
IEEE DESIGN AND TEST, 2023 1

Randomized Testing of RISC-V CPUs using Direct
Instruction Injection

Alexandre Joannou, Peter Rugg, Jonathan Woodruff, Franz A. Fuchs, Marno van der Maas, Matthew Naylor,
Michael Roe, Robert N. M. Watson, Peter G. Neumann, Simon W. Moore

I. INTRODUCTION

TestRIG (Testing with Random Instruction Generation) is a
testing framework for RISC-V implementations. The RISC-V
community has standardized a formal model of the architecture
in the Sail language1, giving a human-readable specification
that can also be used for simulation and verification. The
Sail language is designed for this purpose by allowing in-
struction semantics to be described conveniently (for exam-
ple, by supporting variable bit-widths). Ideally, a RISC-V
implementor could formally prove equivalence between their
implementation and the Sail model, but proof tools are not
yet sufficiently automated to be routinely used on the whole-
processor level. They instead focus on equivalence between
combinational logic functions, with verification of a full out-
of-order microarchitecture remaining an open problem. As a
pragmatic compromise, we use TestRIG to check equivalence
between the model and an implementation by generating ran-
dom instruction sequences, executing the same sequences on
the model and the implementation under test, and comparing
execution traces (tandem execution). This approach does not
prove equivalence but can demonstrate divergence, and is
usable in all stages of development.

TestRIG uses the RISC-V Formal Interface (RVFI) stan-
dard2 to observe the change in state after each instruction
of the implementation under test, and uses a novel technique
that we are calling Direct Instruction Injection (DII) for test
injection. In normal program execution, the next instruction
is fetched from program memory at an address determined
by the program counter. With Direct Instruction Injection, the
next instruction to be executed is provided by the test harness,
regardless of the CPU’s program counter.

We are not testing completed, fabricated chips. Rather,
we are comparing executable formal models, software ISA
simulators and simulated execution of hardware designs. This
requires us to instrument the CPU design with an additional
interface for Direct Instruction Injection used by the test
harness during tandem verification.

We have added the Direct Instruction Injection interface to
the Sail RISC-V formal model3, and to two high-performance
emulators: Spike4, and QEMU5. We have also instrumented
four RISC-V processor implementations with RVFI-DII, span-
ning from embedded to superscalar implementations. We have

1https://github.com/riscv/sail-riscv
2https://github.com/SymbioticEDA/riscv-formal
3https://github.com/CTSRD-CHERI/sail-riscv
4https://github.com/riscv-software-src/riscv-isa-sim
5https://github.com/CTSRD-CHERI/qemu

used TestRIG to test many standard RISC-V extensions, and
the experimental CHERI security extension.

We found TestRIG to be easier to use than unit tests,
since instructions can be tested as they are implemented
without supporting a full testing framework. We also found
that TestRIG gave more thorough test coverage due to random
generation replacing developer effort to explore possibilities. It
is effective at detecting not just issues in instruction semantics,
but also in the pipeline and the data caches. As a result,
TestRIG has completely replaced our instruction-set level unit
testing for development.

II. THE DREAM – MODEL-BASED VERIFICATION

Architectural extensions are traditionally specified starting
with a prose specification, and then four implementations are
produced largely independently:

1) Assembler
2) Executable model (simulator)
3) Instruction-level unit-test suite
4) Hardware implementation
While this ensemble of implementation efforts is laborious

when done once, its greatest cost lies in discouraging design
exploration; design changes require consistency among five
independent code bases.

A formal, executable instruction-set architecture (ISA) spec-
ification can greatly simplify this workflow. We use the
Sail [3] domain-specific language, which features human-
readable syntax. Sail excerpts serve as pseudocode in our ISA
documents [15]. Sail also produces a simulator (item 2), and
will eventually provide verification (item 3) and the assembler
(item 1) to be derived from it automatically.

A. Model-based Formal Verification

Formal verification tools for RISC-V have often used the
RVFI tracing (see Section IV) interface along with tools
like Cadence’s JasperGold, to prove that a series of traces
from a simple HDL model is equivalent to a series of traces
from a pipelined HDL implementation. Unfortunately, these
tools can handle only in-order pipelines, and require specialist
knowledge. As a result, the formal-verification approach does
not yet replace functional testing for entire processors.

B. Model-based Random Testing

While formally proving equivalence for complex microar-
chitectures has been elusive, pragmatic tools have used other

IEEE DESIGN AND TEST, 2023 2

ways to detect divergence from a model. These approaches
cannot prove equivalence between a formal model and an
implementation, but can refute it with counterexamples.

For example, directed-random test-sequence generation has
been used to debug pipeline and memory bugs, as well as
to uncover unexpected divergences in implementation behav-
ior [1], [13]. There exist multiple test generators for RISC-V,
e.g., RISC-V RTG [14], but RISCV-DV6 remains the most
advanced such sequence generator for RISC-V, and it works
well for these use cases, particularly where detailed traces can
be compared. RISCV-DV generates assembly programs, ready
to be converted to in-memory images for execution. RISCV-
DV includes a number of test generators for RV32IMAFDC
and RV64IMAFDC – including support for page-table in-
teractions, privileged CSR use, and handling traps/interrupts.
These generated test programs are executed on both a golden
model and a processor in development. A RISCV-DV test
framework would typically detect a divergence by comparing
the execution traces.

Although randomly generating tests is a promising ap-
proach, it can have several drawbacks:

• Automatically generated counterexamples can be long
and convoluted, while hand-written tests can be made
short and easy to understand.

• The generator must ensure that useful instructions are
found at the target of each randomly generated branch.

Automated reduction of failing test cases has previously
been used in software testing. For example, C-Reduce [10]
can take a program that triggers a bug in a C compiler and
reduce it to a minimal example that triggers the bug.

PyH2P [7] applies automated test case reduction randomly
generated RISC-V instruction sequences. PyH2P often pro-
duces test sequences that contain less than 5 instructions, with
every instruction being meaningful for reproducing the error.
Nevertheless, PyH2P has three shortcomings:

1) PyH2P does not perform full trace comparison with its
internal PyMTL3 model, but only with final memory
and register state.

2) PyH2P has difficulty shrinking through branches, as it
must produce a valid in-memory program.

3) PyH2P does not use community-standard interfaces that
have been proven across a range of implementations.

PyH2P points in an encouraging direction, and TestRIG ma-
tures the approach, proposing a standardized communication
interface so that verification engines (VEngines), models, and
implementations are interchangeable and can be improved in-
dependently. Additionally, instruction injection allows straight-
forward shrinking of sequences with branches. This has al-
lowed us to completely replace instruction-level unit tests for
the sophisticated CHERI extension [16], greatly improving
both productivity and assurance, and enabling extension of an
array of simulators and processors more efficiently than the
CHERI implementations on MIPS or ARM.

Symbolic QED [12] is another approach that generates
minimal tests for verification (including post-silicon) using a
formal model of the pipeline.

6https://github.com/google/riscv-dv

Verification Engine (VEngine)

Consume Execution Trace(s) Generate Instructions

RISC-V
Implementation

Socket

RISC-V
Implementation

RISC-V
Implementation

Socket Socket

DII

…

…

RVFI

Fig. 1. An illustrative example of the TestRIG ecosystem with a Verification
Engine communicating with any two RISC-V implementations over sockets.
The Verification Engine injects instruction sequences and compares the
execution traces until it finds a divergence.

III. TESTRIG

Figure 1 gives an overview of the modular TestRIG ecosys-
tem. In TestRIG, an interactive Verification Engine (VEngine)
stimulates RISC-V implementations over RVFI-DII sockets,
which are detailed in Section IV. An RVFI-DII compatible
RISC-V implementation can reset, consume instruction se-
quences, and report execution traces via its RVFI-DII interface.
A VEngine can drive one or more RVFI-DII compatible
implementations; a VEngine might have an internal RISC-
V model, similar to PyH2P, or could drive two independent
implementations and compare their RVFI traces, as we have
done with QCVEngine, which is presented in Section V.
VEngine instruction sequences could be loaded from disk,
generated randomly, or produced with interactive architecture-
driven state-space exploration.

The RVFI-DII bytestream interface allows models and im-
plementations written in various languages to communicate
through widely supported networking sockets. QCVEngine is
written in Haskell, and the Sail RISC-V model is written
in the Sail domain-specific language (either interpreted by
an OCaml program or compiled into C). Spike and QEMU
are RISC-V simulators written in C and C++. TestRIG also
supports hardware implementations like RVBS, Ibex, Piccolo,
Flute, and Toooba, which are written in either SystemVerilog
or Bluespec. RVBS7 is a reference implementation, Ibex8

and Piccolo9 are simple 32-bit implementations, Flute10 is
a 5-stage in-order pipeline processor implementing RV64,
and Toooba11 is a RISC-V 64-bit superscalar out-of-order
processor.

Participants in the TestRIG ecosystem are expected to be
identical in every architecturally visible way. Besides a RVFI-
DII interface, TestRIG requires 8 MiB of memory accessible at
address 0x80000000 (all other addresses returning an access
fault), and must support resetting to a known state (zeroed
registers, known default values for RISC-V control and status

7https://github.com/CTSRD-CHERI/RVBS
8https://github.com/CTSRD-CHERI/ibex
9https://github.com/CTSRD-CHERI/Piccolo
10https://github.com/CTSRD-CHERI/Flute
11https://github.com/CTSRD-CHERI/Toooba

IEEE DESIGN AND TEST, 2023 3

registers, zeroed 8 MiB of memory) upon injection of a “reset”
DII packet.

IV. RVFI-DII

To participate in the TestRIG verification ecosystem, imple-
mentations must be extended with RVFI-DII instrumentation.
To ease development, we distribute data structures and libraries
in several languages to facilitate RVFI-DII connections over
TCP ports.

The RISC-V Formal Interface (RVFI), specified by Claire
Wolf, is an existing trace format for formal verification us-
ing symbolic instructions. RVFI exposes select architecturally
significant signals such as the instruction encoding and any
memory address or value, as well as the indices and values of
the operand and writeback registers.

TestRIG extends RVFI with Direct Instruction Injection
(DII). DII is for instruction input, RVFI is for trace output,
and RVFI-DII supports full interactive verification. Interactive
verification enables automated simplification and shrinking, as
discussed in Section V-A. Existing RISC-V cores that imple-
ment RVFI can be augmented to participate in the TestRIG
ecosystem by implementing DII, and conversely RVFI-DII
designs may benefit from RVFI formal verification tooling.

Not all architectural updates are reported in the RVFI
interface, e.g., floating-point registers and extended CHERI ca-
pability registers. While this is a limitation, PyH2P relies only
on final register and memory state and is still able to usefully
detect divergence. We found that occasional instructions that
move unexposed values into RVFI-visible state could produce
sufficiently succinct counterexamples. This strategy was also
used in RVFI formal verification efforts.

An RVFI interface exports internal signals of an RTL de-
sign, or internal variables of a simulator or emulator. For more
complex RTL designs, such as pipelined or superscalar mi-
croarchitectures, extracting the appropriate values may require
preserving state for an RVFI report in a commit/write-back
stage that did not previously have access to them. Extending
the superscalar Toooba core for RVFI-DII required two extra
records for each instruction in the Reorder Buffer.As these
records are present only when built for simulation with RVFI,
this is not a physical overhead for the design.

DII directly specifies the instruction sequence expected in
the output trace, and does not associate instructions with
memory addresses. This requires custom pipeline instrumen-
tation, but enables greatly simplified sequence generation
and shrinking, as the program counter does not affect the
instruction stream.

A DII interface receives a reset command followed by a
sequence of instructions. A Bluespec implementation of this
interface is shown below:
typedef struct {
Bool rvfi_cmd; // Instruction or reset command?
Bit#(10) rvfi_time; // Time to inject instruction
Bit#(32) rvfi_insn; // Instruction word (32/16 bit)

} RVFI_DII_Instruction

For an emulator, this interface simply replaces each fetched
instruction with an encoding from the DII queue. For RTL
designs, DII support is more complex. An RTL design can

remove the instruction cache entirely (but not address trans-
lation of the PC, which is architecturally visible) to ensure
maximal pipeline packing, or can exercise the instruction
cache and replace the bytes of the instruction after they have
been fetched. RISC-V compressed instructions present another
choice: to substitute picked instructions before decode, or
inject 16-bit instruction fragments from DII to exercise the
picking logic. The simple single-issue design of Piccolo and
Flute enabled us to replace the cache entirely with a DII queue
that delivered one instruction every cycle, either compressed
or uncompressed. For superscalar Toooba, we began with
unmodified instruction-cache access, substituting the vector
of picked instructions before decoding. In an effort to debug
instruction picking itself, we later moved to bypassing the
instruction cache and providing 16-bit instruction fragments
to the pipeline, relying on the instruction picker and decode
to reconstitute the correct DII instruction sequence.

Canceled instructions present a further challenge to DII.
Synchronization is required when instructions are dropped
in the pipeline, as RVFI-DII requires a single RVFI trace
entry for each DII instruction injected. While adding RVFI-
DII to Flute, we arrived at a mature design that attaches a
sequence ID to each RVFI instruction and carries it with the
PC through the pipeline. Instruction Fetch actively requests
each instruction ID from the DII sequence (as with PC requests
to the cache), allowing pipeline redirects to work naturally. We
adapted this approach to Toooba by adding superscalar fetch
and assigning IDs to compressed instruction fragments. This
more capable DII unit is available in our RVFI-DII libraries12,
and has been backported to Flute. While DII instrumentation
may appear daunting, we have found that beginning with this
mature strategy greatly reduces both implementation effort and
design disturbance. In retrospect, the few hours invested in this
implementation have greatly streamlined the otherwise much
longer testing phase.

V. QUICKCHECK VENGINE

Our TestRIG Verification Engine, QCVEngine, leverages
Haskell’s QuickCheck library [5]. Due to the simplicity of
Direct Instruction Injection execution, which decouples the
instruction stream from control flow, QCVEngine can use
unmodified QuickCheck utilities to generate, compare, and
shrink instruction sequences.

QuickCheck receives a function with a pass/fail return value,
and generates inputs in search of a failure. To facilitate this, we
construct a function that receives a list of instructions, sends
these over two DII sockets, collects RVFI traces back from
these sockets, asserts that they match, and returns the result.
We then provide a set of generators of arbitrary instruction
sequences that are used by QuickCheck to produce inputs to
this function.

We use convenience functions to define instructions in a
syntax closely resembling the RISC-V ISA manual, and pro-
vide tailored generators for each instruction field to promote
register reuse. QuickCheck automatically discovers and uses

12https://github.com/CTSRD-CHERI/BSV-RVFI-DII

IEEE DESIGN AND TEST, 2023 4

these generators through the type system and uses them to con-
struct arbitrary instruction sequences. We also provide targeted
generators for simple subsets of the instruction set, as well as
generators that leverage templates of varying complexity to
reach deeper states, including virtual memory mappings and
cache conflicts. Templates are a common tool for random test
generators; for example, IBM’s Genesys-Pro [1] is built on
templates to intelligently solve for desired deep states.

A. Smart Shrinking

While Direct Instruction Injection allows us to primarily
rely on QuickCheck’s builtin shrinking strategies, we aug-
mented these with smart shrinking functions that not only
eliminate instructions, but intelligently transform them to
simplify the sequence.

Once a counterexample is found by QCVEngine,
QuickCheck uses a builtin list-shrinking function that
removes sequences from the list and tests again, hoping to
eliminate instructions with no relevance to the errant behavior.
Illustratively, here is an initial counterexample found for an
artificial hardware bug where the LSB of the add instruction’s
result (but not addi’s) is stuck at zero:
addi x7, x4, 123 # Generate odd immediate
addi x5, x3, 42 # Generate even immediate
addi x6, x7, 0 # Move x7 to x6
xori x1, x5, 745 # Irrelevant
add x1, x5, x6 # Perform buggy add

The builtin list shrinking results in:
addi x7, x4, 123 # Generate odd immediate
addi x6, x7, 0 # Move x7 to x6
add x1, x5, x6 # Perform buggy add

The middle instruction can also be eliminated if the final
add takes register x7 as an operand directly. To automate
this functionality, we further augment shrinking to intelli-
gently propagate an instruction’s output register to future input
operands. This allows another pass of list-shrinking to further
reduce the counterexample:
addi x7, x4, 123 # Generate odd immediate
add x1, x5, x7 # Perform buggy add

We also add a library of simplifications to be used during
shrinking. These eliminate esoteric instructions from the trace
that perform mundane functions and distract from the root
cause of the failure. For example, memory operations often
trap; thus, we might attempt to simplify a memory operation
to an ecall, an instruction that only traps, to make the error
more obvious.

Any shrinking or simplification is safe to try for model-
based testing; any change that still diverges is kept. In rare
circumstances, the shrinking may reveal an alternative bug,
obscuring the original, but still producing a useful result.

B. Sequence Import/Export

Instruction traces can be converted to (and from) a human-
readable format both for terminal reporting, and for reading
and writing trace files – individually or in bulk from a direc-
tory. This has enabled us to collect a library of regression tests
to quickly check all previous counterexamples. Unlike hand-
written tests with assertions, these do not require maintenance,

as expected behavior updates naturally with the model as
the instruction set evolves. We have also used this feature
to replay recorded test-suite examples (including riscv-tests
and RISCV-DV), adding full trace-equivalence check with
shrinking. This feature has also allowed us to capture traces
of an operating system booting on the model implementation,
which we could then use to aid bring-up of the same operating
system on implementations, with instruction shrinking rapidly
highlighting any problems.

C. Non-shrinkable Sequences

Sequences can be annotated as non-shrinkable. This has
been used to force initialization to cover divergences in initial
state. For example, one implementation did not initialize
floating-point registers, which produced trivial counterexam-
ples. A non-shrinkable initialization sequence allowed us to
progress to interesting divergences in exception conditions and
rounding modes.

D. Assertions

Sequences can include assertions – e.g., that the value
written by the previous instruction was non-zero. These make
it possible to fail without a divergence. Unusually, sequences
with assertions do not require tandem verification to discover
a failure, and we have used these to test the limits of
implementation-defined behavior.

VI. EVALUATION

A. A Coverage Study

Architectural coverage is the first metric for basic verifica-
tion. We evaluated coverage of the RISC-V architecture using
sailcov13, which measured how many branches of the RISC-
V Sail model were explored during a run. We compared our
TestRIG QCVEngine against the RISC-V test suite (riscv-
tests14) and the RISCV-DV generator.

For our coverage study we conduct two runs of each
testing framework (QCVEngine, riscv-tests, and RISCV-DV)
for RV32IMC and RV64IMAFDCZicsr. For RV32IMC, we
take the Sail RISC-V model coverage of the I, M, and C
extension instructions as well as the coverage of the general-
purpose registers. For RV64IMAFDCZicsr, we measure the
coverage of I, M, A, F, D, C, and CSR instructions as well
as the coverage of the general-purpose and floating-point
registers. For riscv-tests, we measure the coverage of the Sail
RISC-V model running the test binaries. For RISCV-DV, we
produce TestRIG traces from the Spike simulator executing
the tests and replay them through RVFI-DII while measuring
the coverage of the Sail RISC-V model. For QCVEngine,
we configure it with the two architecture strings and let it
run 500 sequences of each generator. The RV32IMC results
are similar across all three testing frameworks, indicating that
QCVEngine can support a suitable alternative to unit testing
and torture testing, at least with respect to breadth of coverage.
The RV64IMAFDCZicsr results more variance, but all three

13https://github.com/rems-project/sail/tree/sail2/sailcov
14https://github.com/riscv-software-src/riscv-tests

IEEE DESIGN AND TEST, 2023 5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
lo

g 1
0(

in
st

ru
ct

io
n

co
un

t)

QCVEngine riscv-tests riscv-dv

Fig. 2. Counterexample size complexity

remain comparable except in floating point register coverage,
in which RISCV-DV excels and CSR instructions in which
QCVEngine excels. QCVEngine chooses from a subset of
floating-point registers to increase the probability of operand
reuse, at a cost to overall coverage. As failures based on
register number are rare, we have made a trade-off between
increasing the probability of finding violations that require
multiple permutations and increasing the overall FD register
coverage.

B. Counterexample Complexity

Counterexample complexity is another useful metric. Our
archive of QCVEngine traces comprises 3509 shrunken coun-
terexamples discovered during development of our CHERI
processor extensions. Figure 2 shows the distribution of our
archive of counterexample lengths versus riscv-test and riscv-
dv trace lengths, which do not allow shrinking. The me-
dian value is 3 instructions, and the third quartile is only
5 instructions. The median for riscv-tests 561 instructions,
which is more than 3 times the maximum counterexample
found by QCVEngine, and the median riscv-dv sequence is
15339. QCVEngine’s small counterexample size is facilitated
by Direction Instruction Injection and smart shrinking as de-
scribed previously. Single digit counterexample length greatly
accelerated our discovery of failures and development of fixes
compared to even a traditional unit test suite.

VII. ILLUSTRATIVE CASES

TestRIG is useful for a broader range of verification than
instruction-level unit tests and improves productivity in all
cases. Architectural bugs, which are traditionally targeted
by hand-written test suites, are usually discovered quickly
with TestRIG. Microarchitectural mistakes, such as register
forwarding or pipeline-flush problems, are also discovered
quickly and deterministically in TestRIG, but are difficult to
anticipate and target in unit-test suites. Memory mistakes, such
as cache bugs or memory speculation failures, have also been
discovered efficiently with targeted generators, and are notori-
ously hard to discover using static unit tests. Finally, TestRIG
has found unexpected interactions, where architectural features
interact in unforeseen ways, while unit-test suites are unlikely

to test these cases. We have applied TestRIG not only to RISC-
V, but also to CHERI-RISC-V (our security extension, noted
below).

A. CHERI Introduction

Capability Hardware Enhanced RISC Instructions (CHERI)
is a security extension of conventional Instruction Set Ar-
chitectures that adds capabilities – unforgeable and bounded
tokens. A capability is a fat pointer [8] containing the address
and metadata including permissions and bounds information.
Furthermore, validity of capabilities is ensured by a hidden
tag. A capability authorizes access to a region of memory, and
no data or instruction access is possible without a valid ca-
pability. Furthermore, all capability operations are monotonic
and therefore cannot increase the privileges a capability grants.
As a result, CHERI enforces spatial safety, enables temporal
safety, and supports fine-grained software compartmentaliza-
tion.

B. Architectural Bug

When developing the compressed encoding of CHERI ca-
pabilities, we had a bug that unnecessarily cleared the tag
of a pointer when setting an address that wrapped the address
space. This bug was found with this shrunken counterexample:
cSetBoundsImmediate x3, x1, 1106 # Set a short bound
cIncOffsetImmediate x2, x4, -197 # Small negative integer
cSetAddr x4, x3, x2 # Set the integer as the address
cGetTag x1, x4 # XXX Untagged

While this case may have been covered in an extensive
unit-test suite composed at significant effort, our TestRIG
generator required only a list of CHERI instructions to produce
a counterexample far more compact than most hand-written
tests.

C. Microarchitectural Bug

We have also used TestRIG for discovering microarchitec-
tural vulnerabilities in transient execution. One such generator
produces a sequence of arbitrary instructions, followed by
an assertion that no additional cache misses were counted,
which would indicate a transient violation of the capability
system. The following shrunken counterexample demonstrated
a vulnerability in cSetBoundsImmediate:
.noshrink
... # initialize counters
... # bound x31 to 8 bytes
.shrink
Illegally increase the bound on a pointer
cSetBoundsImmediate x31, x4, 797
Load through this illegal capability
lb.cap lb.cap x31, x31[0]
... # Delay for counter to propagate
.noshrink
csrrs x30, hpmcounter3 (0xc03), x0 # Read L1 cache miss
.assert rd_wdata == 0x0 ""

Because CHERI only allows bounds to be reduced, the
cSetBoundsImmediate instruction is illegal and throws an ex-
ception due to attempting to enlarge the bounds. Nevertheless,
the capability that would have been produced is forwarded in
the pipeline during the flush and causes a cache fill that could
lead to side-channel attacks.

IEEE DESIGN AND TEST, 2023 6

This sequence uses both .noshrink and .assert. The for-
mer is required to initialize the state of the counters so that the
final assertion on the L1 cache miss counter is deterministic.

D. Cache Bug

We received Flute as a working in-order RV64G design, and
discovered that the data cache was direct-mapped and 4 KiB,
rather than 2-way associative and 8 KiB – as specified. An
experiment with parameters confirmed that the 2-way cache
could not boot the operating system. This bug had not been
found with the unit-test suite, so we used a generator that
constructs addresses within the TestRIG memory range (see
Section III), as well as random loads and stores. This generator
quickly discovered the bug with the following shortened
sequence, after 42 tests and 20 rounds of shrinking:
lui x1, 262148
slli x1, x1, 1
lui x20, 262148 # Value used as data
ori x3, x1, 1 # A page address
lui x2, 262148
slli x2, x2, 1 # The same page address
lhu x4, x3[1] # Load from address
sh x20, x2[2] # Store to an overlapping byte
lhu x2, x3[1] # Divergence on reloading

The final sequence contains only three memory operations:
two loads with a single store in between, all to overlapping
addresses. This counterexample was found less than 10 sec-
onds into the TestRIG run, and was fixed within the hour. The
fix is reproduced below:
Bool hit = False;
for (Integer way = 0; way < num_ways; way = way + 1)
begin
Bool hit_at_way = (tags[way].state != EMPTY)

&& (tags[way].tag == pa_tag);
hit = hit || hit_at_way;
if (hit_at_way) // XXX This line was missing!
way_hit = fromInteger (way);

end

While this bug was trivial to resolve with a TestRIG
counterexample, it had escaped the entire development process
of the Flute processor. It was not found with the RISC-V unit-
test suite and was overwhelmingly difficult to debug from a
full software trace.

VIII. FUTURE OF TESTRIG

Despite having an array of models, simulators, and imple-
mentations supporting RVFI-DII, the generators of our initial
TestRIG verification engine, QCVEngine, are still rudimentary.

QCVEngine Generators: The Haskell infrastructure in
QCVEngine supports rich and complex generators. How-
ever, the generators for virtual memory, cache testing, and
floating-point operations can be enriched with more intelligent
directed-random templates for reaching deeper states.

Memory Concurrency Testing: TestRIG should support
memory-model testing. RVFI-DII instruction streams injected
with specified timestamps into multiple shared memory cores
should allow precise stimulation of concurrency behaviors.
These would require a more advanced verification engine that
tests RVFI traces not only for equivalence, but also against
higher-level memory-model semantics – as in Axe [9].

Pipeline Performance: Similarly, a higher-level model of
pipeline scheduling and performance could be used to analyze
the timing of instruction traces committed in a pipeline to dis-
cover performance bugs and track performance improvements.
The high level of control possible with direct instruction injec-
tion should enable precise detection of performance anomalies.

Model-derived Engine: TestRIG’s modular design en-
ables a variety of engines to drive RVFI-DII compatible RISC-
V implementations. With QCVEngine, the test maintenance
burden is greatly simplified, but not entirely eliminated. Past
experience suggests that even deep-state tests can be automat-
ically generated from a model specification, as with IBM’s
Genesys [1]. Previous CHERI work used tests generated from
a formal model of our CHERI-MIPS ISA (written in the L3 [6]
specification language), compiling from L3 to HOL4, and then
using constraint solving to automatically generate instruction
sequences to reach a desired state without triggering undefined
behavior. This approach has also been applied to the CHERI
ARM Morello instruction set starting from a Sail model [4],
[11]. Brian Campbell, a key contributor to this work, has also
begun on a Sail-OCaml VEngine with direct access to the data
structures of our Sail RISC-V model. This eliminates indepen-
dent encodings in the VEngine, and we expect this approach to
be taken further to automate generation of templates that target
specific deep states in the architectural model using constraint
solving.

IX. COUNTEREXAMPLE-DRIVEN DEVELOPMENT

TestRIG’s model-based testing leads to counterexample-
driven development, an advancement over test-driven devel-
opment, a widely known technique of software engineering.
Typical test-driven development for processor design requires
a basic working design before architectural unit tests can be
used. Counterexample-driven development using TestRIG can
automatically provide reduced stimulus for the most basic
features and can carry development all the way to advanced
interactions. The CHERI extension to Ibex was a striking
example. After extending Ibex with RVFI-DII support, a
summer intern was able to independently add full CHERI
functionality to Ibex in a month, due to the tight cycle of
reduced counterexamples provided by QCVEngine.

X. CONCLUSION

We have collated all the current TestRIG-compatible im-
plementations and verification engines into the open-source
TestRIG repository15. This repository includes documentation
that has been followed and improved multiple times by new
users. TestRIG accelerates development at all stages, providing
a tighter debugging loop than we have experienced in any
other processor development paradigm. We expect TestRIG to
lead the way to a standardized testing framework for RISC-
V that leverages instrumentation of open implementations, to
greatly simplify verification. Such a framework improves upon
traditional instruction-set-level unit testing in every way, and
subsumes specialized random test generators into a cohesive
community of easy-to-use verification tools.

15https://github.com/CTSRD-CHERI/TestRIG

IEEE DESIGN AND TEST, 2023 7

ACKNOWLEDGEMENTS

Approved for public release; distribution is unlimited. Spon-
sored by the Defense Advanced Research Projects Agency
(DARPA), under contract HR0011-18-C-0016 (“ECATS”) as
part of the DARPA SSITH research program. The views,
opinions, and/or findings contained in this report are those
of the authors and should not be interpreted as representing
the official views or policies, either expressed or implied, of
the Department of Defense or the U.S. Government. This work
was partially supported by the Innovate UK, Industrial Strategy
Challenge Fund (ISCF) under the Digital Security by Design
(DSbD) Programme, to deliver a DSbDtech enabled digital
platform (grant 105694). For the purpose of open access, the
authors have applied a Creative Commons Attribution (CC
BY) license to the accepted version of this manuscript.

REFERENCES

[1] Allon Adir et al. Genesys-pro: Innovations in test program generation
for functional processor verification. IEEE Design & Test of Computers,
21(2), 2004.

[2] Merav Aharoni, Sigal Asaf, Laurent Fournier, Anotoly Koifman, and
Raviv Nagel. FPgen–a test generation framework for datapath floating
point verification. In Eighth IEEE International High-Level Design
Validation and Test Workshop, pages 17–22, 2003.

[3] Alasdair Armstrong et al. Isa semantics for armv8-a, risc-v, and cheri-
mips. Proc. ACM Program. Lang., 3(POPL), jan 2019.

[4] Thomas Bauereiss et al. Verified security for the morello capability-
enhanced prototype arm architecture. Technical report, University of
Cambridge, Computer Laboratory, 2021.

[5] Koen Claessen and John Hughes. QuickCheck: a lightweight tool for
random testing of Haskell programs. Acm sigplan notices, 46(4), 2011.

[6] Anthony Fox. Directions in ISA specification. In ITP, 2012.
[7] Shunning Jiang et al. PyH2: Using PyMTL3 to create productive and

open-source hardware testing methodologies. IEEE Design & Test,
38(2), 2020.

[8] Trevor Jim et al. Cyclone: A safe dialect of C. In ATEC 2002, Berkeley,
CA, USA. USENIX.

[9] Matthew Naylor et al. A consistency checker for memory subsystem
traces. In FMCAD 2016. IEEE.

[10] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison,
and Xuejun Yang. Test-case reduction for C compiler bugs. In 33rd
ACM SIGPLAN Conference om Programming Language Design and
Implementation (PLDI 2012), 2012.

[11] Peter Sewell. Engineering with full-scale formal architecture: Morello,
cheri, armv8-a, and risc-v. In FMCAD 2021. IEEE.

[12] Eshan Singh, David Lin, Clark Barrett, and Subhasish Mitra. Logic
bug detection and localization using symbolic quick error detection.
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 2018.

[13] Shajid Thiruvathodi and Deepak Yeggina. A random instruction se-
quence generator for arm based systems. In 2014 15th International
Microprocessor Test and Verification Workshop. IEEE.

[14] Dai Duong Tran, Thi Giang Truong, Truong Giang Do, and The Duc
Do. Risc-v random test generator. In 2021 15th International Conference
on Advanced Computing and Applications (ACOMP), pages 150–155,
November 2021.

[15] Robert N. M. Watson et al. Capability Hardware Enhanced RISC
Instructions: CHERI Instruction-Set Architecture (Version 8). Technical
Report UCAM-CL-TR-951, University of Cambridge, Computer Labo-
ratory, October 2020.

[16] Jonathan Woodruff et al. The CHERI capability model: Revisiting RISC
in an age of risk. In ISCA 2014, Minneapolis, MN, USA. IEEE.

