of the Picosiblings.

Malicious pairing Attackers might pair Picosiblings after resetting them or before users had
the chance to pair them to their own Pico. Until they are inaccessible, users can reset them
through physical contact and re-pair them to their Pico. However, there has to be a way of
resetting inaccessible Picosiblings, because such an attack would be an effective DoS.

5.2. Pairing

Potential pairing protocols were discussed in section 3.4. This chapter elaborates on manage-
ment considerations regarding pairing.

Initial pairing The threshold number must be fixed before initial pairing. Otherwise, Pico-
siblings would have to stay in proximity until all Picosiblings have been paired to the Pico to
receive their shares. If the threshold is fixed, however, the Pico must handle the eventuality
that a user leaves prematurely before pairing a sufficient number of Picosiblings. Keeping the
Pico in pairing mode for an extended period is a security risk, as adversaries could pair their
own Picosiblings or extract the master key.

Section 5.5 discusses the option to recover from losing all Picosiblings via the remote server.
It should be set up prior to initial pairing. After a long idle period in the initial pairing mode,
the Pico should lock or wipe the credentials that have been generated. The remote share
can than be used to unlock the Pico and continue the pairing. Potential auxiliary devices,
the backup server, and the biometric share should also be set up prior to the initial pairing.
An auxiliary application on a device with internet connectivity could be paired via USB and
provide the means to set up the special shares after verifying its authenticity.

32

5.2.1 Resharing and Changing the Threshold Boundaries

CHAPTER 2. PREPARATION 4

2.2 Design

The overall design of the system consists of two classes of device: the Pico and
the Picosibling. The Pico stores all of a user’s credentials, and uses them to
authenticate the user to a range of services. To avoid an attacker stealing the Pico
and gaining access to all of the user’s accounts, the credentials are encrypted with
a master key, which is split up into n shares, in such a way that k of them are
needed to recover the master key (see section 2.2.2). These shares are distributed
across a number of devices known as Picosiblings, built into items that the user will
always carry with them. The Pico communicates wirelessly with the Picosiblings,
accessing the shares stored on them to reconstruct the master key. If not enough
Picosiblings are available, the Pico must securely erase all copies of the unavailable
shares, the master key and any plaintext copies of the credentials, so that if it is
stolen the attacker cannot access the credentials.

2.2.1 States

In the original Pico paper [13], the Pico has three states: blank, locked and un-
locked. I kept this structure for my design, but added a forth state, ‘pairing’, for
reasons described below. The modified state diagram of the Pico is shown below.

Fig. 9: Pico State Diagram

Further pairings Prior to successive pairings after the initial setup, the Pico should request
all current shares to confirm the presence of a sufficient number of Picosiblings. This would
complicate the re-pairing attacks identified as a security risk by Stannard and Stajano [82].

Restoring backups When losing n − k + 1 Picosiblings, users need a way to recover their
credentials. One option would be to use the backup to restore the Pico (see 5.4) and allow
the user to be in the initial pairing mode upon proving access to the remote share, biometric
share, and key for backup recovery. The Pico’s state diagram24 (fig. 9) is altered slightly in
that restoring the backup and proving possession of all the previously mentioned credentials
leads to the “pairing” or “unlocked” state instead of the “locked” state. Restoring backups when
still in possession of Picosiblings does not require the remote share. In that case the restored
Pico will switch from the “blank” state to the “locked” state as shown in the state diagram.

5.2.1. Resharing and Changing the Threshold Boundaries

Resharing schemes usually presuppose that there is no trusted party to serve as a dealer and
combiner [36], thus all participants must collaborate to generate the new shares. The Pico can
take on this role.

Proactive resharing improves security, forcing the attacker to compromise all k Picosiblings
during a single resharing interval. Picosiblings that have been compromised in a previous
interval cannot be exploited to recreate the master key in combination with Picosiblings of
the current interval. Their shares belong to different polynomials.

24According to Stannard [81] p. 4.

33

5.2 Pairing

In Shamir’s secret sharing scheme resharing is accomplished by choosing a new polynomial
n(x) of degree k − 1 that is fixed at position 0 by n(0) = 0 and is added to the existing
polynomial. This allows the master secret to remain constant since f (t)(0) = f (t−1)(0)+n(0) =

S+0 = S in which f (t) represents the polynomial to recreate the master key at interval t. All
participants update their shares by adding the value of the new polynomial at their share’s
position yielding f (t)(x) = f (t−1)(x) + n(x)(mod q)25.
The Pico chooses this new arbitrary polynomial n(x), calculates the values n(xi) at the

positions xi stored for each Picosibling, and propagates these values to the Picosiblings. Since
Picosiblings might not be in range of the Pico during resharing, the Pico stores these offsets
and issues an update operation upon being in proximity. Offsets for Picosiblings that miss
several resharing rounds are added. This simplifies the resharing process for the user, who
needs not to gather all Picosiblings for each resharing transaction. It also does not reveal any
information to attackers who acquire possession of a Pico. While the offsets are stored outside
the secure storage of the Pico, they reveal no information about the secret.26 The offset can
be included in the ping-protocol by adding another field:

P → PSi: {offset, Nj , cj}KP,PSi,1

Aside from the nonce’s function for the ping-protocol, it also prevents replay attacks that
could invalidate the Picosibling’s share if the Picosibling updates its share by an old offset.
If the offset is not available, the Picosibling continues with the ping-protocol. Otherwise, it
updates its share first. When the Picosibling sends the pong-message, containing the share,
the Pico can check the integrity of the newly generated share by exploiting the in section 5.1
proposed countermeasure against cheating participants. The presented hash of the share that
is concatenated with the salt can be XORed with the offset for the share and the resulting
value stored in the Pico. When the Pico receives the updated share, it can calculate the old
share and create the integrity hash. This hash is compared against the stored hash and if they
match, the hash of the share and salt is updated.
A crucial question is how often resharing should occur. A counter of share retrieval requests,

as suggested by Peeters [59], does not seem practical for the Pico, as several Picosiblings are
requested far more frequently because of their hosts’ value to the user. Another option is to
have the resharing take place periodically and to further initiate resharing each time the set
of Picosiblings is altered. Ideally, the Pico adjusts the timings according to its environment.
Sensors and machine learning techniques could ensure that resharing occurs more frequently
in hazardous environments, for example when users visit areas of high crime rates.

25q denotes a prime chosen initially to set up the secret sharing scheme to define the finite field Zq that serves
as the computing base for all mathematical operations regarding secret sharing.

26An adversary who gets access to a Pico that stores k offset values for Picosiblings yields 0 for n(0) instead
of the secret S = f (t)(0).

34

5.3 Adding and Removing Picosiblings

Resharing can also involve changing the master key, e.g. because the user indicated a possible
compromise. When changing the master key, each Picosibling has to update its share-data. A
possible solution for Picosiblings that are not present is to save the new share for the Picosibling
in the Pico encrypted under the ephemeral key between Pico and Picosibling. After encrypting
the share, the Pico would hash the ephemeral key and store a counter for the number of hash-
rounds. This ensures that an adversary seizing possession of the Pico cannot extract the share,
since the key to decrypt the share is no longer in the Pico. The Picosibling can receive the
encrypted share, decrypt it, and hash its ephemeral key according to the Pico’s instructions.
The security of this variant would than depend on the user correctly identifying Picosibling
thefts. Otherwise, an attacker stealing a Picosibling could return to within proximity of the
Pico to receive the share update.

This resharing process relies on tamper-evidentness27 of the Picosiblings. An attacker who
can extract key information, an old share yi, place the Picosibling back in the victim’s posses-
sion, and eavesdrop upon the communication, can update the retrieved share at each resharing
round.

An issue of resharing usually occurs when k Picosiblings miss several resharing rounds (or
all of them) and the attacker gains access to these k Picosiblings. When the master key has
not been changed, an attacker having access to the xi values of these Picosiblings’ shares
can reconstruct the master key. However, the xi values are only stored in the Pico and the
encrypted backup system.28 An attacker who has access to either (and the k Picosiblings),
essentially breaks the system regardless of resharing.

An attacker who steals Picosiblings over time, returns them, and eavesdrops upon the fol-
lowing communication between Pico and Picosiblings would be able to update the share-
information. Further research has to be conducted on how to prevent such an attack. When
users notice this compromise, they can perform a re-pairing of the Picosibling. However, iden-
tifying this attack correctly is difficult.

5.3. Adding and Removing Picosiblings

Adding a Picosibling requires the Pico to be unlocked to counter primitive re-pairing attacks.
The biometric special share could be required each time a Picosibling is to be added, thereby
making re-pairing attacks infeasible altogether. Otherwise, the Pico should remove all received
shares (and the corresponding master key) and try to reacquire shares of a sufficient number
of Picosiblings upon the user pressing “Pair”. Resharing should always take place after the
user adds or removes Picosiblings to add further time diffusion.

27When Picosiblings are inaccessibly incorporated with their hosts, their hosts implement a weak form of
tamper-evidentness in that users notice when the hosts are damaged.

28See section 5.4.

35

5.4 Backups

A Picosibling can be removed by wiping all credentials for it from the Pico’s memory. Any
attempts by the Pico to use the Picosibling’s share afterwards will fail because of the inability
of the Pico to decrypt the Picosibling’s messages and – more importantly – its inability to
recreate the share si.29 Attackers who seize possession of k Picosiblings and the Pico cannot
use the shares of previously-removed Picosiblings, as they cannot determine the xi-values for
their shares to recreate the master-key. Removing lost Picosiblings is only possible when the
user can uniquely identify them through an auxiliary technology or the Pico.

5.4. Backups

Previous Development The Pico team works on a backup-system that backs up the Pico’s
state each time a pairing to a web service occurs. When setting up the Pico, users must write
down a recovery code representing the master key to access the secure core of the backup. If
all Picosiblings were lost, users can use this recovery code to recover their credentials from the
secure core of the Pico encrypted under the master key.

My Additions If the password was only used to decrypt the secure core and not other cre-
dentials of the Pico, these credentials would be vulnerable to an attacker who acquires the
backup. Furthermore, resharing with a changed master key, as presented in 5.2.1, would be
very cumbersome for users who would have to write down a new recovery code for each resha-
ring. Another issue is that an attacker does not need possession of the Pico to gain access to
the user’s credentials. With only the backup and k Picosiblings, one can create a functional
Pico to impersonate the user.

Each time a Picosibling is added or removed, the backup of the outer core should be updated.
Therefore, the outer core of the Pico is encrypted under a keyKbackup. The secure core remains
encrypted under the master key XOR’d with the biometric share. A useful side-effect of this
approach is the ability to restore the set of Picosiblings on another Pico without having to
restore the credentials. Thus, different Pico-instances for different purposes accessed under
the same Picosiblings can be realised. After “cloning” the Picosiblings’ credentials, the new
and original Pico could stay synchronised through the remote server. A solution for this
synchronisation is left for further research.

This scheme allows for the recovery of credentials even if all Picosiblings are lost. The remote
server provides a sufficient number of shares that can recreate the master key when combined
with the xi-values stored in the outer core encrypted under Kbackup, and users are unlikely to
lose their biometrics. Attackers who only access the remote servers and forge the biometric,

29Even if the Pico acquire the yi value of the share, the missing xi value prevents utilising the share-part for
recreating the polynomial.

36

5.5 Special Shares

Version Secure Core Outer Core (R)
...
v12 {Sec. core incl. Kbackup at t = 12}KMaster XOR biometric

{Outer core(R)}Kbackup

...
v14 {Sec. core incl. Kbackup at t = 14}KMaster XOR biometric

{Outer core(R)}Kbackup

...

Outer Core
{Outer core (Complete)}Kbackup

Table 7: Structure of the Backup Repository

however, cannot access the secure core of the backup since they also need knowledge of the
key Kbackup to access the xi-values of the shares.
Kbackup is further stored inside the secure core of the Pico to allow the unlocked Pico to

encrypt the outer core each time a removal or addition of a Picosibling occurs. Otherwise, the
user would have to enter Kbackup each time a backup is performed.
While the secure core of the Pico’s backup is stored versioned, the backup’s outer core is

replaced each time a change in the set of Picosiblings takes place. This approach fails if the
master key is changed and the user desires access to an earlier backup. Therefore, the part of
the outer core consisting of the xi values of the remote server is also versioned. The remote
server provides a sufficient number of shares to recreate the master key at any point of time
and can version its own share-parts yi (see table 7 for a visualisation of the backup repository’s
structure). Nevertheless, the remote server cannot recreate master keys since this also requires
the xi values stored encrypted under Kbackup or in the Pico.
The user is required to reacquire the biometric share each time a backup is created, unless

the biometric share is stored inside the secure core. Since an internet connection must be
available for backups, the remote shares can be updated. While reacquiring the biometric
share might decrease the usability of the system, such a solution would also counter re-pairing
attacks as discussed in section 5.3. After each change in the set of Picosiblings, resharing takes
place to invalidate all former shares and the backup of the outer core is updated. This adds
further time-diffusion, as an attacker having access to the backup at time t and the password
Kbackup to decrypt the outer core must also acquire k Picosiblings of the current resharing
interval t.

5.5. Special Shares

The need for special shares is axiomatic. Many use cases cannot be secured without a remote
or biometric share. This chapter presents use cases and possible solutions using special shares.

37

5.5 Special Shares

Value of the shares Stannard [81] proposed always requiring special shares to unlock the
Pico. The master key would be created by XORing both special shares and the reconstructed
secret from the Picosiblings. While using the biometric share this way is sensible as the user is
unlikely to lose the biometrics, demanding the remote share for unlocking has usability issues.
Assuming the Pico is used for offline authentication as well as for online authentication, it
cannot be guaranteed that the Pico can access the remote server sufficiently frequently to
refresh the share for all offline transactions.
The remote share is a means for revocation when the Pico is lost or stolen. When the remote

server stops sending its share periodically, the Pico will lock. It can also simplify recovery from
losing all Picosiblings. Recovery would require the remote server to store shares similar to those
of the Picosiblings. It could store k shares that are only sent when users execute a multi-level
security protocol.
Furthermore, for online authentication, the Pico could XOR the credentials for the web

service (retrieved from the Pico’s secure core) with a remote value. These remotely stored
values can be stored in a distributed manner to counter DoS attacks and can be dynamically
combined with the stored credentials when accessing web services.
Using remote shares in this manner enables users to prevent any access to their online

accounts upon executing a multi-level security protocol to disable the remote shares. This
would be a way to recover even from losing the Pico, all Picosiblings, and the attacker having
a forgery of the biometric scan.

Locking Occasionally, users will need a way to lock their Pico to be inaccessible even if
presented with shares of k Picosiblings. At swimming pools, gyms, or other venues wherein
users leave their belongings in a locker, an attacker could easily seize possession of the Pico and
k Picosiblings. A simple locking mechanism would involve the user simultaneously pressing
the “Pair” and “Main” button. Once locked, the Pico can only be unlocked using the biometric
share.

Pairing Users could set up the remote share and biometrics upon performing the initial
pairing. Biometrics and the remotely stored values presented earlier in this section can be
validated using the salted hash variant discussed in section 5.1.
Remote shares are used like other Picosiblings, having the Pico storing corresponding xi

values. While the remotely stored values are set up when creating new user accounts, the
remote shares are set up at the initial pairing.

Requesting the shares The special shares should have a longer decay timer. For security-
critical operations like pairing, removing, and even for accessing valuable accounts, the bio-
metric share could always be required. Remote shares are requested whenever the Pico is
connected to the internet, and the remotely stored values are requested at each authentication

38

5.5 Special Shares

request for the corresponding web service. The versioned remote shares can only be accessed
by performing a multi-level security protocol that allows recovery from losing all Picosiblings.

39

6.1 Components

6. Prototype Implementation

The implementation goal was to build a running prototype of the Pico-Picosibling subsystem,
including the creation of shares for the master key, adding and removing Picosiblings, pairing,
and the communication between Pico and Picosiblings. Such a prototype allows for further
usability studies that can explore the pairing and handling of Picosiblings, and can be re-used
for the final Pico Android application.
The implementation followed an iterative incremental approach that sought to produce a

running prototype at the end of each iteration. This chapter briefly outlines the implementa-
tion. Javadoc files are attached to the implementation, and appendix A.5 describes software
engineering aspects of the implementation in more detail. Fig. 10 shows the UI of the Pico
prototype.

6.1. Components

Fig. 10: Pico Prototype UI

Storage An SQLite da-
tabase served as the ou-
ter core storage of the
Pico. The two tables for
the Pico’s general proper-
ties and the Picosibling
credentials were accessed
via two database mana-
gement classes that ensu-
red the integrity of the
database. Conversely, the
Picosibling’s storage was
modeled using Android’s
SharedPreferences, becau-
se the amount of data sto-
red by the Picosibling did
not justify using a databa-
se and SharedPreferences offer resource-conserving data access.

Secret Sharing Instead of using an open source implementation of Shamir’s secret sha-
ring, his algorithm was developed from scratch for two reasons: First, the quality of publicly-
accessible secret sharing implementations cannot be easily verified and, second, flexibility of
the implementation was needed to allow for extensibility (especially for resharing). The final
implementation includes all necessary functions for the Pico. Master keys of varying lengths
can be generated and split into a desired number of randomly generated shares over the finite

40

6.2 Protocols

field that is defined by a prime number greater than the master key. New shares are generated
when presenting a threshold number of existing shares, and the master key is recreated when
a sufficient number of shares are available. Several implementations of this scheme use the
natural number array 1, 2, . . . , n as the x-coordinates of the shares. This is insufficient when
splitting shares into their coordinates, and only propagating the y-coordinate to the Picosib-
ling. The range of possible x-coordinates would be limited to 1 to n for n Picosiblings, allowing
attackers to run brute-force attacks on the x-coordinate once they acquired a sufficient number
of Picosiblings. The developed implementations uses the complete range of the finite field for
its x-coordinates.

Cryptographic operations were centralised through a CryptoManager class used for encryp-
tion, decryption, and creating hash-values.

Bluetooth Message exchange is accomplished through sending PicoMessage objects via Blue-
tooth. These encrypted objects contain the information for the protocol’s steps and further
parsing information. Each connection to a Bluetooth device is modelled by a BluetoothConnec-
tion object that is responsible for sending data, receiving data, and managing the sockets.
BluetoothConnectionManager classes for each protocol manage all BluetoothConnection ob-
jects for a protocol execution. PicoMessage objects for data transfer are created using Builder
and Helper classes for parsing. This ensure correct creation of these objects and extensibility.

Third Party Software To create, scan, and parse the QR codes required for pairing, the
ZXing30 application was integrated via Intents. Two classes of the ZXing project – Inten-
tIntegrator and IntentResult – were used in combination with an intent-call. ZXing sources
were further used by the Picosibling to display the QR code. The QR code modelled a Ba-
se64 -encoded string consisting of a one-byte identifier, a 32-byte hashcode of the Picosibling’s
public key, and the Picosibling’s secret (32-byte).

6.2. Protocols

The ping-protocol is implemented as described by Stannard [81]. Instead of running it per-
manently, it is only executed when the user clicks “Pair”. If the ping-protocol acquires a
sufficient number of shares from Picosiblings in proximity, a management interface is acces-
sible to pair new Picosiblings, remove Picosiblings by description, and to reset the Pico. The
ping-protocol requirement only applies to the scenario that an initial pairing had been per-
formed previously. Otherwise, the user can complete the initial pairing without requiring the
proximity of additional Picosiblings.

30https://github.com/zxing/zxing

41

https://github.com/zxing/zxing

6.3 Testing

Fig. 11: LogCat Output of the Pico while Executing the Pairing Protocol

Following the pairing protocol’s specification of section 3.4.2, the Pico’s pairing broadcast
is issued after the user scans the QR code. The messages for key-establishment are encrypted
under RSA, while the final messages use AES. After the successful execution, the user is
prompted to enter a distinctive description that is stored with the Picosibling’s credentials
in the outer core of the Pico. A list of paired Picosiblings indicates to the user whether the
protocol succeeded.
Both protocols are executed as asynchronous tasks in Android to separate them from the

user interface.
At the time of this writing, the resharing protocol is not completely integrated. All necessary

methods are implemented and have been tested individually but final tests have not been
performed yet.

6.3. Testing

Besides unit tests using JUnit, integration tests of the main components, and extensive LogCat-
logging, I tested my prototypes using three Samsung GT-S5310 phones. Logs of the test runs
can be found in the zip-file containing my implementation next to the LogCat output that
documents protocol runs on both devices. I created a test project for the Pico application and
another for the Picosibling containing integration and unit tests.

42

6.4 Discussion

Fig. 12: LogCat Output of the Picosibling while Executing the Pairing Protocol

An exemplary log of the pairing-protocol is shown in fig. 11 for the Pico and in fig. 12 for
the Picosibling.

6.4. Discussion

The methods listenUsingInsecureRfcommWithServiceRecord and createinsecurerfcommsocket-
toservicerecord for Bluetooth communication are supposed to allow message transfer of pre-
viously (Bluetooth-) unpaired devices. However, testing revealed that these methods behave
non-deterministically in that the user is occasionally prompted to perform Bluetooth-pairing
between the devices to continue. This is a known problem (I used Samsung GT-S5310 and
Samsung GT-S6500 smartphones for testing, and they both showed this behaviour) and can-
not be easily overcome. Bluetooth-pairing is only possible with user interaction. Furthermore,
the insecureRfcomm methods require discoverability of the device setting up the server socket.
Discoverability also requires user interaction in Android.

To provide a realistic user experience for user studies, I switched to support communication
only between Bluetooth-pre-paired devices. When using the applications in user studies, the
devices have to be Bluetooth-paired before performing the Pico-pairing.

43

6.5 Future Work

6.5. Future Work

The final prototype can serve as a user experience prototype. Building on my work, a prototype
embedded into “real” Picosiblings would be the next step to allow for a more realistic user
experience. Since a remote server was not available, I excluded scenarios relying on such, for
example users leaving initial pairing prematurely. Removing Picosiblings is forbidden when
this would leave less than a threshold number of Picosiblings paired. Implementing these
functions will be the next step for further support user studies.

44

7 Conclusions

7. Conclusions

Preliminary Work To undertake this project, I needed to acquire knowledge in several areas.
I knew little of the Android environment. I had not previously designed a user study, and knew
nothing about HCI processes or the work associated with them. My statistical knowledge was
at a very basic level and I had never designed a cryptographic protocol before.

Objectives met I fulfilled or surpassed all the tasks set for the project. Defining requirements
for Picosiblings and completing the extensive literature survey revealed that several pairing
mechanisms are currently suitable for pairing Picosiblings to the Pico and more might become
feasible in the future. To prove the applicability of the found pairing mechanisms for the
Pico, I developed variants of the protocols for the Pico. Evaluating SiB (QR code pairing),
MiB (Faraday cage pairing), a PAKE variant (passwords), and physical contact as means
to bootstrap the security relationship between Pico and Picosiblings in a user study yielded
promising results. Physical connections are seen as secure and facilitate the understanding of
the association process while QR codes are a familiar concept to users. Users favour scanning
QR codes over the other alternatives

I further introduced the idea of resharing through the novel approach of splitting the secret
share into its x and y-component and only propagating the y-component onto the Picosiblings.
This allows for resharing without changing the master key in that only the y-coordinate is
updated and the Pico can even store the offset without endangering the secrecy of the master
key in the eventuality that the Pico is compromised.

Protocols for adding and removing Picosiblings were developed as well as an idea of resharing
by changing the master key. The original design of the Pico and Picosiblings was adjusted
at several points, use cases and options for the secret shares introduced, and an idea for
the backup system proposed to integrate my ideas and create a system that maximises the
potential synergies.

The final prototype for the Picosibling subsystem of the Pico project was developed to
allow for further exploration of usability aspects of my suggested pairing mechanisms and
protocols. It offers functionality for pairing, adding and removing Picosiblings, and the gene-
ral communication interface between Pico and Picosiblings. Such a prototype is valuable for
identifying possible shortcomings, misunderstandings, and gaps in the mental model of users.
Test cases proofed that the protocols are feasible. A comprehensive analysis including mathe-
matical proofs, penetration testing, and usability studies remains to be performed. However,
these contributions combined with my considerations regarding the backup system and special
shares form the foundation of an integrated, secure, and usable Picosibling design.

Table 8 summarises the completed deliverables of this project.

45

6.5 Future Work

Deliverables
Requirements Analysis of the Pico’s Pairing Process
Literature Survey of Pairing Mechanisms
Development of Suitable Pairing Protocols
Quantitative Results of User Study
Qualitative Results of User Study
Prototypes for the User Study (on phone and desktop)
Resharing Protocols
Protocols for Removing and Adding Picosiblings
Integration of the Backup System into Picosibling Management
Special Share Ideas and Use Cases
Android Implementation of the Pico and Picosibling

Table 8: Completed Deliverables of this Project

Future Work Several issues were dealt with in only a preliminary/surface manner. There
are alternative secret sharing schemes as described by Simmons [72] or Tassa [85] that allow
compartmentalisation and possibly better support for the special shares. These offer the fle-
xibility to define different levels of security without the need for workarounds or weighing the
special shares higher by associating them with a higher number of shares. Blakley et al. [10]
even introduced a secret sharing scheme that allows disenrollment.

The special shares need to be further explored within user studies and the protocols for
them shaped. They can solve many of the discussed security issues and help to prevent the
attacks described in section 5.1.

More user studies need to be performed with different age groups. My results show a ten-
dency as to which pairing mechanisms can be discarded for young adults. They are valuable
for early deployment stages that involve additional setup as my user group was generally
more technology-affine. Yet the study does not prove the usability of the mechanisms for all
age groups. Furthermore, studies regarding management alternatives have to be performed.
They were excluded for this project because different pairing mechanisms can be executed by
different management systems.

Validating the robustness and security of the protocols could formally be accomplished by
using BAN logic of Burrows et al. [18]. As technology progresses, research can be conduc-
ted as to whether other technologies for pairing or communicating become viable. NFC is a
particularly attractive option as it allows more natural use cases. However, until technologi-
cal progress removes certain constraints of embedded systems it must be evaluated whether
the proposed protocols are viable in a distributed system of low power devices that underly
computational limitations. This thesis was mainly concerned with creating usable and secure
protocols without considering the aforementioned constraints in depth.

46

7 Conclusions

Lastly, it is yet to be seen whether Picosiblings are the “right” way of locking the Pico.
Carrying more devices, mental overhead, and users’ confusion might prevent such an idea
from successful deployment.31 Nevertheless, it can be assumed that users will carry more
digitally enhanced items in the future. If Picosiblings could be integrated into such devices,
users would not be burdened with additional mental overhead and Picosiblings could become
the primary way of locking token-based authentication systems.

31See appendix A.4 for a discussion of limiting factors for deployment.

47

A.1 Content of the Uploaded Material

A. Appendix

A.1. Content of the Uploaded Material

The uploaded .zip-File contains the following material created for this project:

• The research proposal for this thesis.

• Questionnaire used in the user study.

• R scripts for statistical evaluation.

• Graphs created during statistical evaluation, e.g. to confirm normal distribution.

• Source code of the prototypes used in the user study (Android and desktop system).

• Source code of the final Pico prototype.

• Source code of the final Picosibling prototype.

• Source code of the test projects for the Pico and Picosibling prototypes.

• Javadoc documentation of the final Pico and Picosibling prototypes.

• Output log for test runs.

• Output log for LogCat showing debugging messages during process execution.

These files can also be found in my public GitHub repository: https://github.com/fabianmakrause

48

https://github.com/fabianmakrause

A.2 Notation

A.2. Notation

Standard notation for cryptographic operations was used in this thesis. Messages are repre-
sented in the form

A → B: {MSG}K

which expresses that principal A sends a message MSG to principal B encrypted under key K.
Curly brackets represent a cryptographic operation under a key denoted by placing the key in
subscript of the message.

Symbol Explanation
P The Pico of the user
PS The set of all Picosiblings
PSi The ith Picosibling
Ni A nonce generated by principal i
ci Counter i
KP,PSi,j jth symmetric key between P and PSi
Ki Public Key of principal i
K−1

i Private Key of principal i
h() Hash function
MAC(MSG) Message authentication code of message MSG
Si A secret issued by principal i
KMaster The master key to access the secure core of the Pico
si The share of the ith Picosibling
desci Description of the ith Picosibling

49

A.3 Storage Structure

PS ID Description Key Material Counter Nonces Share Decay Offset

...

267 Watch 23/01/12 KP,PS267,1,KP,PS267,2 34 NP , N267 x267 13 o267

...

Table 9: Storage Structure of the Pico’s Outer Core

A.3. Storage Structure

The internal storage of Pico and Picosibling after pairing is as follows.
Within the Pico, descriptions/images of all Picosiblings are stored with a distinctive ID of

the Picosibling. Further, the key material KP,PSi,1, KP,PSi,2, ci and the x-coordinate of the
share (xi) are stored as well as recently used nonces.
Table 9 shows the exemplified storage structure of the Pico’s outer core.32 The example

shows the case that Picosibling 267 has not responded to potential pings of the Pico. Therefore,
the share part y267 is not stored. Otherwise, the value would be stored within the “Share”
part of the storage. Picosiblings are identified by a unique PS ID. The Pico further stores
the description of the Picosibling, key material consisting of the two symmetric keys, and
the counter that determines the hashing of the ephemeral key. Sent and received nonces are
stored as well as the x-value xPSID

of the Picosibling’s share. The y-value yPSID
is only stored

after successfully pinging the Picosibling. A decay timer defines the time the y-value has to be
re-fetched from the Picosibling. If this re-pinging of the Picosibling fails, the y-value will be
wiped from the memory. The offset is used for the resharing protocol as described in section
5.2.1.
Picosiblings, conversely, store the key material KP,PSi,1, KP,PSi,2, ci, recently used nonces,

and the y-coordinate of the share (yi). Depending on the pairing method they could also store
their public keys, their descriptions/images, and their passkeys or secrets. See table 10 for the
exemplified storage structure of a paired Picosibling.
If the countermeasures against sending corrupted shares, as described in section 5.1, are in

place, the storage will be expanded by two columns: Salt and hash of the share’s y-coordinate
concatenated with the salt.

32The outer core of the Pico contains the cryptographic values to communicate with paired Picosiblings. This
part is not contained in the secure core and is stored in plaintext within the Pico.

50

A.3 Storage Structure

Description Key Material Counter Nonces Share State

...

Casio 9371237 KP,PS267,1,KP,PS267,2 34 NP , N267 y267 PAIRED

...

Table 10: Storage Structure of the Picosibling

51

A.4 Discussion

A.4. Discussion

The following sections describe issues raised in this thesis in more depth. They are not essential
for following the argumentation but provide more elaborate explanations.

A.4.1. Deployment

Bonneau et al. [14] found that passwords are superior in terms of deployability and no other
authentication scheme is strictly better. Developing an alternative authentication scheme re-
quires benefits over passwords but also to create incentives for users and service providers
to adapt. If there is no incentive for them to switch to the new technology, they will not
change their habits nor will they be willing to spend money on marginal benefits. Marginal
improvements over passwords are not worth the cost of disruption as stated by Herley and
van Oorschot [35].
Several participants noted their reluctance to wear further devices as Picosiblings. Prior to

deploying Picosiblings as the locking mechanism for the Pico, users must be familiarised with
them. In early deployment stages, the number of Picosiblings could be decreased and Pico-
siblings integrated in smart-devices with which the user is already familiar. Smart-watches,
tablets, Google glass, and smartphones, once the Pico is developed as a stand-alone token,
could serve as Picosiblings and help users become acquainted with using and managing Pico-
siblings.

A.4.2. Pico

The Pico could offer varying degrees of the master key to support different levels of authen-
tication. Less valuable accounts could be stored outside the secure core, such that the user
only needs the Pico (without the Picosiblings) to access them. One of the main problems of
passwords is that they are used for different degrees of security, as discussed by Herley and van
Oorschot [35]. The Pico could overcome this issue by providing authentication by classification
thus clarifying different degrees of security for the user.
The no-typing benefit of the Pico is violated by several protocols discussed in this thesis. This

problem could only be overcome for managing the Picosiblings if Picosiblings were identified
through photographs instead of descriptions. However, the backup system still requires writing
down a recovery code and entering it when the backup is to be accessed, which is why the
no-typing benefit of the Pico is weakened to a quasi-no-typing benefit. Typing is only required
for setup but not for authentication.

52

A.5 Implementation

A.5. Implementation

A.5.1. Architecture of the Prototypes used in the User Study

Management Application For the Java application that simulates the management of the
Picosiblings, a simple design decoupling domain objects, utility classes, and the GUI was used.
At start, a JFrame object is created and filled with an abstract ScenarioPanel. The Sce-

narioPanel encapsulates common behaviour for all used scenarios, e.g. layout, Picosibling-list,
and the remove button. The specific JPanel for the current scenario extends the ScenarioPanel
class and injects scenario-specific behaviour like actions when clicking the “Confirm Pairing”
button or the description for the scenario.
Scenarios are modeled as an enum class. They represent the domain model together with the

ExperimentData class that encapsulates data collected during the experiment. A DataWriter
class to manage I/O of ExperimentData objects served as a utility class and completes the
system.

Pico Android Application Similar to the management application, the Android application
was separated into GUI elements, domain objects, and utility classes.
Activities for each Scenario extend a superclass ScenarioActivity that encapsulates the

layout of the app, management of the domain objects ExperimentData and Scenario that are
identical to the management application’s classes, and management of the DataWriter utility
class that writes collected ExperimentData to an external file on the phone. The specific
Activities for each scenario further specify the behaviour of the “Pair” button as well as the
instructions and dialogs.
At the end of a run, indicated by the number of paired Picosiblings, the application created

a log file containing information about the number of clicks and the time needed for task
completion.
Screenshots of the general layout of both applications can be found in appendix A.6.2.

53

A.5 Implementation

A.5.2. Architecture of the Final Prototype

Complete documentation of the classes can be found in the javadoc attached to the source
codes.33

Domain Modelling The prototypes consistently use domain objects to perform their tasks
on.
Messages between Pico and Picosibling are encapsulated in PicoMessage objects that are

of a PicoMessageType. Each part of a PicoMessage is encapsulated as a PicoMessageSection
to simplify parsing through subclasses of the PicoMessageParser. Each protocol is associated
with a parser: PicoPairMessageParser or PicoPingMessageParser. Messages for the ping-
protocol are built using the PicoPairMessageBuilder, whereas the PicoPingMessageBuilder
creates messages for the ping-protocol.
When the state of a BluetoothConnection changes, e.g. the connection to a Picosibling is

cancelled or established, the corresponding BluetoothState is changed as well to propagate the
new state to the subclasses of the BluetoothConnectionManager.
For the Pico prototype, the properties of the Pico are encapsulated in a PicoProperties

object and the state modelled as a PicoState enum. Within the Picosibling application, a
PicosiblingInternalState object models the state of the Picosibling. The Pico application, on
the other hand, models the states of its associated Picosiblings through Picosibling objects.

Database Management The database schema is defined by the PicoOuterCoreContract class
and the tables created through the PicoOuterCoreOpenHelper class. Access to the database is
proxied through two database management classes: PropertiesDBManager and Picosiblings-
DBManager. The former provides methods to access and modify the PROPERTIES table
containing the Pico’s state, its own key material, the threshold number, the modulus for cal-
culations, flags indicating that certain protocols have been completed, and other information
that simplify the process flows. Picosiblings’ credentials are stored in the PICOSIBLINGS
table that basically models the table shown in appendix A.3.

Architecture To allow for a flexible implementation and extensibility, the applications were
developed using best practices of software engineering. The asynchronous tasks for running
the protocols are only loosely coupled to the activity controlling the GUI by implementing a
form of the Observer pattern. Similarly, the BluetoothConnection objects are observed by the
BluetoothConnectionManager subclasses to prevent tight coupling and potential exceptions.
As previously described, domain states were modelled consistently using enums and domain

classes. Whenever possible, builder classes and proxies encapsulated access to critical data,

33In the zip-file or at https://github.com/fabianmakrause.

54

https://github.com/fabianmakrause

A.5.2 Architecture of the Final Prototype

for example using database management helper classes for accessing the database and builder
classes to create the protocol’s messages.

55

A.6 Experiment Material

A.6. Experiment Material

A.6.1. Graphs for Statistical Analysis

Cable QR Pass Cage

20
40

60
80

10
0

Scenario

S
U

S
 S

co
re

s
of

 m
al

e
P

ar
tic

ip
an

ts

(a) Boxplot of Male SUS Scores by Sce-
nario

Cable QR Pass Cage

50
60

70
80

90
10
0

Scenario

S
U

S
 S

co
re

s
of

 fe
m

al
e

P
ar

tic
ip

an
ts

(b) Boxplot of Female SUS Scores by
Scenario

Fig. 13: Boxplots of SUS Data by Gender

Cable QR Pass Cage

10
00
00

15
00
00

20
00
00

Male Task Completion Times

Scenario

Ta
sk

 C
om

pl
et

io
n

Ti
m

e
(in

 m
s)

(a) Boxplot of Male Time by Scenario

Cable QR Pass Cage

80
00
0

10
00
00

14
00
00

18
00
00

Female Task Completion Times

Scenario

Ta
sk

 C
om

pl
et

io
n

Ti
m

e
(in

 m
s)

(b) Boxplot of Female Time by Scenario

Fig. 14: Boxplots of Time Data by Gender

56

A.6.1 Graphs for Statistical Analysis

Cable QR Pass Cage

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Male Normalised Times

Scenario

N
or

m
al

is
ed

 T
as

k
C

om
pl

et
io

n
Ti

m
e

(a) Boxplot of Male Normalised Time by
Scenario

Cable QR Pass Cage
0.
4

0.
6

0.
8

1.
0

Female Normalised Times

Scenario

N
or

m
al

is
ed

 T
as

k
C

om
pl

et
io

n
Ti

m
e

(b) Boxplot of Female Normalised Time
by Scenario

Fig. 15: Boxplots of Normalised Time Data by Gender

Cable QR Pass Cage

40
50

60
70

80
90

10
0

Scenario

S
U

S
 S

co
re

(a) Boxplot of SUS scores of Experienced
Participants by Scenario

Cable QR Pass Cage

20
40

60
80

10
0

Scenario

S
U

S
 S

co
re

(b) Boxplot of SUS scores of Unexperi-
enced Participants by Scenario

Fig. 16: Boxplots of SUS Scores by Experience

57

A.6 Experiment Material

Cable QR Pass Cage

10
00
00

15
00
00

20
00
00

Scenario

Ta
sk

 C
om

pl
et

io
n

Ti
m

e

(a) Boxplot of Time of Experienced Par-
ticipants by Scenario

Cable QR Pass Cage

10
00
00

15
00
00

20
00
00

Scenario
Ta

sk
 C

om
pl

et
io

n
Ti

m
e

(b) Boxplot of Time of Unexperienced
Participants by Scenario

Fig. 17: Boxplots of Task Completion Times by Experience

Cable QR Pass Cage

0.
2

0.
4

0.
6

0.
8

1.
0

Scenario

N
or

m
al

is
ed

 T
as

k
C

om
pl

et
io

n
Ti

m
e

(a) Boxplot of Normalised Time of Expe-
rienced Participants by Scenario

Cable QR Pass Cage

0.
4

0.
6

0.
8

1.
0

Scenario

N
or

m
al

is
ed

 T
as

k
C

om
pl

et
io

n
Ti

m
e

(b) Boxplot of Normalised Time of Un-
experienced Participants by Scenario

Fig. 18: Boxplots of Normalised Task Completion Times by Experience

58

A.6.2 Pictures of the Experimental Setup

A.6.2. Pictures of the Experimental Setup

Fig. 19: Setup of Pico, Laptop, and Picosibling Sheet

Fig. 20: Physical Connection between Pico and Picosibling

59

A.6 Experiment Material

A.6.3. Screenshots of the User Study Prototype

Fig. 21: User Interface of the Pico

Fig. 22: User Interface of the Application

60

A.6.4 Flow Charts of the Scenarios

A.6.4. Flow Charts of the Scenarios

Fig. 23: Flow Chart of the User Study’s Cable Scenario

Fig. 24: Flow Chart of the User Study’s Passkey Scenario

61

A.6 Experiment Material

Fig. 25: Flow Chart of the User Study’s Faraday Scenario

62

A.6.5 Pilot Study Flow Charts

A.6.5. Pilot Study Flow Charts

Fig. 26: Flow Chart of the Pilot’s Cable Scenario

63

A.6 Experiment Material

Fig. 27: Flow Chart of the Pilot’s QR Code Scenario

64

A.6.5 Pilot Study Flow Charts

Fig. 28: Flow Chart of the Pilot’s Passkey Scenario

65

References

References

[1] A. Adams and M. A. Sasse. Users are not the enemy. Communications of the ACM, 42
(12), 1999. (Cited on page 1.)

[2] G. T. Amariucai, C. Bergman, and Y. Guan. An automatic, time-based secure pairing
protocol for passive RFID. In RFID. Security and Privacy, pages 108–126. Springer Berlin
Heidelberg, 2012. (Cited on page 11.)

[3] Y. Ayatsuka and J. Rekimoto. tranSticks: physically manupulatable virtual connections.
In Proceedings of the SIGCHI conference on Human Factors in computing systems, pages
251–260, 2005. (Cited on page 12.)

[4] D. Balfanz, D. K. Smetters, P. Stewart, and H. C. Wong. Talking to strangers: Au-
thentication in ad-hoc wireless networks. In Network and Distributed System Security
Symposium. NDSS, 2002. (Cited on page 9.)

[5] BBC. Linkedin passwords leaked by hackers. june 2012. Last checked: 26.03.2014. URL
http://www.bbc.co.uk/news/technology-18338956. (Cited on page 1.)

[6] A. Beimel. Secret-sharing schemes: a survey. In Coding and cryptology, pages 11–46.
Springer Berlin Heidelberg, 2011. (Cited on page 5.)

[7] S. M. Bellovin and M. Merritt. Encrypted key exchange: Password-based protocols secure
against dictionary attacks. In Proceedings of the 1992 IEEE Computer Symposium on
Research in Security and Privacy, pages 72–84. IEEE, 1992. (Cited on page 14.)

[8] A. Bentzon. Security architecture and implementation for a TPM-based mobile authen-
tication device. Master’s thesis, University of Cambridge Computer Laboratory, June
2013. (Cited on pages 1, 3, and 4.)

[9] K. J. Biba. Integrity considerations for secure computer systems. Technical Report
MTR-3153, The Mitre Corporation, April 1977. (Cited on page 7.)

[10] B. Blakley, G. R. Blakley, A. H. Chan, and J. L. Massey. Threshold schemes with disen-
rollment. In Springer Berlin Heidelberg, editor, Advances in Cryptology, CRYPTO’92,
pages 540–548, 1993. (Cited on page 46.)

[11] G. R. Blakley. Safeguarding cryptographic keys. In Proceedings of the National Computer
Conference, pages 313–317, New York, 1979. AFIPS Press. (Cited on page 5.)

[12] Bluetooth Special Interest Group. Simple pairing whitepaper. 2006. Last checked:
15.04.2014. URL http://mclean-linsky.net/joel/cv/Simple20Pairing_WP_V10r00.pdf. (Ci-
ted on pages 11 and 30.)

66

http://www.bbc.co.uk/news/technology-18338956
http://mclean-linsky.net/joel/cv/Simple20Pairing_WP_V10r00.pdf

References

[13] J. Bonneau and S. Preibusch. The password thicket: technical and market failures in
human authentication on the web. In Proceedings of WEIS, 2010. (Cited on page 1.)

[14] J. Bonneau, C. Herley, P. C. van Oorschot, and F. Stajano. The quest to replace pass-
words: A framework for comparative evaluation of web authentication schemes. IEEE
Security and Privacy, 2012. (Cited on pages 1 and 52.)

[15] V. Boyko, P. MacKenzie, and S. Patel. Provably secure password-authenticated key
exchange using Diffie-Hellman. In Springer Berlin Heidelberg, editor, Advances in Cryp-
tology - Eurocrypt 2000, pages 156–171, 2000. (Cited on page 14.)

[16] J. Brooke. SUS - a quick and dirty usability scale. In P. W. Jordan, B. Thomas, B. A.
Weerdmeester, and A. L. McClelland, editors, Usability Evaluation in Industry. Taylor
and Francis, London, 1996. (Cited on page 18.)

[17] I. Buhan, J. Doumen, P. Hartel, and R. Veldhuis. Secure ad-hoc pairing with biometric:
SAfE. In Proceedings of the First International Workshop on Security for Spontaneous
Interaction (IWSSI 2007), pages 450–456, 2007. (Cited on page 9.)

[18] M. Burrows, M. Abadi, and R. M. Needham. A logic of authentication. In Proceedings of
the Royal Society of London. A. Mathematical and Physical Sciences, volume 426, pages
233–271, 1989. (Cited on page 46.)

[19] M. Cagalj, S. Capkun, and J.-P. Hubaux. Key agreement in peer-to-peer wireless net-
works. Proceedings of the IEEE, 94(2):467–478, 2006. (Cited on page 11.)

[20] C. Castelluccia and G. Avoine. Noisy tags: A pretty good key exchange protocol for RFID
tags. In Smart Card Research and Advanced Applications, pages 289–299. Springer Berlin
Heidelberg, 2006. (Cited on page 11.)

[21] C. Castelluccia and P. Mutaf. Shake them up!: a movement-based pairing protocol for
cpu-constrained devices. In Proceedings of the 3rd international conference on Mobile
systems, applications, and services, pages 51–64. ACM, 2005. (Cited on page 10.)

[22] J. Cheng, X. Hu, and P. B. Heidorn. New measures for the evaluation of interactive in-
formation retrieval systems: Normalized task completion time and normalized user effec-
tiveness. In Proceedings of the American Society for Information Science and Technology,
volume 47, pages 1–9, 2010. (Cited on page 19.)

[23] M. K. Chong, R. Mayrhofer, and H. Gellersen. A survey of user interaction for sponta-
neous device association. ACM Computing Surveys, 2014 (to be published). (Cited on
page 11.)

67

References

[24] E. Dawson and D. Donovan. The breadth of shamir’s secret-sharing scheme. Computers
& Security, 13(1):69–78, 1994. (Cited on page 5.)

[25] R. Dhamija, J. D. Tygar, and M. Hearst. Why phishing works. In Proceedings of the
SIGCHI conference on Human Factors in computing systems, pages 581–590, 2006. (Cited
on page 11.)

[26] W. Diffie and M. E. Hellman. New directions in cryptography. In Information Theory,
IEEE Transactions on, volume 22, pages 644–654, 1976. (Cited on page 8.)

[27] D. Dolev and A. C. Yao. On the security of public key protocols. Information Theory,
IEEE Transactions on, 29(2):198–208, 1983. (Cited on page 6.)

[28] C. Ellison and S. Dohrmann. Public-key support for group collaboration. ACM Transac-
tions on Information and System Security (TISSEC), 6(4), 2003. (Cited on page 8.)

[29] D. Florencio and C. Herley. A large-scale study of web password habits. In WWW 2007
Proceedings of the 16th international conference on World Wide Web, 2007. (Cited on
page 1.)

[30] C. Gehrmann and C. J. Mitchell. Manual authentication for wireless devices. RSA
Cryptobytes, 7(1):29–37, 2004. (Cited on page 11.)

[31] C. Gehrmann and K. Nyberg. Security in personal area networks. In C. J. Mitchell,
editor, Security for Mobility, pages 191–229. IEEE TELECOMMUNICATIONS SERIES,
2004. (Cited on page 11.)

[32] M. T. Goodrich, M. Sirivianos, J. Solis, G. Tsudik, and E. Uzun. Loud and clear: Human-
verifiable authentication based on audio. In Proceedings of the 26th IEEE International
Conference on Distributed Computing Systems (ICDCS’06). IEEE, 2006. (Cited on pa-
ge 9.)

[33] M. T. Goodrich, M. Sirivianos, J. Solis, C. Soriente, G. Tsudik, and E. Uzun. Using
audio in secure device pairing. International Journal of Security and Networks, 4(1):
57–68, 2009. (Cited on page 9.)

[34] J. C. Hanna. Configuring security parameters in small devices. july 2002. Last checked:
11.05.2014. URL http://tools.ietf.org/html/draft-hanna-zeroconf-seccfg-00. (Cited on pa-
ge 9.)

[35] C. Herley and P. C. van Oorschot. A research agenda acknowledging the persistence of
passwords. Security & Privacy, IEEE, 10(1):28–36, 2012. (Cited on page 52.)

68

http://tools.ietf.org/html/draft-hanna-zeroconf-seccfg-00

References

[36] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proactive secret sharing or: How to
cope with perpetual leakage. In Springer Berlin Heidelberg, editor, Advances in Crypto-
logy, CRYPTO’95, pages 339–352, 1995. (Cited on page 33.)

[37] K. Hinckley. Synchronous gestures for multiple persons and computers. In Proceedings
of the 16th annual ACM symposium on User interface software and technology, pages
149–158. ACM, 2003. (Cited on page 10.)

[38] L. E. Holmquist, F. Mattern, B. Schiele, P. Alahuhta, M. Beigl, and H. Gellersen. Smart-
its friends: A technique for users to easily establish connections between smart artefacts.
In Ubicomp 2001: Ubiquitous Computing, pages 116–122. Springer Berlin Heidelberg,
2001. (Cited on page 10.)

[39] M. Ito, A. Saito, and T. Nishizeki. Secret sharing scheme realizing general access structure.
Electronics and Communications in Japan (Part III: Fundamental Electronic Science),
72(9):56–64, 1989. (Cited on page 5.)

[40] Y. Iwasaki, N. Kawaguchi, and Y. Inagaki. Touch-and-connect: A connection request
framework for ad-hoc networks and the pervasive computing environment. In Proceedings
of the 1st IEEE International Conference on Pervasive Computing and Communications
(PerCom 2003), pages 20–29. IEEE, 2003. (Cited on page 10.)

[41] M. Jakobsson. Method and apparatus for immunizing against offline dictionary attacks.
Technical report, U.S. Patent Application 60/283,996, Filed on 16th April, 2001. (Cited
on page 11.)

[42] J. Katz, R. Ostrovsky, and M. Yung. Efficient password-authenticated key exchange
using human-memorable passwords. In Springer Berlin Heidelberg, editor, Advances in
Cryptology - Eurocrypt 2001, pages 475–494, 2001. (Cited on page 14.)

[43] T. Kindberg and K. Zhang. Secure spontaneous device association. In A. K. Dey,
A. Schmidt, and J. F. McCarthy, editors, Lecture Notes in Computer Science, volume
2864 of UbiComp, pages 124–131. Springer Berlin Heidelberg, 2003. (Cited on page 9.)

[44] T. Kindberg and K. Zhang. Validating and securing spontaneous associations between
wireless devices. In C. Boyd and W. Mao, editors, Lecture Notes in Computer Science,
volume 2851 of ISC, pages 44–53. Springer Berlin Heidelberg, 2003. (Cited on page 9.)

[45] A. Kumar, N. Saxena, G. Tsudik, and E. Uzun. Caveat eptor: A comparative study of
secure device pairing methods. In Proceedings of the 2009 IEEE International Conference
on Pervasive Computing and Communications, PerCom, pages 1–10. IEEE, 2009. (Cited
on pages 8 and 9.)

69

References

[46] C. Kuo, M. Luk, R. Negi, and A. Perrig. Message-in-a-bottle: user-friendly and secure
key deployment for sensor nodes. In Proceedings of the 5th international conference on
Embedded networked sensor systems, pages 233–246. ACM, 2007. (Cited on pages 9
and 14.)

[47] S. Laur and K. Nyberg. Efficient mutual data authentication using manually authen-
ticated strings. In Cryptography and Network Security, pages 90–107. Springer Berlin
Heidelberg, 2006. (Cited on page 11.)

[48] H. J. Lee, H. J. Cho, W. Xu, and A. Fairhurst. The influence of consumer traits and
demographics on intention to use retail self-service checkouts. Marketing Intelligence &
Planning, 28(1):46–58, 2010. (Cited on page 17.)

[49] F. X. Lin, D. Ashbrook, and S. White. RhythmLink: securely pairing I/O-constrained
devices by tapping. In Proceedings of the 24th annual ACM symposium on User Interface
software and technology, pages 263–272. ACM, 2011. (Cited on page 10.)

[50] K. M. Martin. Challenging the adversary model in secret sharing schemes. In Coding and
Cryptography II. Proceedings of the Royal Flemish Academy of Belgium for Science and
the Arts, pages 45–63, 2008. (Cited on page 31.)

[51] S. Mathur, R. Miller, A. Varshavsky, W. Trappe, and N. Mandayam. Proximate:
proximity-based secure pairing using ambient wireless signals. In Proceedings of the 9th
international conference on Mobile systems, applications, and services, pages 211–224.
ACM, 2011. (Cited on page 11.)

[52] R. Mayrhofer and H. Gellersen. Shake well before use: Authentication based on accele-
rometer data. In Pervasive Computing, pages 144–161. Springer Berlin Heidelberg, 2007.
(Cited on page 10.)

[53] J. M. McCune, A. Perrig, and M. K. Reiter. Seeing-is-believing: Using camera phones for
human-verifiable authentication. In Security and Privacy, IEEE Symposium on, pages
110–124. IEEE, 2005. (Cited on page 8.)

[54] P. Morilla, C. Padro, G. Saez, and J. L. Villar. Weighted threshold secret sharing schemes.
Information Processing Letters, 70(5):211–216, 1999. (Cited on page 5.)

[55] R. Morris and K. Thompson. Password security: a case history. Communications of the
ACM, 22(11), 1979. (Cited on page 1.)

[56] A. Nicholson, I. Smith, J. Hughes, and B. Noble. LoKey: Leveraging the SMS network in
decentralized, end-to-end trust establishment. In K. Fishkin, B. Schiele, P. Nixon, and
A. Quigley, editors, Lecture Notes in Computer Science (Pervasive Computing), volume
3968, pages 202–219. Springer Berlin Heidelberg, 2006. (Cited on page 9.)

70

References

[57] D. G. Park, J. K. Kim, J. B. Sung, J. H. Hwang, C. H. Hyung, and S. W. Kang. TAP:
touch-and-play. In Proceeddings of the SIGCHI conference on Human Factors in compu-
ting systems, pages 677–680. ACM, 2006. (Cited on page 12.)

[58] S. Pasini and S. Vaudenay. SAS-based authenticated key agreement. In Public Key
Cryptography - PKC 2006, pages 395–409. Springer Berlin Heidelberg, 2006. (Cited on
page 11.)

[59] R. Peeters. Security Architecture for Things That Think. PhD thesis, Katholieke Univer-
siteit Leuven, June 2012. (Cited on page 34.)

[60] C. Peng, G. Shen, Y. Zhang, and S. Lu. Point&Connect: intention-based device pairing
for mobile phone users. In Proceedings of the 7th international conference on Mobile
systems, applications, and services, pages 137–150. ACM, 2009. (Cited on page 10.)

[61] A. Perrig and D. Song. Hash visualization: A new technique to improve real-world security.
In International Workshop on Cryptographic Techniques and E-Commerce, pages 131–138,
1999. (Cited on page 8.)

[62] R. Prasad and N. Saxena. Efficient device pairing using "human-comparable“ synchroni-
zed audiovisual patterns. In Applied Cryptography and Network Security, pages 328–345.
Springer Berlin Heidelberg, 2008. (Cited on page 10.)

[63] J. Rekimoto, Y. Ayatsuka, and M. Kohno. SyncTap: An interaction technique for mobile
networking. In Human-Computer Interaction with Mobile Devices and Services, pages
104–115. Springer Berlin Heidelberg, 2003. (Cited on page 10.)

[64] J. Rekimoto, Y. Ayatsuka, M. Kohno, and H. Oba. Proximal interactions: A direct
manipulation technique for wireless networking. Interact, 3:511–518, 2003. (Cited on
page 9.)

[65] J. Rekimoto, T. Miyaki, and M. Kohno. ProxNet: secure dynamic wireless connection by
proximity sensing. In Pervasive Computing, pages 213–218. Springer Berlin Heidelberg,
2004. (Cited on page 10.)

[66] V. Roth, W. Polak, T. Turner, and E. Rieffel. Simple and effective defense against evil
twin access points. In ACM Conference on Wireless Network Security, WISEC, pages
220–235, 2008. (Cited on page 8.)

[67] N. Saxena and M. B. Uddin. Automated device pairing for asymmetric pairing scenarios.
In Information and Communications Security, pages 311–327. Springer Berlin Heidelberg,
2008. (Cited on page 9.)

71

References

[68] N. Saxena and M. B. Uddin. Secure pairing of “Interface-constrained” devices resistant
against rushing user behavior. In Applied Cryptography and Network Security, pages
34–52. Springer Berlin Heidelberg, 2009. (Cited on page 11.)

[69] N. Saxena, J.-E. Ekberg, K. Kostiainen, and N. Asokan. Secure device pairing based on
a visual channel. In Proceedings of the 2006 IEEE Symposium on Security and Privacy,
pages 307–313. IEEE, 2006. (Cited on page 9.)

[70] N. Saxena, M. B. Uddin, and J. Voris. Treat’em like other devices: user authentication
of multiple personal rfid tags. SOUPS, 9, 2009. (Cited on page 9.)

[71] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.
(Cited on page 5.)

[72] G. J. Simmons. How to (really) share a secret. In Springer Verlag New York, editor,
Proceedings on Advances in cryptology, pages 390–448, 1990. (Cited on page 46.)

[73] C. Soriente, G. Tsudik, and E. Uzun. BEDA: Button-enabled device association. In Pro-
ceedings of the International Workshop on Security for Spontaneous Interaction IWSSI,
UbiComp Workshop, 2007. (Cited on page 10.)

[74] C. Soriente, G. Tsudik, and E. Uzun. HAPADEP: human-assisted pure audio device
pairing. In Information Security, pages 385–400. Springer Berlin Heidelberg, 2008. (Cited
on page 9.)

[75] C. Soriente, G. Tsudik, and E. Uzun. Secure pairing of interface constrained devices.
International Journal of Security and Networks, 4(1):17–26, 2009. (Cited on page 12.)

[76] F. Stajano. The resurrecting duckling - what next? In Springer Berlin Heidelberg, editor,
Security Protocols, 2001. (Cited on pages 3 and 7.)

[77] F. Stajano. Pico: No more passwords. In Security Protocols XIX, pages 49–81, 2011.
(Cited on pages 1, 3, and 8.)

[78] F. Stajano and R. Anderson. The resurrecting duckling: Security issues for ad-hoc wireless
networks. In B. Christianson, B. Crispo, J. Malcolm, and M. Roe, editors, Security
Protocols, Lecture Notes in Computer Science, volume 1796, pages 172–182. Springer
Berlin Heidelberg, 2000. (Cited on pages 4, 7, 12, and 32.)

[79] F. Stajano and R. Anderson. The resurrecting duckling: security issues for ubiquitous
computing. Computer, 35(4):22–26, 2002. (Cited on page 7.)

[80] F. Stajano, G. Jenkinson, J. Payne, M. Spencer, Q. Stafford-Fraser, and C. Warrington.
Bootstrapping adoption of the pico password replacement system. In B. Christianson et

72

References

al., editor, To appear: Proceedings of Security Protocols Workshop. Springer LNCS, 2014.
(Cited on pages 17 and 31.)

[81] O. Stannard. Picosiblings. Bachelor’s thesis, University of Cambridge Computer Labo-
ratory, May 2012. (Cited on pages 1, 4, 7, 13, 33, 38, and 41.)

[82] O. Stannard and F. Stajano. Am I in good company? A privacy-protecting protocol for
cooperating ubiquitous computing devices. In Security Protocols Workshop XX, pages
223–230, 2012. (Cited on pages 4, 6, and 33.)

[83] D. R. Stinson. An explication of secret sharing schemes. Designs, Codes and Cryptography,
2:357–390, 1992. (Cited on page 5.)

[84] C. Swindells, K. M. Inkpen, J. C. Dill, and M. Tory. That one there! pointing to establish
device identity. In Proceedings of the 15th annual ACM symposium on User interface
software and technology, pages 151–160. ACM, 2002. (Cited on page 9.)

[85] Tamir Tassa. Hierarchical threshold secret sharing. Journal of Cryptology, 20(2):237–264,
2007. (Cited on page 46.)

[86] M. Tompa and H. Woll. How to share a secret with cheaters. Journal of Cryptology, 1
(3):133–138, 1989. (Cited on page 31.)

[87] E. Uzun, K. Karvonen, and N. Asokan. Usability analysis of secure pairing methods. In
Financial Cryptography and Data Security, pages 307–324. Springer Berlin Heidelberg,
2007. (Cited on pages 11 and 12.)

[88] A. Varshavsky, A. Scannell, A. LaMarca, and E. De Lara. Amigo: Proximity-based au-
thentication of mobile devices. In Ubiquitous Computing, pages 253–270. Springer Berlin
Heidelberg, 2007. (Cited on page 10.)

[89] S. Vaudenay. Secure communications over insecure channels based on short authenticated
strings. In Advances in Cryptology - CRYPTO 2005, pages 309–326. Springer Berlin
Heidelberg, 2005. (Cited on page 11.)

[90] T. G. Zimmermann. Personal area networks: near-field intrabody communication. IBM
Systems Journal, 35(3.4):609–617, 1996. (Cited on page 12.)

73

	Introduction
	Contributions

	Theoretical Background
	Introduction to the Pico
	Picosiblings
	Pairing of Picosiblings

	Secret Sharing
	Threat Model for Pico

	Bootstrapping the Relationship between Pico and Picosiblings
	The Resurrecting Duckling
	Requirements Analysis
	Existing Pairing Mechanisms
	Suitable Mechanisms
	Physical Contact
	QR Code Scanning
	Pre-defined Passkey
	Faraday Cage

	Management Options for Picosiblings

	User Study
	Experimental Design
	Statistical Results
	Techniques
	General Results
	Scenario Effects
	Gender Effects
	Experience Effects

	Qualitative Results
	Discussion of the Study

	Picosibling Management
	Attacks on Picosiblings
	Pairing
	Resharing and Changing the Threshold Boundaries

	Adding and Removing Picosiblings
	Backups
	Special Shares

	Prototype Implementation
	Components
	Protocols
	Testing
	Discussion
	Future Work

	Conclusions
	Appendix
	Content of the Uploaded Material
	Notation
	Storage Structure
	Discussion
	Deployment
	Pico

	Implementation
	Architecture of the Prototypes used in the User Study
	Architecture of the Final Prototype

	Experiment Material
	Graphs for Statistical Analysis
	Pictures of the Experimental Setup
	Screenshots of the User Study Prototype
	Flow Charts of the Scenarios
	Pilot Study Flow Charts

	References

