
One user, many hats; and, sometimes, no hat—
towards a secure yet usable PDA

Frank Stajano

University of Cambridge

Abstract. How can we design a PDA that is at the same time secure
and usable? In current implementations the two properties are mutually
exclusive. Because normal users find password entry inconvenient, the
balance usually shifts away from security, leaving the PDA vulnerable if
lost or stolen.
We begin by envisaging what an ideal PDA authentication mechanism
might look like and by carefully examining alternatives to passwords such
as tokens and biometrics.
We then expose another aspect of the security vs. usability problem.
In many cases, when we turn on our PDA, we only access functional-
ity (dictionary, calculator, web browser. . . ) that requires no access to
private data stored in the machine; why, then, should we pay the usabil-
ity penalty of authentication in such cases? Moreover, we may want to
grant another person temporary access to such “harmless” functionality,
but without being forced to grant them unrestricted access to the whole
machine.
To solve this problem we describe a system in which we may assign more
than one “hat” to the owner of this single-user device, with each hat
having specific privileges. The machine supports concurrent graphical
logins for several hats and a convenient mechanism to switch between
them. There is also provision for a userid associated with “no hat”, to
which one can switch without the need for authentication, and which
can access all the harmless functionality. This scheme turns out to be
applicable and useful well beyond the limited realm of PDAs.

1 Introduction

Nowadays, a usable and secure PDA1 is an oxymoron. The two properties are
more or less opposites: the usable PDA, like a paper diary, is accessible as soon
as you open the cover; but anyone who finds it can read (and alter) all the data
it contains. The secure PDA, instead, requests a password every time it wakes
up, which makes it quite inconvenient for the legitimate owner to look up an
appointment or address.
1 Personal Digital Assistant, a pocket-sized computer with the primary function of an

organizer. It usually works as a diary, address book and notepad. More advanced
models may also act as an email client and web browser. The best modern PDAs
have an open architecture and allow the user to rewrite the ROM with the operating
system; some even run Linux natively.

B. Christianson et al. (Eds.): Security Protocols 2004, LNCS, to appear, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 Frank Stajano

The amount of sensitive information entrusted to our digital butlers keeps
growing [1]. The desire for a PDA that would stay secure even if lost or stolen
is therefore justified. In practice, though, it is only hardened crypto-geeks who
heroically withstand the password-induced inconvenience with quasi-religious
fervour; standard human beings, instead, of which few use PDAs in the first
place, immediately disable the password facility. Whenever security and usability
fight, usability wins.

The first problem to be addressed is therefore that of finding alternatives
to passwords that may offer greater usability for a comparable level of security.
This issue will be examined in section 2.

Even if we devised a perfect authentication mechanism, though, we would still
face another security problem. Consider the usage pattern of granting someone
else temporary access to the non-private features of our machine, for example
to allow them to play Tetris. Normally we have no way of doing so without also
giving up control of the whole PDA. This scenario will be examined in section
3. Solving this problem will also, as a side effect, improve usability for the case
in which the authentication method is still a cause of user frustration.

Finally, on the significance of the PDA platform: notwithstanding our own
personal enthusiasm for it, we must reluctantly concede that the PDA is still
a niche gadget of little commercial significance. Despite that, the quest for a
secure and usable PDA is still a commercially relevant research topic in so far
as most of the functionality of the PDA is now resurfacing in the computing
product that, more than any other, can truly be described as ubiquitous—the
mobile phone. Besides, much of what we shall say in section 3 also applies to
laptops and even desktop computers.

2 Authentication

Imagine that, using telepathy, we had perfect authentication: imagine that the
PDA could always tell, with absolute reliability and without the user having to
do anything, who is currently holding it2. Then the usable and secure PDA could
be implemented as follows: while my PDA is held by me, unlock it. As soon as it
isn’t, lock it. As you would expect, the correct way to establish this association
in the first place is through the Resurrecting Duckling security policy model [2]:
when I buy the PDA, I imprint it to me. Then nobody other than me could
use my PDA (making it secure), whereas the PDA would always automatically
unlock itself for me when in my hands (making it usable). In theory we would
still have a problem with coercion3 but the telepathic method may be assumed

2 To be more precise, this hypothetical “perfect authentication mechanism” only needs
to be able to tell whether the PDA is being held by its designated owner or not. It
does not have to be able to recognize the identity of any other potential users, so
long as it can reliably distinguish them from the owner.

3 Cartoon image: the beaten-up banker, tied to a chair by the mafia thugs, has his
PDA placed in his hand so that it unlocks and they can read his secret note about
the combination of the safe.



One user, many hats; and, sometimes, no hat 3

to detect the duress condition and refuse access. The only problem is with im-
plementation, because we don’t know how to authenticate the owner to the PDA
using telepathy.

Having drawn this asymptote of ideal behaviour, let us state our protection
goals more explicitly. We want the PDA to be secure and usable for its owner.
Secure here means that, if the device is lost or stolen, the effect is the same as
if the device disintegrates: nobody can use the hardware any more, the owner
loses any data not yet backed up, and nobody can retrieve any of the data that
was on the machine, even if they have physical control of it (or of its remains).
Usable, conversely, means that the owner finds the device unlocked every time
she attempts to use it. She doesn’t have to type a password into the device
at every access. Ideally, just as for a paper diary, she doesn’t have to type a
password ever.

It is of course easy to provide each of these two properties on its own if the
other can be ignored.

According to a traditional taxonomy of authentication methods, alternatives
to passwords (something you know) include tokens (something you have) and
biometrics (something you are). Either of these would be a step forward in the
usability direction. They will be examined in sections 2.1 and 2.2 respectively.

We note from the requirements discussed above that the PDA is a machine
with one very privileged user. In fact, even more than the so-called “personal”
computer, the PDA is the archetypal single-user machine—so much so that the
traditional login sequence for a PDA only asks for a password, without even
mentioning a userid.

We also note that, to comply with the above security requirements, access
control at the operating system level is by itself insufficient, since the attacker
might open up the machine and access the secondary storage (flash memory
or miniature hard disk) directly [3]. A secure PDA will have to encrypt its file
system, although no current model does so in its manufacturer’s configuration.

When should the authentication check be performed? In the ideal “perfect
authentication” case it is a continuous ongoing process: as soon as the PDA is
no longer held by the user, it notices and locks itself. In most practical imple-
mentations, instead, the check is only performed when certain (relatively rare)
events occur: usually when the machine is initially turned on and when it wakes
up from its sleep state. There is therefore a window of vulnerability between the
moment in which the owner stops using the device and the moment in which
the device goes to sleep. To reduce the size of this window one may force sleep
soon after detecting inactivity; but, since the machine can’t distinguish between
thinking time and the end of the current burst of activity, setting an excessively
short timeout will greatly inconvenience the user, as the machine will switch off
in mid-operation. This is yet another trade-off between security and usability.

Assuming an authentication mechanism that allows the verification to be
performed without disturbing the user, the dependency between sleep and au-
thentication should be reversed: instead of triggering authentication when the
device comes out of sleep, the device should continuously verify the presence



4 Frank Stajano

of the user4 and lock itself up, as well as going to sleep5, when the user is not
present.

2.1 Token

The PDA could verify that it is being held by its owner by checking for the
proximity of a token held by the owner, for example a special microchip embed-
ded in a ring or in the strap of a wristwatch. The quality of this solution can be
measured along several dimensions, including at least the following.

Communication technology. The communication between the token and the
PDA may require precise contact between two physical devices (electrical
connection, e.g. iButton; mechanical coupling, as with lock and key); loose
contact between two designated areas (inductive coupling); it may be con-
tactless but still require physical alignment (infrared pulses, barcode and
other optical methods); and it may be completely unconstrained within a
certain range (radio, e.g. Bluetooth or RFID). The latter solutions in this
spectrum are almost as convenient as telepathic interaction but may be sub-
ject to eavesdropping.

Protocol. The most trivial authentication procedure is for the token to present
a previously agreed secret to the verifying PDA. This solution (RFID, bar-
code) is cheap because it only requires a static, read-only token and unidirec-
tional communication from token to PDA. If the communication channel is
subject to eavesdropping, though, or if the attacker can once obtain access to
the token, then replay attacks are possible. To prevent these, the responses
from the token must not be predictable. Common solutions include one-time
passwords, subject to synchronization problems, and challenge-response, re-
quiring the additional device costs of bidirectional communication between
token and PDA and active cryptographic capabilities in the token (iBut-
ton, wireless dongle). Furthermore, if an active adversary can insert itself in
the channel between token and PDA and masquerade as one to the other
and vice versa, then a man-in-the-middle attack may be possible. If all the
man-in-the-middle does is tunnel data (to pretend that the token is near the
PDA even while it isn’t, for example to unlock a stolen PDA) then the only
countermeasure may be a distance-bounding protocol [4].

Binding. All the authentication procedure can do is give the verifier some con-
fidence that the token is nearby. To infer from this that the owner of the
token is nearby requires a reason to believe that the token is still physi-
cally with the owner. If the token itself may be lost or stolen, the problem

4 For example by polling several times per minute—although the ideal would be to
have an “interrupt” generated (but by what?) as soon as the owner is no longer
there.

5 Sending the machine to sleep, as well as locking it, has however the disadvantage
that it prevents the user from running unattended background computations. For
some applications, e.g. backup, it may be more convenient to lock user I/O but only
force sleep after the currently running applications have completed their task.



One user, many hats; and, sometimes, no hat 5

only goes up one level. While it is true that the user is less likely to lose a
wristwatch-bound token than a pocket-heavy PDA, there are scenarios (e.g.
sports practice) in which the user will have to take off both the watch and
the PDA, and even have to store them together in a clothes bag or in a
flimsy locker.
More complicated countermeasures could be envisaged to cover this threat,
such as a token that deactivates itself when the watch strap is opened and
which requires a PIN for reactivation; but the complication makes the im-
plementation more expensive and goes against the original goal of usability.
In particular: the armoured chip must sense the open-closed status of the
strap; there must be a way to enter a PIN in the chip—and this data en-
try peripheral, being outside the tamper-proof enclosure, could be abused to
brute-force the PIN; finally, the user has to re-enter the PIN whenever the
watch strap is undone for any reason—this, although probably less frequent,
is not an enormous improvement over having to type the password in the
PDA in the first place.
An original idea on the theme of binding, although definitely not the solution
we would hope to see deployed, is suggested in an excellent and thought-
provoking “ubicomp envisionment” video co-produced by Keio University
and Tokyo University6, which features a teenager from the near future whose
wireless e-wallet is embedded in a hard-to-misplace tongue piercing.

It is interesting to observe how, in a spectrum of “tightness of binding of
token to owner” that might span such sample points as key fob, watch strap, ring,
tongue piercing and subcutaneous RFID implant [5], the “something you have”
token blurs into a “something you are” quasi-biometric, with the corresponding
consequences on availability (the more tightly bound tokens are harder to forget
at home or lose), transferability (the ability to sign a document in one’s name,
for example, is easier to delegate if the signature is affixed with a stamp, as
commonly done in Japan, rather than as a handwritten scribble), deniability
(the tighter the binding, the harder to pretend that the owner was not with the
token) and privacy (particularly when recognition happens without the consent
or knowledge of the owner).

The nicest existing implementation of token-based locking of a personal de-
vice that we know of is that of Corner and Noble [6]. The device being locked
is a laptop, while the prototype token is a PDA, which the authors consider
representative of what might be embedded in a watch in the near future. The
two devices communicate over an 802.11 radio link in ad-hoc networking mode.
The laptop, whose file system is encrypted, constantly polls for the presence of
the token. When the token goes out of radio range, all the data in the file cache
is re-encrypted within five seconds. When the token returns, decryption back to
the original state occurs in just over six seconds.

6 The short video, A Love Triangle, is part of a set of three “Small stories in 2008”.
At the time of writing, a streaming feed for the videos was available at http://

stoneroom.mlab.t.u-tokyo.ac.jp/vrep/archives/2003_12_08.html.

http://stoneroom.mlab.t.u-tokyo.ac.jp/vrep/archives/2003_12_08.html
http://stoneroom.mlab.t.u-tokyo.ac.jp/vrep/archives/2003_12_08.html


6 Frank Stajano

We note in passing that, while in principle losing the token leads to inacces-
sibility of the PDA, if the binding between the two items is Duckling-compliant,
then the PDA will remain accessible, because the second of the four principles of
the Duckling policy [7, section 4.2] prescribes that the imprinting key be backed
up. Alternative tokenless solutions might also be adopted, such as unlocking
the PDA by typing a password into it. It would however be prudent to verify
with care whether the chosen alternative is completely equivalent to the solution
described by the Duckling policy and to look in detail at any differences.

2.2 Biometric

The biometric authenticator could be a fingerprint. There is indeed a model
of cellular phone, first offered for sale in Japan in 2003, that incorporates a
fingerprint reader and uses it to lock the address book and call history.

It is of course impossible to forget one’s fingerprint at home, which is an
advantage compared to the token, but it is not entirely impossible to have it
stolen. Apart from the gory but thankfully infrequent scenario in which the
actual finger is chopped off, it has been shown that most fingerprint readers can
be fooled by a rubber-like mould [8]; all that remains is for the adversary who
found or stole the PDA to get hold of a fingerprint from which to fashion the
rubber finger. The James Bond approach might be to offer the victim a Martini
and keep the glass; a more practical solution, which does not require interaction
with the former owner, is to look for fingerprints on the PDA itself—it is, after
all, a “handheld” device.

The biometric could also be a voice print. From the usability viewpoint this
may be less convenient than silent forms of authentication: unlocking the PDA
would embarrassingly attract the attention of anyone nearby. Compared to many
other biometrics, though, it would offer the advantage of being better suited
to a challenge-response protocol (“please read out this randomly-generated sen-
tence”) that might thwart replay attacks. Handwriting recognition, though prob-
ably still immature for authentication, is another biometric method that would
share this property.

Another well known class of problems opened up by biometrics as opposed
to other forms of authentication is that of the inevitability of false positives
(accepting an impostor) and false negatives (wrongly rejecting the owner). The
biometric scheme with the best performance along this dimension is currently
iris recognition [9]. This scheme could be readily adopted for our application,
particularly with the current trend towards camera-equipped phones. But here
too, especially for a known victim, it wouldn’t be impossible for the illegitimate
holder of a lost PDA to find a photo of good enough quality for a replay attack,
as suggested by the story of the Afghan woman featured on the cover of a 1984
National Geographic, identified 18 years later by comparing her iris codes to
those of the photo [10]. To counter this threat one should resort to a verification
procedure that ascertains the presence of a live iris, for example by measuring
the pupil’s dilation in response to varying illumination. The general consensus is



One user, many hats; and, sometimes, no hat 7

that it is hard to eliminate this kind of false positives if the attacker can perform
the authentication without supervision.

Yet another problem of using a biometric measurement instead of a password
or token is the impossibility to revoke it. You can’t get new irises, except by
following the grisly procedure demonstrated in Spielberg’s Minority Report.

Perhaps the strongest threat for biometrics, therefore, is the current world-
wide trend, under strong pressure from the US government, towards embed-
ding biometric information such as fingerprints or iris codes in machine-readable
state-issued identity documents. Ignoring a number of implementation details,
this is more or less equivalent to having your non-changeable password printed
in cleartext in your passport.

Much of the justified stigma associated with biometrics, though, comes from
the Orwellian overtones of a Big Brother entity menacingly collecting privacy-
threatening information about our activities and whereabouts. The case of PDA
authentication, however, is different: here the verifier is under our control, works
for our benefit and won’t be reporting us to a global aggregating observer.

After pointing out the problems of tokens and biometrics it is only fair to
emphasize that passwords, too, are far from perfect. Apart from the fundamental
usability problem of having to enter the password at every interaction, which
motivated the search for alternatives in the first place, passwords are often poorly
chosen—easy to guess and, worse, recycled across systems, so that the discov-
ery of one (which can be trivial for the provider of a password-protected web
service) means the compromise of several accounts. Except for long and entirely
random ones, passwords are subject to brute force and smart dictionary attacks
(including “variations on a theme”)7. When they are hard to guess they are also
hard to type and remember, sometimes denying access to the device until the
user can get hold of a backup (if one exists). The backup itself, when it exists,
is usually better protected from the viewpoint of availability than from that of
confidentiality and is therefore a vulnerability of its own. Finally, if fingers can
be chopped off, so passwords can be tortured out of victims.

Just as most of us still confidently rely on passwords on a daily basis despite
all of the above, the problems previously pointed out for tokens and biometrics
should not be taken as implying that those solutions are entirely hopeless. Let us
therefore suspend disbelief on the assumption that a non-password method can
be sufficiently secure for protecting the confidentiality and integrity of the data
in the PDA against the envisaged threats, and that the additional hardware cost
is justified by the improvement in usability.

7 On a PDA, though, where the attacker cannot crack a password file offline, brute-
force attacks are hard to mount unless one interfaces an automaton to the keyboard,
either mechanically or electrically. Even then, a throttling mechanism can easily
reduce the frequency of attempts after only a small number of consecutive failures,
making brute force impossible.



8 Frank Stajano

2.3 But do we need authentication?

The main thesis so far is that passwords are a nuisance from the usability view-
point and that a user-friendly PDA should adopt some different mechanism for
user authentication. This thesis is easy to defend but not particularly novel in-
tellectually.

Another take on this problem is to step back and ask whether authentication
is really needed. Some of the PDA functions we use most frequently, such as the
multilingual dictionary, gain no benefit whatsoever from password protection.
Yet we are forced to keep the password feature active in order to protect our
diary, our personal notes and our contact list.

In previous work on authentication and authorization for ubiquitous comput-
ing we introduced the Big Stick principle [7, section 4.2.8], one of the most robust
security policy models you can adopt: “whoever currently has physical control
of the device is allowed to take it over”. This is the security policy governing
access to your lawnmower, your fountain pen and your English dictionary. In the
world of electronic devices, it’s the policy of your watch and pocket calculator,
for which it is highly appropriate. It is also the policy of your digital camera, for
which it is perhaps less so. The strength of this policy is that it is a very close
model of what usually happens anyway; it is therefore less likely to be violated
than others that attempt to impose unnatural behaviours on the real world:
when the real and the ideal world are at odds, the real world usually wins.

The significance of Big Stick in the current context is that there are parts
of a PDA that operate as devices for which that policy model is appropriate:
the calculator application, the Japanese-English dictionary application, the mul-
timedia encyclopedia, the World Time application, as well as most games and
puzzles, carry no state and have no confidentiality concerns. If the PDA only
offered those, Big Stick would be a perfectly suitable way to manage it and
there would be no need to look for alternatives to passwords because one could
dispense with authentication altogether8. The PDA would be ready for use all
the time by the bearer with no access control restrictions. This is indeed what
happens for separate appliances offering these functions—the stand-alone pocket
calculators, electronic dictionaries and world clocks never ask you to log in, and
are therefore much more convenient to use than the corresponding function of
your PDA.

Especially with passwords, that emphasize the cost of every authentication
operation, it is quite frustrating to have to pay the penalty of unlocking the PDA
just in order to access a function, such as looking up a word in the dictionary,
for which the access control restriction is meaningless in the first place.

8 The only viewpoint from which Big Stick might be inappropriate is if one wanted
to make the device inoperable for a thief—in other words, if one wanted to protect
the hardware. In this paper we assume that the hardware will continue to drop in
cost and that its value is insignificant compared to that of the data. If you lose your
pocket calculator, even a scientific pocket calculator, you just buy a new one without
great regrets.



One user, many hats; and, sometimes, no hat 9

2.4 Lending your machine—or part of it

There is more: if, seeing that you have just used an interesting-looking dictionary
on your PDA, your dinner party companions ask you whether they can borrow
the device and look up some words of their own, under the current state of
affairs you can only hand them a usable device if you give it to them unlocked,
i.e. in the state in which you have already logged in. At this point you must
blindly trust your friends to access only the dictionary and not, while the device
is in their hands and too far for you to actually see9, the content of your diary,
personal finance spreadsheet or secret business plan.

Things would be much nicer if we could draw a kind of security perimeter
(“private area”) around the data and applications of which we wanted to protect
confidentiality and integrity, while leaving the rest of the functionality of the
PDA in the “public area” (or perhaps “DMZ” in firewall terms) outside the
security perimeter. Then anything in the public area could be accessed and
run without authentication. Authentication would only be required for entering
the private area. With this arrangement we could hand over the PDA without
having logged in, thereby giving access to all applications in the public area but
preventing access to anything in the private area.

Assigning applications to the private or the public area involves some sub-
tlety. While the calculator can be made public with no second thoughts, the web
browser requires some attention to detail: despite being essentially stateless, and
therefore a good candidate for the public area, it might still contain sensitive
information in the cache, history, bookmarks, cookies, “remembered fields” and
so on. This kind of application should therefore be allowed to run in both areas,
but it should access a different set of preferences in each. There should also be
a way to erase in a global way any preferences left by any applications in the
public area. Finally a third type of applications, such as backup and restore,
should only be allowed to run in the private area.

The most obvious way to implement this split using standard operating sys-
tem facilities is by making use of two user accounts, one for the private area and
one for the public area, the latter equipped with an empty password so as to
require no credentials for authentication.

As we noted earlier, the PDA is the archetypal single-user machine. Many
PDAs don’t even have a concept of user accounts in their operating system—my
first one, an HP, just ran DOS. There are, however, PDAs based on a multi-user
OS (my current one, a Sharp Zaurus, runs Linux), even though the supplied
system software pretends and assumes that there is only ever going to be one
user.

Is it then sufficient to pick a PDA with a multi-user OS, create a user called
“public” (with empty password) and one called “private”, and assign the right
permissions to the relevant directories and applications?

Not quite. Because, if “private” is logged in and the PDA goes to sleep,
the machine will be unusable until “private” types in his password to wake it

9 And you are too polite to watch over their shoulder like a prison guard anyway.



10 Frank Stajano

up, so you can’t suddenly open the PDA as “public” if you just want to use the
calculator. Besides, if you are working as “private” with half a dozen applications
open in useful places, you don’t want to have to log out in order to be able to
lend the machine in “public” mode to a friend who wishes to check the web
briefly.

Would this be something solved by the unix “su” facility, or its Win32 equiv-
alent “run as”? Not quite, because both of these are nested invocations: the
person running the application under the new userid can always close the ap-
plication and therefore switch back to the previous userid, the one that invoked
the “su” or “run as” command. So this would perhaps be suitable for going from
“public” to “private”, but never vice versa.

Interestingly, any good solution to the sharing problem highlighted here
would also fix the problem of the previous section (2.3): if you wanted to access
the dictionary or any other application in the public area, you now would be
able to do so without password.

3 One user, many hats

To solve the problem just presented in section 2.4, a different facility is needed:
a multi-user OS that can keep several sessions (several “desktops”) open at the
same time and allow random-access, non-nested switching between them. This
is similar to the CTRL-ALT-F1 console switching facility of Linux, with the
two important differences that it should work for graphical sessions and that
switching to a different user should require that user’s credentials again. The
closest approximation to this facility in a current desktop OS is Windows XP’s
Fast User Switching.

In order not to invalidate too many of the assumptions on which existing ap-
plications may be based we accept the restriction that, at any given time, each
userid can have at most one active desktop. But several desktops may simulta-
neously be active, so long as they belong to different userids. One of these will be
the one and only “public” userid—the one requiring no credentials. There may
be several other accounts, all private in the sense of requiring credentials, each
with a different set of privileges: this one can access the whole home directory
but cannot access the network, this one can access the network but can only
access a chrooted jail of the file system, this one can view Word files but can’t
do anything else, and so on. The underlying idea is sandboxing. This is clearly
an arrangement that could be useful also outside the realm of PDAs. In fact,
most laptops are just as single-user as PDAs.

The main point to note is that all of the “private” accounts actually belong
to the same real-world user—the owner of the machine. These accounts form a
group of different userids (we could say “personalities”) for the same user. This
is still a machine with a single real-world user, and yet there are several userids
that are logged in simultaneously. One user, many hats. The hat can be viewed
as a personality and also as a credential: the machine sees you wear the fireman’s
hat and recognizes you as a fireman; it sees you wear the Robin Hood hat and



One user, many hats; and, sometimes, no hat 11

recognizes you as Robin Hood, giving you access to Robin Hood’s files and
privileges. And sometimes it sees you come with no hat, as an anonymous user,
and grants you the (non-null) privileges of an anonymous guest, which include
looking up words in the dictionary, playing stateless videogames and surfing the
web. Hence the title of this paper: One user, many hats; but, sometimes, no hat.

When the machine comes out of sleep, all active “private” sessions are locked—
meaning that you need to exhibit the corresponding credentials to access them.
The “public” session requires no credentials and therefore is never locked. When
the machine comes out of sleep, you don’t have to log back into the same ses-
sion that was active when the machine went to sleep; you can instead switch
to another session and log into that, leaving the original one locked. You can
also start an entirely new session under an unused userid, assuming there are
sufficient resources left to allow that. You can also atomically close all the ses-
sions and reboot the machine without having to show any credentials. This is
in accordance with the Big Stick principle, since you could always do that by
removing the battery anyway.

This “switcher” accessory of the operating system can be operated without
any credentials and always allows you to get back to the “public” session. It
is invoked automatically when the machine is turned on or woken up, but it
can also be recalled explicitly at any other time. In a well-designed PDA, the
facility to switch to the “public” session would even be given its own physical
button, which for the user would have the semantics of “turn on the machine
right now10, without any of that password hassle”.

The “public” session, usable by anyone to whom the owner may lend the ma-
chine, does not retain any permanent state (browser history etc). When closed,
it forgets everything. It is also always active: whenever closed, it reopens itself
automatically, so that there is always an open “public” session to switch to.

With fingerprints as authenticators, one could even have a different userid for
every fingerprint, with appropriate mnemonics: index to search Google, middle
finger to read the dreaded Word attachments and so forth.

The baseline requirement, however, and probably the most useful configura-
tion, is simply one private area and the common public area.

To get maximum protection from the sandboxing idea one might have to
combine the OS facility described above with a carefully thought out mandatory
access control policy. The goal might be to ensure that, for example, a virus
coming through the mail program can never read the appointments in your
diary. This, incidentally, will result in restrictions that prevent you from cutting
and pasting data between the diary and the mail application. The need for
smooth inter-application communication, not just through the file system but
especially via higher level mechanisms such as the clipboard, is probably going
to be the main constraint limiting excessive subdivision of the private area into
a fine-grained multitude of separate userids.

10 The “right now” may require some RAM preallocation, otherwise swapping may
induce a substantial delay.



12 Frank Stajano

We fear however that, while the sandboxing idea will stop most of the mal-
ware attacks targeted at the pre-hats versions of the underlying OS, a deter-
mined attacker working specifically against the multi-hat configuration will in
most cases be able to bypass the protection, possibly using techniques inspired by
the API attacks community [11]. There are just too many possible interactions
if the machine must still be usable and user-friendly.

We envisage a few ways of building a prototype of this functionality into a
Linux-based PDA. The first is based on the X Window system. X already has
the facility to host several independent graphical sessions on the same machine:
some work is required to provide a suitable switcher applet, but thereafter each
session will run on its own X display. A rather different approach would instead
use the Xen hypervisor [12], which allows a machine to be split into several
virtual machines each of which runs its own operating system. This would provide
greater separation between the hats, allowing for totally separate file systems
and peripherals (e.g. network). It would also require a port of Xen to the PDA’s
architecture and a port of the PDA’s version of Linux to Xen.

4 Research questions

Once such a prototype is built, there will be further research questions to ex-
plore. It may already be possible to investigate some of them on a laptop by
implementing the multi-hat strategy on top of Windows XP’s Fast User Switch-
ing; however, with a closed proprietary OS, one has no freedom to adapt and
possibly optimize the underlying mechanism towards the intended usage pattern
and one cannot subsequently port the system from a laptop to a PDA. A solution
based on free software would clearly be preferable.

Perhaps one of the most interesting research questions is how to reconcile
asynchronous notifications with the security requirement of keeping everything
encrypted. Imagine a PDA in which the whole file system is encrypted and data
is only decrypted on the fly with a key that is forgotten as soon as the owner
is no longer around, as in the cited work by Corner and Noble [6]. How will
the PDA be able to wake up and beep at the next scheduled alarm event from
the diary, if the diary file itself is encrypted and inaccessible while the machine
is asleep? Should there be a special queue of wake-up events, kept around in
unencrypted format, to which the diary application writes before going to sleep?
This seems ad-hoc and inelegant.

If one could invoke the silver bullet of tamper resistance, and rely on a safe-
guard capable of erasing the RAM at the first attempt of tampering, the solution
would be easy: the file system on secondary storage would always stay encrypted
but the RAM and file cache would be unencrypted and would allow programs
to run in the background (assuming they had preloaded all the disk pages they
needed) even with the machine (meaning actually the user interface) locked.
This may be the best compromise yet, but we have learnt to look at tamper
resistance claims with some suspicion [13].



One user, many hats; and, sometimes, no hat 13

Furthermore, how would an encrypted file system interact with the multiple
hats? Clearly, anything in the “public” area, including OS and applications,
would have to be unencrypted. Would this then threaten the integrity of the
“private” area? Should there be several complete replicas of the file system (an
approach that the Xen-based implementation would support better than any
other)? Is there any scope for a less drastic chroot-style sandboxing?

We may also have to reconcile the need for secure isolation between the
hats with the potential usability requirement of transferring information between
them in some controlled but convenient way. If, for example, the web browser
runs only in the public area, it may be desirable to transfer a file downloaded
with it into one of the “private” areas. Clearly this raises a number of issues
from the field of multilevel secure systems—not trivial to begin with, but made
much harder by the additional requirement of usability. Once in that realm, it
will then be interesting to discover and counter the creative ways in which a
no-hat user might escalate privileges.

5 Conclusions

Today, security and usability still tend to be antithetic. For a PDA, they roughly
translate to “password” and “no password” respectively. Neither property is
satisfactory without the other.

Performing the authentication with means other than passwords is one way
to increase usability. Tokens and biometrics both have some problems, but ought
to be taken more seriously. In this paper we examined a number of alternatives
in some detail, exposing their security vs. usability trade-offs.

Whatever the authentication method, though, it would be nice if the machine
were smarter and less pedantic. Why ask for authentication when accessing a
facility that does not require protection? Our “hats” approach addresses this
problem and, as a side benefit, also supports the otherwise dangerous usage
pattern of temporarily lending the machine to a friend.

Even a strongly single-user machine such as the PDA will benefit from our
new arrangement in which the single real-world user can have one hat, or sev-
eral, for accessing protected material, and can switch hats—or take off the hat
altogether—without logging out, and without having to provide any credentials
when switching to “no hat”.

When one day our machines feature a correctly implemented one-touch “no
hat” button, we will have won a significant usability battle without having com-
promised security.

6 Acknowledgements

As usual, the original draft was improved thanks to the many comments received
at the workshop. I am grateful to, among others, Matt Blaze, Tuomas Aura and
particularly James Malcolm. After the workshop I also benefited from discussions
with Matt Jackson, who has since become my PhD student.



14 Frank Stajano

References

1. Frank Stajano. “Will Your Digital Butlers Betray You?” In Paul Syverson and
Sabrina De Capitani di Vimercati (eds.), “Proceedings of the 2004 Workshop on
Privacy in the Electronic Society”, pp. 37–38. ACM, Washington, DC, USA, 28
Oct 2004. ISBN 1-58113-968-3.

2. Frank Stajano and Ross Anderson. “The Resurrecting Duckling: Security Issues
in Ad-Hoc Wireless Networks”. In Bruce Christianson, Bruno Crispo, James A.
Malcolm and Michael Roe (eds.), “Security Protocols, 7th International Work-
shop, Proceedings”, vol. 1796 of Lecture Notes in Computer Science, pp. 172–182.
Springer, 2000. ISBN 3-540-67381-4. ISSN 0302-9743. http://www.cl.cam.ac.

uk/~fms27/duckling/.
3. Tony Sammes and Brian Jenkinson. Forensic Computing: A Practitioner’s Guide.

Springer, 2000. ISBN 1-85233-299-9.
4. Stefan Brands and David Chaum. “Distance-Bounding Protocols (Extended Ab-

stract)”. In Tor Helleseth (ed.), “Advances in Cryptology—EUROCRYPT 93”,
vol. 765 of Lecture Notes in Computer Science, pp. 344–359. Springer-Verlag, 1994,
23–27 May 1993.

5. Julia Scheeres. “Implantable Chip, On Sale Now”, 25 Oct 2002. http://www.

wired.com/news/privacy/0,1848,55999,00.html.
6. Mark D. Corner and Brian D. Noble. “Zero-interaction authentication”. In “Pro-

ceedings of the eighth Annual International Conference on Mobile Computing and
Networking (MOBICOM-02)”, pp. 1–11. ACM Press, New York, Sep 23–28 2002.

7. Frank Stajano. Security for Ubiquitous Computing. John Wiley and Sons, Feb
2002. ISBN 0-470-84493-0. http://www.cl.cam.ac.uk/~fms27/secubicomp/.

8. Tsutomu Matsumoto, Hiroyuki Matsumoto, Koji Yamada and Satoshi Hoshino.
“Impact of Artificial Gummy Fingers on Fingerprint Systems”. In “Proceedings
of SPIE”, vol. 4677, Optical Security and Counterfeit Deterrence Techniques IV.
2002. http://cryptome.org/gummy.htm.

9. John Daugman. “How Iris Recognition Works”. IEEE Transactions on Circuits
and Systems for Video Technology, 14(1), Jan 2004. http://www.cl.cam.ac.uk/

users/jgd1000/csvt.pdf.
10. John Daugman. “How the Afghan Girl was Identified by Her Iris Patterns”, 2002.

http://www.cl.cam.ac.uk/users/jgd1000/afghan.html.
11. Mike Bond and Ross J. Anderson. “API-Level Attacks on Embedded Systems”.

IEEE Computer, 34(10):67–75, 2001. http://www.cl.cam.ac.uk/users/mkb23/

research/API-Attacks.pdf.
12. Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho

and Rolf Neugebauer. “Xen and the art of virtualization”. In “Proceedings of the
19th ACM Symposium on Operating Systems Principles (SOSP’03)”, pp. 164–177.
ACM, Bolton Landing, NY, USA, Oct 2003.

13. Ross Anderson and Markus Kuhn. “Tamper Resistance—A Cautionary Note”. In
“Proc. 2nd USENIX Workshop on Electronic Commerce”, 1996. ISBN 1-880446-
83-9. http://www.cl.cam.ac.uk/~mgk25/tamper.pdf.

http://www.cl.cam.ac.uk/~fms27/duckling/
http://www.cl.cam.ac.uk/~fms27/duckling/
http://www.wired.com/news/privacy/0,1848,55999,00.html
http://www.wired.com/news/privacy/0,1848,55999,00.html
http://www.cl.cam.ac.uk/~fms27/secubicomp/
http://cryptome.org/gummy.htm
http://www.cl.cam.ac.uk/users/jgd1000/csvt.pdf
http://www.cl.cam.ac.uk/users/jgd1000/csvt.pdf
http://www.cl.cam.ac.uk/users/jgd1000/afghan.html
http://www.cl.cam.ac.uk/users/mkb23/research/API-Attacks.pdf
http://www.cl.cam.ac.uk/users/mkb23/research/API-Attacks.pdf
http://www.cl.cam.ac.uk/~mgk25/tamper.pdf

	One user, many hats; and, sometimes, no hat---towards a secure yet usable PDA
	Frank Stajano

