
Implementing a multi-hat PDA

Matthew Johnson and Frank Stajano

University of Cambridge

Abstract. We describe our work in progress aimed at implementing a
multi-hat PDA. Our current prototype is based on SELinux and KDE
and accepts a proximity token, in the form of a Bluetooth cellphone, as
an alternative authentication method. We analyse in detail the suitability
of several alternatives for the graphical environment and underlying OS
and we discuss a variety of interesting implementation issues that arose
during development.

1 Introduction

At the previous Security Protocols workshop one of us (Stajano [13]) described
a “multi-hat” PDA as a design reconciling security and usability.

The central idea of that work was that, although the PDA is the archetypal
single-user machine, it may be useful for its owner to be able to assume several
roles (referred to as “hats”), each with specific security requirements. Hats map
naturally to operating-system-level user-ids, each with its own password—or,
more generally, access credentials.

The multi-hat PDA supports several concurrent graphical sessions, only one
of which is accessible at a time. It is possible to switch from one session to another
without closing the first session, so long as one presents the credentials of the hat
owning the second session; on coming back to the first or any other suspended
session, though, one must again present the credentials for that session.

There is a special “null” hat which can be accessed without any credentials.
It corresponds to a “guest” user-id or to an anonymous account. Being able
to switch to the null hat session at any time with no hassle to access stateless
applications or briefly to lend the machine to others is one of the features that
improve the usability of the multi-hat PDA without compromising its security.

The work in progress described in this paper aims to build a multi-hat PDA.
Ideally, our projected implementation target is a machine from the Sharp Zaurus
SL-C family, a series of StrongARM powered devices that natively run Linux
and Qtopia. In that perspective, our multi-hat PDA will have to be able to
run native unmodified Zaurus applications. At the prototype stage, however,
for convenience of development we have chosen to target a standard desktop or
laptop PC. We are also refraining from committing prematurely to a particular
graphical environment such as Qtopia, since only the experience gained while
implementing the prototype will allow us to choose the technically most suitable
alternative.
To appear in
B. Christianson et al. (Eds.): Security Protocols 2005, LNCS.
c© Springer-Verlag Berlin Heidelberg 2005



2 Matthew Johnson and Frank Stajano

2 Operating System Alternatives

2.1 Windows XP

Microsoft Windows XP was initially the closest to what we are aiming for because
of its “Fast User Switching” feature [2]. This functionality—having multiple
users running at the same time and being able to switch between them without
having to log out or close the applications that other users are running—had
been available in Linux for some time at the console level, while Richardson et
al [9] extended multiple users to graphical logins in the context of the X-based
Teleport System and, later, VNC [10]. The innovation introduced by Windows
XP was to integrate this with the login manager, screen-saver and desktop.
This has many of the features that we require such as allowing multiple users
with differing permissions to run sessions simultaneously and providing a central
method for changing between them. However, there is no easy method to hook
our own events, such as lid closing or proximity events, into the switching system.

To implement a session for the null hat we need a system either supports users
without a password, or allows logging in without having to provide the password.
Windows XP supports password-less users. If the user without password is the
only one then the login screen will not even be displayed: the user will be logged
in directly. When there are multiple users one must still be explicitly selected,
but no password will be prompted for if the user has none. Windows allows for
some credentials other than passwords (for example smart cards), but the range
supported is fairly small and adding support for other credentials is non-trivial.

Windows has a fairly comprehensive system of file permissions which is rea-
sonably expressive and fine-grained—it will certainly allow us to restrict the less
privileged hats as desired. We also, however, need to limit the network access of
each hat. Windows XP has a built in firewall, but this is designed for a different
problem. The firewall can restrict which ports and applications can access the
network, but not which user can access the network, which is what we need to
be able to restrict. The user and group policy editor allows an administrator
to restrict many of the operating system features on a per-user basis, including
remote access of the computer over the network, but cannot restrict which users
can make outgoing connections.

The ultimate goal of this project is to produce a system on a PDA. Microsoft
provide a version of Windows to run on PDAs, but this is Windows CE, rather
than Windows XP, and doesn’t support the permissions and Fast User Switching
features we need. This, combined with the other problems, means that while
possibly being the closest existing system to what we need, Windows cannot
easily be used as the base for our initial prototype.

2.2 Linux

The free Linux operating system was the next system we looked at. Linux has
the advantage that, due to its open source nature, it can be extended very



Implementing a multi-hat PDA 3

easily. We looked at several methods to achieve our aims in Linux—most ba-
sic distributions are unsuitable in a couple of ways, but fortunately these have
been supplemented by other projects that build on Linux. Firstly we needed
to improve the permissions model that is in use by Linux. Linux uses a fairly
coarse-grained POSIX discretionary access control mechanism. We looked for so-
lutions that provided more fine-grained control over the permissions granted to
the various hats and that allowed us to define other restrictions such as per-user
network access, things which it is not possible to do in normal Linux. Secondly,
the multi-user support is not very well integrated—there should be a centralised
way to manage sessions and multiple users.

Xen The Xen Virtual Machine Monitor [3] provides several virtual machines
with strong separation between them. Each hat would be given its own virtual
machine and Xen would provide the strong protection properties between hats.
The idea is to offer essentially a separate machine to each hat, with a separate op-
erating system and application suite. Network access can be restricted by using
a firewall in the controlling domain. Xen would fulfil the security requirements,
but has several practical disadvantages in this case. Because Xen is providing
a different machine for each hat, the physical resources must be partitioned a
priori. This is particularly a problem because Xen uses a static memory parti-
tioning scheme, while PDAs usually do not have very much memory. Having an
entirely separate operating system for each hat implies substantial overhead in
disk, CPU and memory usage because there is very little which can be shared.
It reduces the effectiveness of techniques such as shared libraries as these must
be loaded separately for each domain. Xen is also currently only available on
the Intel x86 and AMD-64 architectures, whereas we are intending to produce a
prototype on an ARM-based PDA. Porting Xen would require significant work.

SELinux SELinux [8] is an extra security layer for Linux, developed by the
NSA and distributed in the form of patches to the Linux kernel. SELinux is a
Mandatory Access Control System that uses Role-Based Access Control.

The feature we are most interested in is the role-based access control. This
means that a user may have several roles, which could be shared by other users
and the access permissions are defined in terms of roles. These roles are inherited
even when the UNIX user may not be, which means a process started in one role
always has that role associated with it when checking permissions. The idea of
roles maps very closely onto the idea of hats we are using.

SELinux provides hooks for restricting the right to view or write arbitrary
files, execute programs, bind to network ports and send or receive network pack-
ets. These permissions can be granted based on the user, role, program used
and object type and can represent any of the protections we wish to implement.
Several users can have the same role for permissions which are based on the
role, while having other permissions distinct per user. These permissions are all
enforced using the general SELinux mandatory access controls.



4 Matthew Johnson and Frank Stajano

The overhead for SELinux is a lot smaller than that of Xen. Because when
using SELinux all sessions use the same operating system instance, there is no
need to statically partition the RAM between the security domains, the nor-
mal operating system dynamic memory allocation is sufficient. There is also no
unnecessary replication of system processes across hats, whereas in Xen each
operating system daemon must reappear in each hat and has to use CPU time
for what is essentially duplicated effort. In addition, read only code pages can
still be shared between domains which can execute the same processes.

The permissions system is also sufficiently flexible that nothing needs to be
duplicated on disk because each process and user can be given access to exactly
what they need.

Because SELinux is implemented as a security layer internal to Linux and
uses generic extended attributes to store all the extra policy and label data, it
is completely independent of the architecture and hardware that it is run on.
This allows us to use SELinux on any system on which standard Linux will run.
The PDAs we are using to build this system already run a port of Linux which
makes SELinux an ideal candidate.

KDE The permissions system used to govern the access given to each hat is
fairly independent of the user interface used to control sessions for the hats and
the method used to control switching between the sessions.

Session switching has only recently made its way into the UNIX world in
a centralised and integrated way through the K Desktop Environment (KDE).
The facility is functionally similar to that in Windows XP. KDE uses multiple
X Window System sessions and provides integrated GUI management of the
sessions. These can be queried and controlled via the K Display Manager (KDM)
and widgets on the desktop allow the user to easily change between the available
sessions, or create a new one. KDM provides a remote interface by means of a
FIFO and that can be used to control the creation of and switching between
sessions.

KDE also provides a comprehensive remote interface to all the GUI features
within each session. Each application registers methods which can be called
remotely with the Desktop Communications Protocol (DCOP) server, which
allows these methods to be queried and executed. DCOP calls can be used to
send commands to any application and also perform session management, screen
blanking and locking and so on.

As regards support for a public user without credentials, Linux makes it
difficult to create a user with a blank password—the standard tools for setting
passwords reject a blank password. If the password is manually set to nothing,
however, then logging in will not prompt for a password. We would rather not
do this in general because there may be some remote interface to the PDA and
only local access should be without credential. KDM provides an interface to
create a session for a user which can be provided with a password. This allows
our system to create the public session without requiring any credentials, but
also protect the system in other ways.



Implementing a multi-hat PDA 5

Mac OS X Recent Apple operating systems have a similar fast user switching
feature to Windows. Since the Panther release you have been able to switch
between simultaneously running users (with suitable Apple eye-candy), being
prompted for a password as necessary. Despite this we haven’t considered Mac
OS X a good candidate. Mac OS is a proprietary operating system and Apple
do not provide any version of it on a PDA. This may be because their graphical
environment is heavily dependent on powerful graphics hardware, which is gen-
erally not found in PDAs. The lack of portability to our desired platform makes
OS X a bad choice.

The system we have, therefore, chosen as the basis for the initial prototype is
Linux with the NSA Security-Enhanced patches running KDE with KDM. This
will allow us to run standard X-based applications. Most Linux-based PDAs
don’t run standard X, however, but instead run an embedded environment like
Qtopia or GPE. To run applications for these PDAs unmodified we will have to
produce a system which will work with those environments. This is discussed
later in section 6.3.

3 The Hats

The multi-hat system is introduced primarily in order to allow easy access to the
null hat that holds no secret data. A minimal multi-hat system will just have
the null hat and another hat holding some secret data. The main distinction
is therefore between the null hat and the others. Any further differentiations
between hats will be implementation-specific and our security policy allows for
this.

3.1 The Null Hat

The null hat is publicly accessible and provides services for which no credential is
needed. These applications and services are ones for which the Big Stick security
model [12, p. 96] is appropriate. Typical PDAs contain several applications like
this, including a calendar (not diary), calculator and world time function, as well
as most games. These applications are all stateless and do not use any resources
which may be scarce or costly (for example, Internet access). The null hat can,
therefore, always be accessed without presenting any credentials and one should
be able to do this easily and simply. The default session to which the system
changes if the user does not have any valid credentials is that of the null hat.

3.2 Restricted Hats

The security policy defined here will be flexible enough to allow any number of
restricted hats, each of which can be given a different set of permissions. In our
implementation of this we give an example set, although this is by no means



6 Matthew Johnson and Frank Stajano

canonical or the most that can be done. These hats will have access to resources
that the null hat will not be able to use, such as communication over the network,
or access to files on the PDA. Any stateful applications, particularly those which
store credentials for other systems such as email clients, should be in a restricted
hat but it is up to each implementation to assign the desired security policy for
what each hat is allowed to do.

We provide as an example two forms of restricted hat. The first one contains
particularly secure personal data and always requires a credential to change
into. In our implementation this credential is a password. The other restricted
hat contains applications with network access and that can store some state, but
do not have access to the private data. This will have a more relaxed security
policy which may not always require explicit passwords to access.

4 The Multi-Hat Security Policy Model

The multi-hat idea is described concisely but completely in the rules of the
following security policy model.

Rule 1. Hats. The machine supports a finite number of hats1. One of them is
the special case known as the null hat2. Every hat, except the null hat, is
associated with some credentials.

Rule 2. Sessions. The machine supports several simultaneous sessions3, each
belonging to a hat. Each session can be either active or locked4 . At any
one time, at most one session is active. The user can only interact with the
active session. When the machine is in sleep mode, in hibernation mode or
off, no session is active.

Rule 3. Session unicity. For each hat there is at most one session5.
Rule 4. Hat selection. There is a convenient way6 to select any of the hats

of the machine for the purpose of switching to (or launching, if necessary)
the session of that hat.

1 Hats may be considered equivalent to roles or to OS-level user-ids.
2 The null hat, reachable without credentials, corresponds to an anonymous “guest”

account.
3 A session corresponds to a graphical login or “desktop”. Within a session, the private

data of the corresponding hat is accessible. The null hat has no private data.
4 When a session is locked, all the data that is private to the hat owning that session

is inaccessible to anyone without the credentials for that hat. This may be imple-
mented by encrypting the data of a locked session with a key derived from the hat’s
credentials. Note that the null hat session has no private data and therefore locking
it has little practical effect.

5 This rule is not logically necessary (one could conceive opening several sessions
for the same hat) but it makes the model simpler and easier to understand—and
therefore more usable.

6 This may be implemented with dedicated buttons, a scroll wheel, a top level menu
or any other appropriate user interface device.



Implementing a multi-hat PDA 7

Rule 5. Switching sessions. To make a new session active, the credentials of
the hat owning that session must be presented.

In this policy we do not specify what will qualify as appropriate authen-
tication credentials, as we believe this should be both implementation-specific
and also subject to change. In our prototype system, authentication credentials
mainly consist of traditional user-name and password combinations, but we look
forward to using other more convenient authentication methods. Some of these
are discussed next.

4.1 Authentication by proximity token

One of the methods of authentication we have investigated is the use of a locality-
based token. The credential is deemed to have been presented whenever the to-
ken is within a certain distance of the PDA. We have a working prototype of a
proximity-based system that tracks the position of a ‘master token’ using Blue-
tooth. The master token can be any Bluetooth-capable device: we use a mobile
phone. This is done by tracking the signal strength of the Bluetooth connection
between the PDA and our token. This is similar to the system implemented by
Corner and Noble [6], but does not require custom hardware or protocols because
it uses the existing Bluetooth protocol found in many devices.

Bluetooth provides some authentication and encryption in the protocol itself.
A shared secret (PIN) which is input manually into each of the two devices the
first time an encrypted connection is requested. The PIN is used, along with
nonces sent in the initial handshake, to generate a shared secret. This secret is
used in future connections to authenticate the devices to each other and to secure
the connection. If an attacker can read the traffic during the initial handshake
then the security is entirely reliant on the strength of the PIN. Ideally the initial
pairing operation should be done somewhere the communications cannot be
snooped. For any extra security another protocol would have to be run on top
of the Bluetooth protocol, which we decided not to do because we wanted our
system to be compatible with all Bluetooth devices which wouldn’t need to be
programmable. With recent devices such as smart phones it would be possible
to implement a separate protocol using a more secure system.

This still doesn’t address the Man in the Middle (MITM) attack which is
possible in this system. We could envisage an attacker having stolen the PDA
relaying the Bluetooth protocol to an agent standing within range of the token
to cause the PDA to unlock. This is more subtle than the conventional MITM
attack on key agreement protocols, because the attacker is not able to read any
data. He can, however, convince the PDA that it is close to the token. Bluetooth
uses pre-shared keys in the form of the PIN and this shared secret is used to
bootstrap the authentication. However, the attacker does not need to be able
to read the traffic: all he is interested in is relaying the authentication challenge
from the PDA to the authentication token and sending the replies back. This is
one of the reasons we have not used the proximity token as authentication for



8 Matthew Johnson and Frank Stajano

all of the restricted hats—even with this attack access would not be gained to
personal or particularly sensitive data.

A number of people have suggested solutions to this problem. Brands and
Chaum [5] proposed to calculate the maximum distance between prover and ver-
ifier given the propagation speed of the communications channel. More recently,
Sastry et al [11] proposed a solution based on ultrasound echos and measuring
the response time. A different solution to this problem is given by Alakassar [1].
He points out that being able to snoop the communication channel is required to
perform this MITM attack and proposes a probabilistic channel hopping scheme
which would require an attacker to be able to relay a large spectrum and be tech-
nically infeasible. Most of these systems have the same disadvantage as Corner
and Noble’s proposal because they require custom hardware.

An approach which doesn’t necessarily require custom hardware was sug-
gested in 1990 by Beth and Desmedt [4]. Their protocol requires each partici-
pant to reply at a fixed time interval agreed between the two. If the attacker
requires a non-zero time to forward the signal, then the attack will be detected
because responses will take too long. This protocol, unlike many others, can al-
low computation by both the prover and the verifier because the time delay can
be set appropriately. The technical requirements for this approach are merely
that the transmission time of the communications medium is already known by
the participants and that the jitter in transmission times is smaller than the
expected time the attacker needs to forward the signal. Unfortunately, the link
layer echo times recorded vary between 26.38ms and 48.85ms at close range and
up to 60.8ms at longer range. In comparison the time to transmit a packet over
a fixed wired network can be as little as 0.1ms and even for a wireless network
only a few ms (average 3ms in tests). Such a large variance makes this approach
not applicable to a Bluetooth-based strategy.

4.2 Automatic Switching

The security policy above governs what happens when a change of hat is at-
tempted. This can be caused by a user selecting a new hat using a keyboard
combination or a menu item, or by a system event triggering a transition.

Events such as selecting sleep mode and turning the PDA off will cause active
sessions to be locked following Rule 2. Other events, such as closing the PDA,
might trigger other actions, for example switching to the null hat session. We
have produced an extensible and configurable event handler to manage these
events and associate them with actions. The event handler can also be used to
manage the presence or absence of our authentication token.

Table 1 illustrates how these events cause actions to be executed on each of
the sessions in our sample implementation.



Implementing a multi-hat PDA 9

Effect on Session:
Event Null Hat Limited Hat Restricted Hat

Power Off/On Create Session Create and Lock Create and Lock
and Activate Session Session

Sleep Activate Lock Session
Lid Close Activate Lock Session
Token Out Of Range Activate Lock Session Lock Session
Token In Range Unlock and

Activate Session
Table 1. Events and Actions on Sessions in Prototype

5 The Prototype

The prototype we have working at the moment is implemented on an Intel-based
laptop using Linux and the K Desktop Environment as a basis. This prototype
demonstrates the above switching policy at work controlling access to three hats.

As per our specification we have a stateless null hat offering a null hat ses-
sion which has no network access. Certain events, such as closing the lid and
suspending the machine, cause switching to the null hat session and locking all
the other sessions.

The hats are implemented using three different users which have correspond-
ing different SELinux roles. The null hat user/role is given permission to run
only a small set of binaries, which are essentially all stateless applications. No
network access is allowed, and file-system permissions are restricted to only read
the programs and libraries required to run the stateless applications.

The other two hats have users/roles with progressively more permissions
allowed, Both are given network access, but have separate home directories and
may not read each other’s. Most applications can be executed by either, but a
few can be launched only by one.

We have produced an event-handling system which uses the exposed inter-
faces in KDE and KDM to do session management. It can switch sessions, lock
sessions and automatically log a user in on a given display. The event handler
has configuration files for each session, for each event the system should be able
to handle and for each action that can be performed on a session. Individual
event handlers can be configured to call any of the actions on any of the ses-
sions. The event handlers get passed all of the state of the system and can query
the authentication mechanisms.

The interface is managed via KDM and KDE. On boot an event is triggered
which logs in each user to a new session and locks the sessions for all but the null
hat. KDE has menu options which list all the open sessions (via a call to KDM)
and will allow the user to change between them. Our event handler makes sure
that when the session is changed all the other sessions are locked. Various other
events (mainly triggered by ACPI events such as suspend and lid-closing) are



10 Matthew Johnson and Frank Stajano

passed to the event handler which may cause the computer to activate a different
session (usually that of the null hat).

Checking of credentials is done by our session-switching logic which can use
DCOP calls to unlock the session without providing a password if other creden-
tials were sufficient.

Section 3.2 describes our sample policy with two types of restricted hat.
This is partly to demonstrate what can be done with the system, but also to
provide access to common programs using an easier authentication method than
passwords while still protecting more sensitive data. The way that system events
affect the sessions for the restricted hats can be seen in table 1.

The Bluetooth proximity token uses a background demon process which
maintains an open connection to the token. Each Bluetooth device has a 48
bit unique public identifier. During the initial pairing procedure, the user manu-
ally gives the computer the identifier of the chosen token. The demon constantly
monitors the signal strength to the token and, when the signal crosses a user-
defined threshold, the demon triggers an event in the event handler. The demon
can also be queried to return the current connection state. The Bluetooth mon-
itoring demon will be released as a stand-alone program under the GPL soon.

The prototype was implemented on a laptop rather than a PDA due to ease
of use and hardware availability. We have, however, been very careful to use only
elements which are going to be easy to port to a PDA. We have already said
that the class of PDAs we are aiming this system at have existing Linux ports
and many of them support the X Window System as an option for display. Both
SELinux and KDE are independent of the underlying hardware and simply work
on top of Linux. Bluetooth is also hardware that is often found in modern PDAs.

6 Further Work

The prototype demonstrates that this system is possible, but there is a lot more
work for us to do in this area. Our current prototype is on an Intel IA32 laptop
rather than a PDA which is the ultimate aim of the project. Because of the com-
ponents we have chosen it will be comparatively easy to port the current system,
but just that does not fulfil our goals because we still cannot run the original
PDA applications. Section 6.3 contains remarks on using graphical environments
other than the X Window System.

6.1 Authentication Methods

We have in general so far only talked about “Authentication Methods” without
going into more specific details. A traditional candidate for this is, as we have
said, passwords. We are, however, trying to get away from using passwords as
they are inconvenient for the user to remember and enter. Therefore, we continue
to explore alternative types of credentials. Our system uses a proximity-based
token but it would be simple to integrate a secure contact-token like the Dallas



Implementing a multi-hat PDA 11

iButton, or a more traditional smart-card. Most PDAs come with a compact-
flash slot which can be fitted with a smart-card reader.

It is also possible to use some sort of biometric authentication. There are
a number of companies selling mice and even PDAs with built in fingerprint
readers. When the user tries to change to a restricted hat, the PDA could prompt
them to touch the fingerprint reader. It would even be possible to have the system
monitor the fingerprint reader and cause the PDA to automatically change to
the session of a different hat.

This leads to an interesting new problem with the authentication. Ideally we
would simplify the user interaction as much as possible, which is one reason for
introducing tokens and biometrics. This reduces the steps required to change
hat to two—select session and present token—or even to one step if the action
of presenting the token causes the system to change hat. Automatic switching
like this is good from the point of view of simplifying the interaction, but pro-
duces the problem of knowing which session to change to. In the system we have
outlined here it is possible to have several hats which require the same creden-
tials. Therefore, if those credentials are presented, there needs to be a method
of selecting which session should be activated. Also, in general it is not desirable
to authenticate by taking a password (or other credential) and then searching
the possible users to see which (if any) the credential matches. We have taken
the view here that presenting a token like this causes an event to occur which
can be configured by the user. One of our future research areas will be into how
best to handle this case.

6.2 Filesystem Protection

Just restricting logical access to data through the operating system is not enough
to secure the data. Because the PDA is a small, portable device we are expecting
the attacker to have physical access to it for at least a small amount of time. If
the attacker only has a few minutes of physical access there is not a lot which
he can do to bypass the operating system security, assuming the boot loader
and BIOS are protected; but, if the PDA has been stolen, the attacker has a lot
more time in which to work. In that case it is not hard to remove the permanent
storage from the machine and connect it to another system to read the data
directly.

Because of this we are planning to use an encrypting file system which can be
integrated with the authentication system, similar to that in Corner and Noble
[6]. In this case rather than just linking the encryption to a proximity token we
will integrate it with the switching and authentication logic. A proximity token
is just one option which may be used.

6.3 Decoupling From X

The system that we have demonstrated uses multiple X sessions, one for each
hat. This is a bit wasteful on resources but, more importantly, there are sev-
eral methods of changing session such as the Alt-Control-F key combination



12 Matthew Johnson and Frank Stajano

which changes between virtual terminal and are handled at a much lower level
than the one we are dealing with. These are hard to trap and mediate without
modifying the underlying operating system. There are various approaches which
can be taken to ensure that any non-active sessions are kept locked and require
credentials to change into but these are all inherently fragile and susceptible
to being bypassed. Directly preventing this requires a lot of low-level alteration
of the Linux kernel. A much better system would be one where we control all
the methods of changing between the various sessions. Modelling the sessions as
different virtual desktops within the same X server would be a better approach,
the window manager in this case would have to mediate the desktop-switching
and check for credentials. However, if there are several applications in the same
X server then they have a lot of control over each other. This is not compatible
with our security policy which says that applications with different hats cannot
access each other.

One possible solution to this was proposed by Kilpatrick et al [7]. This would
be a system by which all the X protocol operations are mediated by SELinux-
based permissions. This would allow several users to have windows in the same X
server without also being able to access each other’s windows. This would enable
multiple users without requiring multiple X servers. Some work would have to
be done on this, however, since the model that Kilpatrick is trying to implement
is separating individual applications from each other—all of which may be seen
by the user—and not coping with a user who may change role during the session.

The Kilpatrick approach is a very general solution with per-application gran-
ularity, which we don’t necessarily need. There are some current research projects
involving X proxy servers which could provide several hats and only allow one of
them at a time to communicate with the X server. In both these cases we would
delegate the access control to a trusted applet which would run all the time and
switch between the hats.

Running in a single session would also help us to remove the dependency
on X entirely. Most of the current Linux-based PDAs, while supporting X, are
designed to use embedded environments such as Qtopia or GPE. Our goal is to
support the original applications written for our chosen PDA and therefore we
need to be able to support these environments.

Generic solutions which can use several environments need a server/client
which can display on all of them. One such solution is Virtual Network Comput-
ing (VNC) [10]. VNC is a system which can run a graphical session unconnected
to an actual display and has clients on most operating systems which can con-
nect to the session and display it in a window. There are VNC clients for all
of the main systems used on PDAs and therefore a system built around VNC
sessions would be feasible. In this case we would have a small switching applet
written for the specific platform which would switch between different VNC con-
nections. VNC, however, introduces a lot of latency even on local connections
and, because the protocol has to cope with the lowest common denominator, a
lot of optimisations which can be done with the windowing system tend to be
lost.



Implementing a multi-hat PDA 13

7 Conclusions

Our proof of concept prototype demonstrates that a multi-hat PDA can be imple-
mented by combining existing software subsystems without the need for exten-
sive modifications. Other subsystems to be integrated may include an encrypting
file system and alternative mechanisms for handling the graphical sessions.

Further challenges will include reproducing the prototype’s functionality on
an actual PDA and being able to run native PDA applications under the multi-
hat system. This porting activity may look conceptually straightforward but, as
already happened during the development of the prototype, we expect that it will
highlight new interesting research issues and open new avenues for investigation.

References

1. Ammar Alkassar, Christian Stüble and Ahmad-Reza Sadeghi. “Secure object
identification—or: solving the Chess Grandmaster Problem”. In “NSPW ’03: Pro-
ceedings of the 2003 workshop on New security paradigms”, pp. 77–85. ACM Press,
2003. ISBN 1-58113-880-6.

2. Anonymous. “Windows XP Technical Overview White Paper”, May 2001. http://
www.microsoft.com/technet/prodtechnol/winxppro/evaluate/xptechov.mspx.

3. Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho,
Rolf Neugebauer, Ian Pratt and Andrew Warfield. “Xen and the art of virtual-
ization”. In “SOSP ’03: Proceedings of the nineteenth ACM symposium on Op-
erating systems principles”, pp. 164–177. ACM Press, 2003. ISBN 1-58113-757-5.
http://www.cl.cam.ac.uk/netos/papers/2003-xensosp.pdf.

4. Thomas Beth and Yvo Desmedt. “Identification Tokens—or: Solving the Chess
Grandmaster Problem”. In A. J. Menezes and S. A. Vanstone (eds.), “Advances in
Cryptology—CRYPTO ’90”, vol. 537 of Lecture Notes in Computer Science, pp.
169–176. Springer-Verlag, 1991, 11–15 Aug 1990.

5. Stefan Brands and David Chaum. “Distance Bounding Protocols”. In Tor
Helleseth (ed.), “Advances in Cryptology—EUROCRYPT 93”, vol. 765 of Lec-
ture Notes in Computer Science, pp. 344–359. Springer-Verlag, 1994. ISSN
0302-9743. http://link.springer-ny.com/link/service/series/0558/papers/
0765/07650344.pdf.

6. Mark D. Corner and Brian D. Noble. “Zero-Interaction Authentication”. In “The
Eighth ACM Conference on Mobile Computing and Networking”, ACM Press, Sep
2002. http://mobility.eecs.umich.edu/papers/mobicom02.pdf.

7. Doug Kilpatrick, Wayne Salamon and Chris Vance. “Securing The X Window
System With SELinux”. Tech. Rep. 03-006, NAI Labs, Mar 2003. http://www.

nsa.gov/selinux/papers/X11 Study.pdf.
8. Peter Loscocco and Stephen Smalley. “Integrating Flexible Support for Security

Policies into the Linux Operating System”. In “The 2001 USENIX Annual Tech-
nical Conference”, USENIX Association, 2001.

9. Tristan Richardson, Frazer Bennett and Andy Hopper. “Teleporting in an X Win-
dow System Environment”. IEEE Personal Communications Magazine, 1(3):6–12,
Nov 1994. http://www.uk.research.att.com/pub/docs/att/tr.94.4.ps.Z.

10. Tristan Richardson, Quentin Stafford-Fraser, Kenneth R. Wood and Andy Hopper.
“Virtual Network Computing”. IEEE Internet Computing, 2(1):33–38, 1998. ISSN
1089-7801. http://www.uk.research.att.com/pub/docs/att/tr.98.1.pdf.

http://www.microsoft.com/technet/prodtechnol/winxppro/evaluate/xptechov.mspx
http://www.microsoft.com/technet/prodtechnol/winxppro/evaluate/xptechov.mspx
http://www.cl.cam.ac.uk/netos/papers/2003-xensosp.pdf
http://link.springer-ny.com/link/service/series/0558/papers/0765/07650344.pdf
http://link.springer-ny.com/link/service/series/0558/papers/0765/07650344.pdf
http://mobility.eecs.umich.edu/papers/mobicom02.pdf
http://www.nsa.gov/selinux/papers/X11_Study.pdf
http://www.nsa.gov/selinux/papers/X11_Study.pdf
http://www.uk.research.att.com/pub/docs/att/tr.94.4.ps.Z
http://www.uk.research.att.com/pub/docs/att/tr.98.1.pdf


14 Matthew Johnson and Frank Stajano

11. Naveen Sastry, Umesh Shankar and David Wagner. “Secure Verification of Location
Claims”. CryptoBytes, 7(1):17–29, Spring 2004.

12. Frank Stajano. Security for Ubiquitous Computing. John Wiley and Sons, Feb 2002.
ISBN 0-470-84493-0. http://www-lce.eng.cam.ac.uk/∼fms27/secubicomp/.

13. Frank Stajano. “One user, many hats; and, sometimes, no hat—towards a
secure yet usable PDA”. In “The Twelfth International Workshop on Secu-
rity Protocols”, April 2004. http://www-lce.eng.cam.ac.uk/∼fms27/papers/

2004-stajano-hats.pdf. To appear.

http://www-lce.eng.cam.ac.uk/~fms27/secubicomp/
http://www-lce.eng.cam.ac.uk/~fms27/papers/2004-stajano-hats.pdf
http://www-lce.eng.cam.ac.uk/~fms27/papers/2004-stajano-hats.pdf

	Implementing a multi-hat PDA
	Matthew Johnson and Frank Stajano

