
Technology Challenges
for Building Internet-Scale Ubiquitous Computing

Tatsuo Nakajima, Hiro Ishikawa, Eiji Tokunaga
Department of Information and Computer Science, Waseda University

3-4-1 Okubo Shinjuku Tokyo 169-8555, JAPAN
Frank Stajano

Toshiba Corporate R&D Center, Kawasaki, JAPAN and
Laboratory for Communications Engineering, University of Cambridge, UK

Abstract

In the future, many of the physical objects that sur-
round us will be augmented with microprocessors and wireless
transceivers. They will communicate with each other, quietly
monitor our daily activities and notify us of important events.
Any piece of relevant information on the Internet will be avail-
able to us anytime and anywhere. We call this scenario the
Internet-scale ubiquitous computing environment.

In our current lifestyle, one of the most precious and scarce
resources is human attention. Internet-scale ubiquitous com-
puting environments have the potential to make our daily life
more comfortable and attractive because they will allow us to
focus only on the essential tasks, letting technology take care
of itself.

However, building Internet-scale ubiquitous computing en-
vironments requires us to address a variety of technical issues.
In particular we have to take into account the software devel-
opment costs to build such an attractive future. As a road to
developing the necessary software in a timely fashion, we pro-
pose to base the system on existing infrastructural software
components such as Linux, Java and CORBA.

In this paper we identify several important architectural
problems that builders of Internet-scale ubiquitous comput-
ing environments will have to address, and we present some
recommendations on the basis of our analysis and implemen-
tation experience.

1 Introduction

The coming age of ubiquitous computing [1, 3, 4, 43, 21, 64]
promises to change our lifestyle in signi�cant ways. Everyday
objects, from pens to shoes, will become \smart" and will con-
tain embedded processors; they might monitor our behaviour,
react to it and adapt their functionality to the personal pref-
erences of the current user [16, 15, 20, 28, 63]. Traditional
appliances such as television sets, microwave ovens and refrig-
erators, which already contain digital electronics, will become
more intelligent and communicate with each other. And we
will be carrying or wearing various mobile gadgets with a wire-
less connection to the Internet.

Many research groups have been involved in the design and
implementation of ubiquitous computing environments. We
expect that, in the future, these environments will be con-
nected to the Internet: any appliance in the world will be able
to communicate with any other. If we wish to, we will be
able to ask this globally interconnected system to follow us
wherever we are and intelligently monitor and augment our

behaviour according to our personal choices and preferences.
Devices and appliances everywhere will recon�gure themselves
and interact with us in familiar ways as if they were the ones
we have at home.

Sophisticated enterprise networks, such as online Internet-
based billing systems, have already been built. We must there-
fore envisage the integration between ubiquitous computing
applications and existing distributed systems on the Internet.
We shall call the resulting computing environments Internet-
scale ubiquitous computing (InterUbicomp). These environ-
ments are characterized by ubiquitous computers, ubiquitous
information and ubiquitous networks. Physical spaces will
be augmented by computer-generated information. InterUbi-
comp will bring along an evolution of our lifestyle, culture and
society. But we will need to solve many technical problems in
order to transform this vision into a reality.

In this paper we present several technical challenges for
the implementation of InterUbicomp. Infrastructural software
components such as operating systems and middleware will
have to run on a variety of heterogeneous hardware platforms.
It is unrealistic to reimplement such components from scratch
for each target hardware platform, because the development of
such system software is extremely expensive. Our research fo-
cuses on software portability to reduce the development cost,
and on adding advanced features to existing software com-
ponents without modifying them (note that we are not only
talking about applications but also, and particularly, about
system software). We also believe that InterUbicomp soft-
ware should be very robust: the more these systems become
pervasive in our lives, the more serious the disruption will be
if they do not work as they should.

This paper gives an overview of what we consider to be
the main system-level challenges in the implementation of In-
terUbicomp environments. We have started a couple of prac-
tical projects in this area; this paper describes the general
framework in which they �t. Based on our implementation
experience, we point out our preferred solutions to the main
technical challenges in this �eld.

The remainder of this paper is structured as follows. In
Section 2, we give a more detailed description of Internet-scale
ubiquitous computing. Section 3, which is the main part of the
paper, presents several technical challenges for InterUbicomp
implementation. We categorize the challenges into software
design issues, system issues, and survivability issues. Section
4 reports on the current status of our work. We describe the
role of object-orientation in Section 5. Finally, in Section 6,
we draw some conclusions.



2 Internet-Scale Ubiquitous Computing

2.1 Overview of Internet-Scale Ubiquitous
Computing

The locution \ubiquitous computing" was introduced by
Weiser [64] to describe a scenario in which, literally, comput-
ing is everywhere. This should not be taken in the narrow-
minded sense of \a computer on every desk", but in the rather
subtler one of computers becoming embedded in everyday ob-
jects and augmenting them with information processing capa-
bilities. This embedding would be discreet and unobtrusive:
the computers would disappear from our perception, leaving
us free to concentrate on the task at hand|unlike today, when
a majority of users perceives computers as getting in the way
of their work.

Part of this vision is already becoming a reality, in so far
as most of us have already lost count of the number of gadgets
we own that contain a microprocessor. Other parts of the vi-
sion, though, such as usability and universal interoperability,
are still far away. Further developments are also envisaged: in
the decade since the publication of Weiser's visionary article,
the popularity of the World Wide Web has exploded, and it is
easy to forecast that any ubiquitous computing infrastructure
we will build in the future will perforce include global Internet
connectivity. Moreover, the ongoing miniaturization of elec-
tronics, together with advances in power saving and wireless
communication systems, has brought us to the stage where
most of us are happy to carry computing and communication
devices all the time. The most popular item for the general
public is by far the cellular phone, but many also enjoy PDAs
and digital music players. Mobility is now another important
aspect of the ubiquitous computing scenario, and will be so
even more as we evolve from gadgets we carry to gadgets we
wear.

The next generation of home appliances is also going to be
enhanced with communication and sensing capabilities. You
can already buy CD players that connect to the Internet to
look up the artist name and track titles for any CD you feed
them; but this style of interaction will soon extend to non-
electronic goods. The refrigerator will know that you are run-
ning out of milk and it will send a message to your phone
when you are on the way to the shops|or it might reorder
it directly by contacting the supplier through the Internet.
The packaged food you wish to reheat will transmit the cor-
rect time and power settings to the microwave oven. And the
washing machine will ask for con�rmation before proceeding
if it spots a white lace garment in a load of blue jeans.

There will be ubicomp-enhanced appliances not only in our
homes but also in shared spaces such as oÆces, shops, restau-
rants and public transport vehicles such as trains. They will be
connected to the Internet and might act as gateways (as well
as direct interlocutors) for our mobile and wearable devices.
We will be able to share and retrieve information wherever we
are.

Devices and applications will become more responsive and
friendly by personalizing their behaviour according to the pref-
erences of the person who is using them. The capability of
these systems to sense some aspects of their environment will
make them adapt to the current situation. Location and en-
vironmental information, user identity, even user mood are
some of the possible inputs to such systems [1, 45] that will
allow applications to change their behaviour to �t the cir-
cumstances. New interaction techniques will become possible
[49, 53, 24, 22, 19]; a variety of sensors will monitor our be-
havior, and improved models of the real world will provide

3HUVRQDO $UHD
1HWZRUN

(QWHUSULVH
1HWZRUN

7RZQ $UHD
1HWZRUN

2IILFH
1HWZRUN

+RPH
1HWZRUN

$XWRPRELOH
1HWZRUN

,QWHUQHW

Figure 1: Internet-Scale Ubiquitous Computing

better awareness of the context for the computing systems
[18, 11, 7, 59, 5, 17].

In this paper we de�ne Internet-scale ubiquitous comput-
ing (InterUbicomp) as environments which embed computing,
communication and sensing facilities and that are intercon-
nected on a global scale, as shown in Figure 1. Any physi-
cal space can be augmented by embedding computers in it.
Examples include the personal space (for body-worn devices),
home spaces, vehicle spaces, oÆce spaces, and university cam-
pus spaces. Public spaces such as airports, stations, bus stops,
and public transport will also be globally connected, and dif-
ferent spaces will have di�erent characteristics. For example,
a personal space may contain a cellular phone, a PDA and
an MP3 player that are connected by body networks. (Later
these may be complemented by smart clothing.) Usually, ap-
pliances used in the personal space are small, battery-powered
and wireless. On the other hand, in a home space, audio and
video appliances are connected by wired high speed networks
and are endowed with generous resources in terms of CPU,
memory and energy.

>From this we can see that, in InterUbicomp, one of the
most important issues that needs to be taken into account is
extreme heterogeneity. Future appliances will run on many
di�erent processors, will be equipped with a variety of I/O
devices and will be connected by various types of networks
and protocols. Therefore, it is necessary to take into account
such extreme heterogeneity when designing software for In-
terUbicomp.

2.2 Requirements for Internet-Scale Ubiqui-
tous Computing

The following requirements are considered as architectural
guidelines to build InterUbicomp.

� Extreme Portability

� Uniform Behaviour

� High Level Abstraction

� Survival Systems

The software for InterUbicomp (both applications and mid-
dleware) should be portable because the environments are ex-
tremely heterogeneous, but writing good middleware is diÆ-
cult, so we do not expect to reimplement it on every platform.
However, while the API stays the same, the implementation
(for example the resource management of a middleware com-
ponent) should be optimized by tuning it to the characteristics
of applications and platforms.



The environments should allow a user to behave in a uni-
form way when s/he moves to any spaces such as his/her
house, an airport, and an oÆce. For example, a user should
control a television in the same way in any places such as
his/her house or an airport. The uniform behavior is very
important to design the user interface for InterUbicomp.

Also, the system software for building InterUbicomp should
provide high level abstraction to allow us to build application
programs easily. The existence of high level models is very
important to build application programs in a systematic way
since the lack of a suitable abstraction makes the structure of
the application programs ad-hoc.

Lastly, InterUbicomp should survive against security at-
tacks, system crashes, and natural disaster since our daily life
will heavily rely on the environments. However, it is very
diÆcult that a usual programmer takes into account surviv-
ability issues when implementing programs. Therefore, it is
important to develop a methodology to add survivability to
an existing programs.

We believe that the above requirements are very important
to make future appliances at the low cost. Future appliances
should be customized to respective persons since a person in
future environments thinks that things attractive for him/her
have high valuable.

3 Research Topics for Internet-Scale
Ubiquitous Computing

In this section, we describe several technical challenges to
implement InterUbicomp. The technical challenges are clas-
si�ed into three categories. The �rst category discusses soft-
ware design issues. Especially, we describe problems to build
software in extremely heterogeneous environments. The sec-
ond category discusses high level abstraction to build complex
ubiquitous computing applications in an easy way. The third
category shows survivability issues to build systems that can
survive against various security attacks and internal software
bugs.

3.1 Software Design Issues

In this section, we describe several software design issues to
develop software for InterUbicomp. As described in the pre-
vious section, portability and survivability are key issues to
develop software for Internet-scale ubiquitous computing en-
vironments. We show several fundamental problems to build
software in InterUbicomp.

3.1.1 Transparent QOS Evolution
As described in the previous section, we need to reuse a va-
riety of COTS software components to realize InterUbicomp.
However, these components must take into account various
properties such as security, reliability, and predictability, but
not all programmers have the required specialistic know-how
in those areas. Therefore, these properties may be sometimes
ignored in COTS software components.

One solution is to add these properties into COTS software
components by post hoc. This means that a COTS compo-
nent is transparently translated to a component that takes
into account non functional properties such as security, relia-
bility and predictability. The solution may not provide these
properties completely, but the approach improves the quality
of software drastically.

We are considering several approaches to realize the goal.
One approach is to use aspect-oriented programming (AOP)

techniques [2, 25, 27, 42] to add these non functional proper-
ties. When using AOP techniques, these properties are de�ned
as aspects, and the aspects are merged into base COTS soft-
ware components. In the most favourable cases, this can be
achieved by recompiling the components using an AOP-aware
compiler, but without substantial modi�cations to the source
code. Therefore, this enables the COTS software components
to be adapted according to the characteristics of underlying
platforms. Also, there are several proposals to translate Java
binary codes that are used for adding these properties by post
hoc [8].

However, we have to take into account several issues to
overcome the problems of current proposals. The �rst issue
is whether the QOS evolution can be achieved transparently
from a client program. If some assumptions of the compo-
nents are changed by adding these features, the correctness of
a client application may be violated. We need to de�ne rigor-
ous API semantics for middleware components, and need to
check the assumptions when adding the features. The second
issue is that current AOP techniques require to understand
the internal structure of the base COTS components to de�ne
aspects. However, it is not easy to understand complex COTS
software components such as Linux, Java and CORBA. It is
important to export the high level abstract structure of the
components to de�ne various aspects.

The other approach to add non-functional properties trans-
parently is the resource kernel [41, 46]. The resource kernel
monitors the resource utilization of all applications, and en-
forces their behaviors if they violate the QOS requirements
speci�ed by them. The approach enables a traditional oper-
ating system to be converted to a real-time operating system
by adding the resource kernel to a non real-time operating
system. The resource kernel provides several primitives to
control resources explicitly, therefore an application should be
modi�ed to invoke the primitives if it is required to make the
application's behavior predictable. The primitives are consid-
ered as meta-interface [26] to control internal resources such
as CPU, memory and network bandwidth. This seriously af-
fects the portability of an application as described in the next
section.

3.1.2 Portability Issues
In InterUbicomp, we need to take into account a variety of
platforms. If we like to use COTS software components, it is
important to consider how to exploit advanced characteristics
provided by these underlying platforms. This requires to add
meta level interface [26] or QOS parameters to control the
internal algorithms of the COTS software components. How-
ever, it is not easy to export generic interface to control un-
derlying platforms because the generic interface usually hides
some low level characteristics of the underlying platforms. We
believe that it is desirable that the interface should be cus-
tomized to respective underlying platforms for enabling us to
use the full power of the platforms. Our research aims are how
to provide platform speci�c meta interface or QOS parameters
in a systematic way, and how to build portable applications
that access the platform speci�c meta interface or QOS pa-
rameters. We are considering to exploit AOP techniques and
design patterns to implement COTS software components.

When building software, we need to take into account vari-
ous tradeo� among manymetrics. For example, a programmer
needs to consider several metrics such as timeliness, precision,
accuracy, and consistency to build mobile applications [34, 33].
It is impossible to satisfy all requirements so he/she must con-
sider which requirements we need to focus on. The decision
a�ects the program's structure dramatically.



For example, distributed applications should take into ac-
count three metrics: consistency, availability, and network
partition [14]. If we like to improve the application's avail-
ability, we need to select either consistency or network parti-
tion. If we need to assume that network partition may occur,
it is impossible to ensure complete consistency, and it is desir-
able to adopt optimistic protocols to satisfy consistency. On
the other hand, if we require strong consistency, we need to
assume that network partition will occur.

Building portable software requires to make its assump-
tions explicit because the assumptions are necessary to ensure
the correctness of a program. Combining several components
that provide di�erent assumptions to their client programs
may allow us to use the combined component as one that
supports a wide range of assumptions. This requires us to
switch components when the assumptions change. However,
for the duration of the change, the component may cause in-
consistency, so it is important that the change be executed
atomically.

3.1.3 Robust Complex Systems

Platform software components to realize InterUbicomp are
very complex, and it is very hard to build such complex soft-
ware components. We need to consider several issues to design
robust software components to reduce the development cost.

A programmer needs to choose a software platform to de-
velop his program, and takes into account various tradeo�
among the platforms. For example, it is easy to build a multi-
threaded program in Java, but the behavior may not be pre-
dictable due to the unpredictability in Java virtual machines.
On Linux, an eÆcient and predictable multi-threaded pro-
gram can be written, but we may have a lot of serious bugs
due to manual memory management. Moreover, if an applica-
tion requires more severe timing requirements, we may adopt
RT-Linux that implements Linux on a small real-time oper-
ating system, and we implement timing critical programs on
the small real-time operating system.

We believe that multi-layered platforms are preferable to
build complex software components, and we can choose a suit-
able software platform to develop our program. In the ap-
proach, we con�gure these platforms in a layered fashion. This
structuring is very natural in usual cases. For example, the
Java platform is able to run on the Linux platform. If pre-
dictability is more important, or the development cost can be
reduced by using existing software, we will choose the Linux
platform, but the Java platform is desirable if productivity is
more important. In our project, we are working on a uniform
component framework that enables components on di�erent
platforms to communicate with each other without consider-
ing on which platform a target program is executed.

Also, it is important to take into account the behavior of
programs explicitly. We believe that predictability is a key is-
sue to build robust software. For example, let us assume that
we like to implement a fault-tolerant system in Java. When
designing fault-tolerant software, it is required to detect faults
using timeouts. However, the garbage collector in a Java vir-
tual machine may unpredictablly block a process for such as
long time that an extraneous timeout occurs. The process
will therefore erroneously believe that the subsystem being
monitored has failed and will start a complex recovery pro-
cedure. To de�ne a correct timeouts value, the behavior of
COTS software components should be predictable. In our ap-
proach, we specify the assumptions of software explicitly, and
the assumptions contain the desirable predictable behavior of
the software.

3.1.4 Rigorous API Semantics
COTS middleware components to implement InterUbicomp
run on various platforms. Therefore, if rigorous API
semantics1 are not de�ned, it is impossible to build robust
and survival software components.

In traditional programs, we do not specify their assump-
tions explicitly. However, the assumptions are necessary to
check whether the programs can be executed correctly on their
platforms. Also, it is important that an application specify its
requirements explicitly. Thus, it is possible to ensure whether
it runs correctly. Also, it may be possible to choose an appro-
priate middleware component that satis�es the requirements
by examining middleware component's assumptions. How-
ever, we found that it is important to assume predictable
behavior when building these COTS middleware components
[35, 32]. For example, our mobile middleware adapts its be-
havior according to the characteristics of operational environ-
ments, but it is not easy to adapt the components correctly
because underlying software such as operating systems and
networks do not provide predictable behavior, thus checking
the assumptions of the components is not easy.

Ubiquitous computing applications require us to compose
several existing services or appliances to de�ne a new service.
Also, applications can change their behaviors according to op-
erational environments. If these behaviors are not predictable,
it is impossible to de�ne the assumptions of the composed ser-
vice. For example, the failure semantics of composed services
should be de�ned rigorously because it is impossible to write a
robust program with underlying services whose failure seman-
tics is obscure. Also, this kind of predictability is important
to develop context-aware applications that do not behave in
an unexpected way.

3.1.5 High Level Abstraction
For building complex systems, abstraction is a very powerful
tool to deal with the complexities. There are a lot of places
where using abstraction is e�ective. For example, home com-
puting applications require to access various home appliances
such as televisions and video cassette recorders. The applica-
tions require to access these appliances without taking into ac-
count the di�erence among implementations to build portable
applications. Also, ubiquitous computing applications require
various new techniques such as service integration and con-
text awareness. These techniques require good abstraction to
build well structured applications.

Also, complex software usually adopts various techniques
such as optimization and adaptation. Ad-hoc uses of the tech-
niques make the structure of programs very unclear. For
example, by inserting a lot of \if" statements to check the
current situation, we can build context-aware applications.
However, the program is very diÆcult to modify when the
program needs to consider another situation. We need good
abstraction to support adaptive context-aware applications.
Similarly, adopting aggressive optimization makes programs
less portable since the optimization may not be e�ective in
another situation. We believe that using better abstraction
makes it possible to deal with optimization in a portable way.

Finally, domain speci�c languages that provide high level
abstraction are very useful to build complex software. For ex-
ample, in [62], their paper shows the e�ectiveness of domain
speci�c languages to verify the complex cache coherence pro-
tocol of their distributed �le system. Also, in [31, 60], high

1It is very important that the API also should be implementable.
In some situations, desirable API semantics is not implementable.
For example, the local procedure call semantics is not imple-
mentable in distributed systems.



level abstraction provided by domain speci�c languages are
very useful to develop system software. We believe that there
are a lot of areas where domain speci�c languages are useful
such as to describe the composition of services, the adaptation
of applications, and the management of context information.

3.2 System Issues

InterUbicomp requires several high level abstractions to
provide advanced features. In this section, we discuss �ve
topics that we are interested in.

3.2.1 Service Integration
In InterUbicomp, a variety of services are installed in a va-
riety of places. The services are o�ered by some appliances
or servers. One of the most important issues is to develop
a new service from existing services [47]2. For example, the
combination of Internet streaming services and television en-
ables us to watch Internet TV on our television. Traditionally,
home appliances provide a �xed set of services, but adding a
new service requires to buy another appliance. Our approach
enables us to use existing appliances by composing the new
service with the appliance.

The service integration is very promising, but it is very dif-
�cult to achieve because each service requires to o�er clean
interface. Also, it is important how to specify the composi-
tion of services. We are considering several types of service
compositions. The �rst one is the functional composition that
is used to compose several devices. For example, a televi-
sion can be considered as a composition of a tuner, an am-
pli�er, a display and a speaker. The second composition is
the presentation composition that is used to compose several
presentations. For example, the graphical user interface of a
television and a video cassette recorder can be combined as
one user interface to control the appliances as one appliance.
By clearly separating the functional composition and the pre-
sentation composition, it is possible to build complex services
from existing services in an easy way.

Each service that takes into account the composition re-
quires programmers to specify input/output ports explicitly.
This scheme enables us to compose services. Also, a composed
service can be used to create a new service by composing it
with other services. The connectivity of the port is determined
by a protocol. The scheme is proposed by the ROOM model-
ing language [51], and we believe that component composition
is very similar to service integration de�ned by us. Secondly,
we need a way to specify the composition of services. A do-
main speci�c language to specify the composition is desirable.
As described in the previous section, it is important to de�ne
the rigorous semantics and the behavior of the composition,
and the semantics provides by the language should be im-
plementable for any services and any con�guration because
ad-hoc composition may violate our expectation.

3.2.2 Context Awareness
Ubiquitous computing applications need to adapt their behav-
iors according to environmental information such as location,
emotion and preference. The most important point is how to
model environmental information and access the model from
an application. We call the model the world model. The
real world is represented in computers as the world model.

2In [6], Buxton said that the real value lies in the symbiotic
relashionship among a suite of applications, rather than the value
of any one \killer" application. Hence, approaches that are limited
to individual applications, or applications in isolation, run the risk
of missing the target. If true, then the consequence is that a far
more holistic approach must be taken.

The model should represent every aspect of our world. Also,
the model should represent various information about systems
such as network topologies, traÆc information and machine
con�gurations. The information can be used to optimize the
behavior of an application.

However, our question is how to represent the complete
world model. We have found that it is not easy to model
our real world completely. The model may be too complex
to be used from usual applications. Therefore, it is desirable
to model necessary information for respective applications. In
our project, we are working on two issues for building practical
context aware applications.

The �rst issue is to construct the world model in a mod-
ular way. In our approach, the world model is divided into
several domains. Each domain represents a part of the world
model. For example, one domain represents location infor-
mation of users in an oÆce, and another domain represents
the emotion of a user. Each domain has a name to identify
it. We are currently designing the naming scheme to identify
contexts. Also, it is important to compose several domains
as one domain. Therefore, each user can construct a domain
representing a suitable world model for his application.

The second issue is how to build context-aware applica-
tions. Our approach enables us to specify a suitable world
model for respective situations. However, if a component rep-
resents a context explicitly, di�erent situations require to mod-
ify programs. Our approach is to specify context information
as an aspect, and the aspect is merged to an application at
runtime. Therefore, it is possible to represent how to adapt
programs according to context in each case.

3.2.3 Application Speci�c Networks

A variety of appliances such as home appliances and personal
appliances will be connected to the Internet in the near future,
and the number of appliances running on the Internet will be
extremely large. The Internet provides connectivity among
the computers executing various services and applications for
providing new advanced services to us. However, for connect-
ing these appliances and services, the traditional IP protocol is
not suÆcient because these future appliances may require their
own standard protocols like Jini and HAVi. Thus, the connec-
tivity cannot be realized without protocol translation. Also,
these appliances may require their own naming schemes, rout-
ing algorithms, and mobility/multicast supports. Therefore,
it is preferable that this functionality be customized according
to the respective applications. Since the functionality that can
be added at the IP level is too generic for most applications,
we believe that future networks should be customized accord-
ing to the characteristics of their respective applications.

In our project, we propose a virtual overlay network for
integrating networked home appliances [40]. Virtual overlay
networks enable us to build new application speci�c networks
on existing networks. Our virtual overlay network is special-
ized to access a variety of appliances on home networks from
personal or home appliances on other home networks. Appli-
cation level gateways in our virtual overlay network convert
between home network protocols such as Jini and HAVi and
the HTTP protocol. Each appliance is identi�ed with a URL.
The interpretation of URL is processed in the application level
gateways. Our de�nition of URL can contain some variables
whose values are substituted in application level gateways. We
believe that the networks architecture will become a base to
compose several appliances on di�erent home networks.



3.2.4 Seamless Spaces
In InterUbicomp environments, a user may have to control the
same kind of appliances in many di�erent places; for example,
we may �nd televisions at home and in public spaces, all of
them with di�erent user interfaces. Firstly, we want each user
to be able to control those di�erent applications in a com-
mon way, for example from his/her PDA. Secondly, we do not
want to tie down the user to a speci�c controller: s/he should
have the choice of, say, controlling the appliances by voice if
he hands are busy. Other users may choose other interaction
devices as their preferred controllers. Everyone will have a
familiar and uniform way to control appliances regardless of
their make and location. There may still be higher level con-
straints: a user needs to behave di�erently in a personal space
and in a public space, because the public space is shared with
many unknown people. But, as far as the technical aspects
are concerned, the user should be able to behave uniformly
without having to take into account the particular space in
which s/he is.

In our project, we de�ne the universal interaction proto-
col between interaction devices and various applications and
services [38, 39]. Currently, our universal interaction protocol
is based on bitmap images and keyboard and mouse events.
In our system, any graphical user interface can be shown on
any output device that has a display. The size and color are
converted according to respective interaction devices, then our
system can generate GUI on any output devices. Also, events
generated by input interaction devices are converted into key-
board and mouse events, and the events are transferred to
applications. We are currently considering better universal
interaction protocols because the current protocol is too low
level, and is diÆcult to customize the user interface accord-
ing to a user's preference. However, our approach shows that
the e�ectiveness of our approach, and all appliances can be
controlled in the same way. In our project, we think that
\Seamless spaces" is one of the most important visions to im-
lement InterUbicomp environments. The vision will avoid to
waste human attention that is a precious resource in our life,
and will make our life more confortable and attractive.

In a similar way, we like to communicate with other per-
sons using the same method regardless of where they are. In
the system, any communication styles are converted to other
communication styles. Thus, any communication devices can
be used to communicate with each other by converting media
formats. The approach is very similar to the Universal Inbox
project(University of California at Berkeley) [47].

3.2.5 Peer-to-Peer Systems
In the future, appliances will be connected to the Internet, and
will communicate with each other. The appliance may have
various information and a user likes to �nd expected informa-
tion on any appliances. Also, these appliances may monitor
various information, and notify some events to a user who has
an interest in the event. Also, smart dust [23] monitors and
stores any information in the world, and the information can
be available for any persons.

Currently, peer-to-peer systems are popular to share MP3
�les such as Napster and Gnutella. In InterUbicomp, we
require large scaled peer-to-peer storage and event systems
[48, 58, 29, 50] for storing and delivering various informa-
tion monitored by a variety of sensors. These systems require
new techniques that integrate routing and naming. A network
connecting these appliances is constructed at the application
level. This means that each application forwards a message
to near appliance, and the appliance delivers the message to-
wards a destination appliance. However, personal appliances

are moved with their users so the networks are recon�gured
dynamically [13]. Therefore, we consider that the combina-
tion of a peer-to-peer system and an ad-hoc network is very
important to support InterUbicomp. The combination pro-
vides new challenges for building future peer-to-peer systems
and enables us to create new services.

We are interested in connecting a lot of personal area net-
works, and these personal appliances are integrated in a peer-
to-peer system. We call the peer-to-peer system wearable
home. This means that a user carries most of portable home
appliances with him/her, and these appliances can be used
at anytime and anywhere. Each person's wearable home is
connected with each other in an ad-hoc way. This organizes
a virtual family to share their spaces temporally. If a person
takes a photo that is of interest to other persons, an event is
delivered to the persons. Also, someone's information can be
retrieved by other persons who have an interest in the infor-
mation.

3.3 Survivability issues

Once ubiquitous computing evolves from the research phase
into the deployment phase, reliability is going to be a major
concern. The authors of [12] de�ne the related term of \sur-
vivability" as the quality of a system that works correctly even
in the face of attack, failure or accident. The more the ubiq-
uitous computing infrastructure becomes pervasive, and the
more we rely on it, the greater the impact of any failures will
be.

We have to face two fundamentally di�erent causes of trou-
ble: accidental and intentional ones|in other words, bugs and
attacks. We shall look at these in the next two sections.

3.3.1 Security
For ubiquitous computing, the security property of greatest
relevance is probably going to be availability|ensuring that
the system performs as expected in response to requests from
legitimate users. This property is threatened by denial of ser-
vice (DOS) attacks, in which a malicious principal intention-
ally exhausts some resource of the system. Classical examples
of denial of service include the exhaustion of a machine's com-
puting cycles, the exhaustion of the capacity of a communica-
tion channel and the exhaustion of the available mass storage
space.

Sceptical observers sometimes question the plausibility of
such threats, on the grounds that they o�er little or no advan-
tage to the attacker; but to assume that only attacks backed
by a rational motivation will be performed is very naive, as
viruses have amply demonstrated. There are several lessons
to be learnt from the conventional personal computer envi-
ronment. One is that pointless vandalism is a suÆcient \rea-
son" for many devastating attacks. A second one is that it
is dangerous and unwise to deploy an infrastructure in which
untrusted code is automatically executed without checks or
restrictions: the number of email viruses that have spread
thanks to Microsoft Outlook in recent years is a testimony
of the dangers of ignoring caution in order to provide fancier
functionality. And, although the particular case of Outlook is
a textbook example of the wrong way to address the issue, it
is certainly true that the tension between security (which re-
quires lots of checks and authorizations) and usability (which
requires things to \just work" automatically, without the con-
stant need for extra input from the poor user) is going to be
one of the most diÆcult trade-o�s for ubiquitous computing,
especially given the extra threats introduced by the Internet-
scale dimension.



A related lesson from the virus and trojan wars is that
disabling the system under attack may not be the primary
objective. Sometimes malicious code will infect a system but
remain hidden, waiting for a wake-up call from a coordinating
master that will designate the real target. At that point all the
deployed copies of the malicious software will attack that tar-
get simultaneously, performing a so-called distributed denial
of service (DDOS) attack from the infected machines of other-
wise innocent users. In designing the software infrastructure
for Internet-scale ubiquitous computing it is therefore impor-
tant to recognize these threats as highly likely and to include
from the start the appropriate countermeasures. Of course
not all attacks will be easily prevented (in particular there is
little that the individual node can do to avoid a DDOS at-
tack on its communication channel) but we should at least
learn from existing failure modes to avoid repeating the same
mistakes in the ubiquitous computing context. While it may
be hard to do much against a concerted DDOS attack from
network nodes outside our control, we should at least make it
diÆcult to subvert and use our own nodes as accomplices in
the attack.

In the light of this, the execution of foreign code should be
treated with great care. The Java model of sandboxing is cer-
tainly a good �rst step, and a de�nite improvement on that of
Outlook in which everything gets executed with no questions
asked, but the full picture should also take into account some
more subtle cases. These include updates to the system soft-
ware of the device (which can't be sandboxed since they need
to run with full privileges and full access to the machine) and
code that gets executed for \unoÆcial" reasons such as the
strategic exploitation of bugs (bu�er overow [10, 56] being a
notorious case).

Going back to resource exhaustion, the ubiquitous com-
puting context also introduces previously unknown threats:
among the most interesting is the sleep deprivation torture.
Mobile devices are usually battery-powered, but in most cases
their power consumption is such that, if run continuously,
their battery would only last for a few days. To achieve a
more reasonable lifetime, they spend most of their duty cy-
cle in a quiescent state (\sleep"). If an attacker manages to
keep them awake with irrelevant queries, he can exhaust the
battery energy and walk away, leaving the device disabled.

Another security issue of relevance in any distributed sys-
tem is authentication|a precondition for any other security
property since we cannot grant a principal the correct set of
rights if we are not sure whether we are talking to the expected
one or to an impersonator. The ubiquitous computing case is
interesting because the traditional authentication strategies of
distributed systems fail in the ad-hoc networking environment,
where we cannot assume permanent connectivity to a central
server. This means we cannot use an Authentication Server
to distribute Kerberos-style tickets; and also that, while we
can still verify public key certi�cates o�ine, we cannot ensure
timely revocation if there is no guarantee of online connectiv-
ity. We have developed a security policy model that addresses
this problem by establishing a local bond between a master
and a slave device. The master may also specify which other
devices the slave is allowed to contact, and there is provision
for transferring authority to another master [54, 55, 57].

3.3.2 We Have to Live with Software Bugs
Our software usually contains a lot of bugs, and it may not
work correctly in some situations. As described above, this
may disturb our life seriously. For example, Linux operating
systems report several bugs in every release. Also, COTS mid-
dleware such as CORBA and Java contains a lot of bugs, but

these bugs may not be removed because additional function-
alities are introduced in every release.

Also, it is very diÆcult to avoid security bugs because it
requires a wide range of knowledge about security issues, and
building fault tolerant software requires a wide range of knowl-
edge about reliability. Usual programmers do not have these
knowledge so it is usual to contain security and reliability bugs
in our software.

The above discussion is a negative opinion to realize ubiq-
uitous computing environments. Moreover, in InterUbicomp,
the environments require extreme heterogeneity, but software
will be reused on a variety of platforms to reduce development
cost.

We are considering several approaches to solve the above
problems. In the �rst approach, we like to make the assump-
tion of software clear, and a client's and a platform's require-
ment should be also clear. This makes it possible to check
whether a program works correctly in every situation. In our
approach, we provide several implementations that o�er di�er-
ent assumptions. Our system chooses an implementation that
ensures its assumptions. To specify an assumption correctly,
a program needs to behave in a predictable way. However,
building predictable software is very hard, and it may contain
predictability bugs that may violate the speci�ed assumption.
Therefore, a mechanism to recover from predictability bugs is
necessary to build survival systems.

We are also considering to take into account a variety of
bugs in software. Especially, we will focus on security bug,
reliability bugs, and predictability bugs. We call this surviv-
ability bug tolerance. Survivability bug tolerance enhances
the survivability of a awed system by post hoc dealing with
system's security aws, prediction errors, and a variety of pro-
gram errors [9]. For example, software fault isolation [61] de-
tects memory leaks, stack guards [10] detects bu�er overows
vulnerability, and performance assertion detects performance
errors [44]. Also, transaction's all or nothing properties may
help to make our system survival [52]. Our project likes to
extend the previous approaches to detect a variety of bugs,
and avoid the disaster of our life.

4 Current Status

Currently, we are working on building several infrastruc-
ture components and prototype applications for realizing In-
terUbicomp. Now, we are developing HAVi [30] based home
appliances [39, 37], a user interface system that realizes uni-
versal interaction [38], a network system for integrating home
networks [40]. Also, we are working several middleware to
speak the X.10 protocol and a toolkit for building continuous
media applications. These components will become platform
software components for building our ubiquitous computing
environments.

These middleware components are developed on multi-
layered platforms, and a HAVi middleware component and
our network system enable us to develop an application that
composes several home appliances. We are also working on a
couple of infrastructure software. For example, we are working
on embedded Linux for building a variety of appliances.

Now, we are starting two new projects. In the �rst project,
our Java virtual machine provides platform speci�c interface
that exports the characteristics of underlying platforms di-
rectly. Also, we are designing a Java translator that enables
us to add timing constraints without modifying base software.
The project also focuses on how to make the behavior of Java
virtual machine predictable.



In the second project, we are working on the composition
of several appliances such as HAVi appliances, X10 devices
and Internet services such as the VoIP service. In the project,
each appliance provides the assumption for composing other
appliances. The composition is speci�ed by a special language
that describes the composition of appliances. The language
provides a syntax to specify these assumptions explicitly.

5 Role of Object-Orientation

In this section, we describe four topics about the role of
object-orientation for realizing InterUbicomp.

The �rst topic is about distributed object-oriented tech-
nologies for building InterUbicomp. There are a couple of
standard speci�cations for building distributed systems. Es-
pecially, CORBA and Java RMI are widely adopted. Dis-
tributed objects provide us a unique view to access various
programs. However, the homogeneous approach is not suit-
able to build InterUbicomp because unique view requires a
single naming scheme, and the approach cannot support ap-
plications speci�c naming scheme. In the future, we need to
deal with a huge number of objects. For example, di�erent
content types require their own naming scheme. Also, sin-
gle communication style cannot be enough to support various
types of applications. We believe that a traditional object
model is too simple to support various types of objects in
Internet-scale ubiquitous computing.

The second topic is about object-oriented design. Ad-
vanced object-oriented design techniques such as aspect-
oriented programming and design patterns are very useful to
build robust and portable software. One of the problem of the
object-oriented design is that objects hide their implementa-
tions. The role of abstraction is fundamental to build portable
programs. However, the abstraction makes the performance
of a program slow. In [26], Kiczales has proposed open imple-
mentation that exports API for controlling the implementa-
tion. The problem is that we need di�erent meta interfaces for
di�erent implementations. Thus, the meta interface decreases
the portability of a program. We need to reconsider the role
of abstraction for designing programs.

The third topic is about component models. The compo-
nent models are very important to build large-scale software
by composing several components. Especially, if there are
multiple platforms, components on di�erent platforms should
be communicated using the same mechanism. Thus, the com-
ponent model can be implemented on any platforms, and it
should be easy to reimplement the component on other plat-
forms.

The fourth topic is about Java. A program written in Java
is portable on various platforms. However, the implementa-
tion may cause a lot of problems. For example, if we like to
write fault-tolerant software on Java, the timeout should be
correctly detected. However, garbage collection may delay to
check whether a site is alive or not. Then, it may increase the
mistake to detect failures. We believe that we need to ensure
predictable behavior to implement some functionalities.

In the future, we will seek object-oriented abstraction that
is useful to build InterUbicomp, but we believe that object-
orientation is very important to build software on extremely
heterogeneous environments.

6 Conclusion

In this paper we have described a number of technical chal-
lenges that need to be addressed in order to build InterUbi-

comp systems.
In the InterUbicomp scenario users will be completely sur-

rounded by computers. They will depend on them to the
same extent that, in modern societies, people depend on elec-
tricity. Nobody would however accept a situation in which
the comfort of one's lifestyle depends on software as unre-
liable, crash-prone and insecure as that which drives today's
personal computers. We need a major engineering e�ort to im-
prove software robustness, and we believe this to be perhaps
the most important challenge for InterUbicomp. We must
strive to build systems that will survive malicious attacks, en-
vironmental failures and, not least, any leftover bugs.

Building robust software will require us to revisit, up-
date and unify several well-known computer science research
themes. For example, during software development we need to
reconsider abstraction, decomposition and transparency. For
distributed software we need to consider the interaction of
naming and routing. InterUbicomp will see the deployment of
large numbers of net-connected appliances, so we expect the
new peer-to-peer networking strategies to grow in importance
and popularity.

We must also acknowledge that it is impossible to antic-
ipate all future requirements when developing software. We
need to take into account the so-called \non functional prop-
erties" such as security, predictability, scalability and reliabil-
ity. We need to develop techniques to add these properties
transparently as aspects, because the implementation of these
non functional properties requires specialized know-how that
is often quite independent of that required to develop the func-
tional parts.

Finally, in order to simplify the process of developing ubiq-
uitous computing applications, we need to provide high level
abstractions [36] coupled with clear and unambiguous API se-
mantics.

References
[1] G.D. Abowd, E.D. Mynatt, \Charting Past, Present, and Fu-

ture Research in Ubiquitous Computing". ACM Transactions on
Computer-Human Interaction, 2000.

[2] M. Aksit, B. Tekinerdogan, \Aspect-Oriented Programming Using
Composition Filters". Position Paper for the Aspect Oriented Pro-
gramming Workshop, Springer-Verlag, LNCS 1543, 1998.

[3] Project Aura - Distraction-free Ubiquitous Computing, Carnegie
Mellon University, http://www.cs.cmu.edu/�aura/.

[4] G. Banavar, J. Beck, E. Gluzberg, J. Munson, J. Sussman, D.
Zukowski, \Challenges: An Application Model for Pervasive Com-
puting". In \Proceedings of the Sixth Annual International Confer-
ence on Mobile Computing and Networking", 2000.

[5] B. Brumitt, J. Krumm, B. Meyers, S. Shafer, \Ubiquitous Comput-
ing and the Role of Geometry". IEEE Personal Communications,
August 2000.

[6] B. Buxton, \Integrating the Periphery and Context: A New Tax-
onomy of Telematics". In \Proceedings of Graphics Interface '95",
1995.

[7] K. Cheverst, N. Davies, K. Mitchell, A. Friday, \Experiences of
Developing and Deploying a Context-Aware Tourist Guide: The
GUIDE Project". In \Proceedings of the Sixth Annual International
Conference on Mobile Computing and Networking", 2000.

[8] S. Chiba, \Load-time Structural Reection in Java". In \Proceed-
ings of ECOOP 2000 { Object-Oriented Programming", LNCS
1850, Springer Verlag, pp. 313{336, 2000.

[9] C. Cowan, C. Pu, H. Hinton, \Death, Taxes, and Imperfect Soft-
ware: Surviving the Inevitable". In \Proceedings of the New Secu-
rity Paradigms Workshop", 1998.

[10] C. Cowan, P. Wagle, C. Pu, S. Beattie, J. Walpole, \Bu�er Over-
ows: Attacks and Defenses for the Vulnerability of the Decade".
In \Proceedings of DARPA Information Survivability Conference
and Expo (DISCEX)", 2000.

[11] A.K. Dey, G. Abowd, D. Salber, \A Conceptual Framework and a
Toolkit supporting the Rapid Prototyping of Context-Aware Appli-
cations". Human-Computer Interaction (HCI) Journal 16, 2001.



[12] R.J. Ellison et al., \An Approach to Survivable Systems", Carnegie
Mellon University, CERT Coordination Center, 1999.

[13] D. Estrin, R. Govindan, J. Heidemann, \Scalable Coordination in
Sensor Networks". In \Proceedings of Mobicom99", 1999.

[14] A. Fox, S.D. Gribble, Y. Chawathe, E.A. Brewer, \Cluster-Based
Scalable Network Services". In \Proc. 1997 Symposium on Operat-
ing Systems Principles (SOSP-16)", St-Malo, France, Oct. 1997.

[15] N. Gershenfeld, When Things Start to Think. Owl Books, 2000.

[16] H.-W. Gellersen, A. Schmidt, M. Beigl, \Adding Some Smartness
to Devices and Everyday Things". In \Proceedings of the Third
Workshop on Mobile Computing System and Applications", 2000.

[17] A. Harter, A. Hopper, P. Steggles, A. Ward, P. Webster, \The
Anatomy of a Context-Aware Application". In \Proceedings of the
5th Annual ACM/IEEE International Conference on Mobile Com-
puting and Networking", 1999.

[18] A. Harter, A. Hopper, \A Distributed Location System for the
Active OÆce". IEEE Network Magazine, 8(1), January 1994.

[19] T. Hodes, R.H. Katz, \A Document-based Framework for Inter-
net Application Control". In \Proceedings of the Second USENIX
Symposium on Internet Technologies and Systems", 1999.

[20] A. Hopper, \Sentient Computing", The Royal Society Cli�ord Pa-
terson Lecture, 1999.

[21] InfoSphere Project - Smart Delivery of Fresh Information,
http://www.cc.gatech.edu/projects/infosphere/.

[22] H. Ishii, B.Ullmer, \Tangible Bits: Towards Seamless Interfaces
between People, Bits and Atoms". In \Proceedings of Conference
on Human Factors in Computing Systems", 1997.

[23] J.M. Kahn, R.H. Katz, K.S.J. Pister, \Mobile Networking for
Smart Dust". In Proceedings of Mobicom 99, 1999.

[24] N. Khotake, J. Rekimoto, Y. Anzai, \InfoStick: an interaction de-
vice for Inter-Appliance Computing". In \Proc. Workshop on Hand-
held and Ubiquitous Computing (HUC'99)", 1999.

[25] G. Kiczales et al., \Aspect Oriented Programming". In \Proceed-
ings of the European Conference on Object-Oriented Program-
ming", Springer-Verlag, 1997.

[26] G. Kiczales, J. Lamping, C. V. Lopes, C. Maeda, A. Mendhekar, G.
Murphy, \Open Implementation Design Guidelines". In \Proceed-
ings of the 19th International Conference on Software Engineering
(ICSE)", 1997.

[27] G. Kiczales et al., \An Overview of AspectJ". In \Proceedings
of the European Conference on Object-Oriented Programming",
Springer-Verlag, 2001.

[28] T. Kindberg et al., \People, Places, Things: Web Presence for the
Real World". In \Proceedings of the Third Workshop on Mobile
Computing System and Applications", 2000.

[29] J. Kubiatowicz et al., \OceanStore: An Architecture for Global-
Scal Persistent Storage". In \Proceedings of ASPLOS 2000", 2000.

[30] R. Lea, S. Gibbs, A. Dara-Abrams, E. Eytchson, \Networking
Home Entertainment Devices with HAVi". IEEE Computer 33(9),
2000.

[31] F. Merillon, L. Reveillere, C. Consel, R. Marlet, G. Muller, \Devil:
An IDL for Hardware programming". In \Proceedings of OSDI
2000", pp. 17{30, San Diego, October 2000.

[32] T. Nakajima et. al., \Integrated Management of Priority Inversion
in Real-Time Mach". In \Proceedings of International Conference
on Real-Time System Symposium", 1993.

[33] T. Nakajima, \A Framework for Building Adaptive Continuous
Media Applications using Service Proxies". In Handbook of Multi-
media Computing, CRC Press, 1998.

[34] T. Nakajima, \A Framework for Building Environment-Aware
Software". In \Proceedings of International Symposium on Object-
Oriented Real-Time Distributed Computing", 1999.

[35] T. Nakajima, \Practical Explicit Binding Interface for Supporting
Multiple Transport Protocols in a CORBA system". In \Proceed-
ings of International Conference on Network Protocols", 2000.

[36] T. Nakajima, \Towards Universal Software Substrate for Dis-
tributed Embedded Systems". In \Proceedings of International
Workshop on Object-Oriented Reliable Distributed Systems", 2001.

[37] T. Nakajima et al., \A Framework for Building Audio and Vi-
sual Home Appliances on Commodity Software". In \Proceedings
of the IASTED International Conference on Internet, Multimedia
Systems, and Applications", 2001.

[38] T. Nakajima, A. Hasegawa, \Universal Interaction with Home Ap-
pliances using Stateless Thin-Client Architecture". In \Proceedings
of the 2nd International Workshop on Ubiquitous Computing and
Communication", 2001.

[39] T. Nakajima, \System Software for Audio and Visual Networked
Home Appliances on Commodity Operating Systems". In \Proceed-
ings of the IFIP/ACM International Conference on Distributed Sys-
tems Platforms - Middleware 2001", 2001.

[40] T. Nakajima, D. Ueno, E. Tokunaga, H. Ishikawa, I. Sato, H. Aizu,
\A Virtual Overlay Network for Integrating Home Appliances". In
\Proceedings of the International Symposium on Applications and
the Internet", 2002.

[41] S. Oikawa, R. Rajkumar, \Portable RK: A Portable Resource Ker-
nel for Guaranteed and Enforced Timing Behavior". In \Proceed-
ings of the IEEE Real-Time Technology and Applications Sympo-
sium", 1999.

[42] H. Ossher, P.L. Tarr, \Hyper/J: Multi-Dimensional Separation of
Concerns for Java". In \Proceedings of the International Conference
on Software Engineering", 2000.

[43] Oxygen Project, Laboratory for Computer Science, MIT,
http://oxygen.lcs.mit.edu/.

[44] S.E. Perl, W.E. Weihl, \Performance Assertion Checking". In
\Proceedings of ACM SOSP'93", 1993.

[45] R. Picard, A�ective Computing. The MIT Press, 1997.

[46] R. Rajkumar, K. Juvva, A. Molano, S. Oikawa, \Resource Kernels:
A Resource-Centric Approach to Real-Time Systems". In \Proceed-
ings of the SPIE/ACM Conference on Multimedia Computing and
Networking", 1998

[47] B. Raman, R. Katz, A. Joseph, \Universal Inbox: Providing Ex-
tensible Personal Mobility and Service Mobility in an Integrated
Communication Network". In \Proceedings of the Third Workshop
on Mobile Computing System and Applications", 2000.

[48] S. Ratnasamy, P. Francis, M. Handly, R. Karp, S. Shanker, \A
Scalable Content-Addressable Network". In \Proceedings of SIG-
COMM'01", 2001.

[49] J. Rekimoto, M. Saitoh, \Augmented Surfaces: A Spatially Con-
tinuous Workspace for Hybrid Computing Environments". In \Pro-
ceedings of CHI'99", 1999.

[50] A. Rowstron, P. Druschel, \Past: Persistent and Anonymous Stor-
age in a Peer-to-Peer Networking Environment". In \Proceedings
of the 8th Workshop on Hot Topics on Operating Systems", 2001.

[51] , B. Selic, G. Gullekson, P. T. Ward, Real-Time Object-Oriented
Modeling. John Wiley & Sons, 1994.

[52] M. Seltzer, Y. Endo, C. Small, K. Smith, \Dealing with Disas-
ter: Surviving Misbehaved Kernel Extensions", In \Proceedings of
USENIX Operating System Design and Implementation", 1996.

[53] I. Siio, T. Masui, K. Fukuchi, \Real-world Interaction using the
FieldMouse". In \Proceedings of the ACM Symposium on User In-
terface Software and Technology (UIST'99)", 1999.

[54] F. Stajano, R. Anderson, \The Resurrecting Duckling: Security
Issues in
Ad-Hoc Wireless Networks". In \Security Protocols, 7th Interna-
tional Workshop, Proceedings", LNCS 1796, Springer-Verlag, 1999,
pp. 172{182, http://www-lce.eng.cam.ac.uk/�fms27/duckling/.

[55] F. Stajano, \The Resurrecting Duckling|What Next?". In
\Security Protocols, 8th International Workshop Proceedings",
LNCS 2133, Springer-Verlag, 2001, pp. 204{214. http://www-
lce.eng.cam.ac.uk/�fms27/papers/duckling-what-next.pdf.

[56] F. Stajano, H. Isozaki, \Security Issues for Internet Appliances".
In \Proceedings of the IEEE International Workshop on Linux and
Internet Appliances", 2002 (to appear).

[57] F. Stajano, Security for Ubiquitous Computing. John Wiley &
Sons, 2002 (to appear).

[58] I. Stoica et al., \Chord: A Scalable Peer-to-Peer Lookup Service for
Internet Applications". In \Proceedings of SIGCOMM'01", 2001.

[59] T.-L. Pham, G. Schneider, S. Goose, \A Situated Computing
Framework for Mobile and Ubiquitous Multimedia Access using
Small Screen and Composite Devices". ACM Multimedia, 2000

[60] S. Thibault, R. Marlet, C. Consel. \Domain-Speci�c Languages:
from Design to Implementation - Application to Video Device
Drivers Generation". IEEE Transactions on Software Engineer-
ing 25(3), 1999.

[61] R. Wahbe, S. Lucco, T. Anderson, S. Graham, \EÆcient Software-
Based Fault Isolation". In \Proceedings of 14th SOSP", 1993.

[62] R. Wang, T. Anderson, M. Dahlin, \Experience with a Distributed
File System Implementation". Software Practice and Experience,
1998.

[63] R. Want, B. Schilit, N. Adams, R. Gold, K. Petersen, J. Ellis,
D. Goldberg, M. Weiser, \The ParcTab Uniquitous Computing Ex-
periment". Technical Report CSL-95-1, Xerox Palo Alto Research
Center, 1995.

[64] Mark Weiser, \The Computer for the 21st Century". Scienti�c
American 265(3), 1991.


