
Library-based Compartmentalisation on CHERI
Dapeng Gao

University of Cambridge

United Kingdom

dapeng.gao@cl.cam.ac.uk

Robert N. M. Watson

University of Cambridge

United Kingdom

robert.watson@cl.cam.ac.uk

1 Introduction
Existing software compartmentalisation solutions tend to

incur considerable performance or refactoring costs. And it

seems difficult, at least on conventional hardware, to reach

the sweet spot of simultaneously having low overhead, wide
applicability, and easy migration. This article presents early
results indicating that such a sweet spot can be reached on a

CHERI-enabled architecture. Our key contributions are a) a

compartmentalisation model based on dynamic linkage and

b) a prototype implementation of the model on Morello, a

high-performance AArch64 CPU extended with CHERI [7].

· · · · · ·

struct my_object *obj = · · ·

AddressLower Bound Upper Bound

Permissions: Load & Store

CHERI extends existing instruction set architectures into

capability systems where pointers contain bounds and per-

missions in addition to an integer memory address [8]. The

above diagram illustrates how a CHERI architecture repre-

sents a C pointer, which can now only be used to access a

limited range of memory with restricted privileges.

We summarised the following design principles which

proved useful in guiding our research.

1. Prioritise compatibility—programs should ‘just work’.

2. Allow for incremental adoption of security policies.

3. Compartmentalisation should be nearly transparent to

the programmer during development and debugging.

4. The compartmentalisation mechanisms should build

upon concepts familiar to the programmer.

2 Programming model
We understand a ‘compartment’ to be a collection of code

within a program that share a set of privileges with regard to

how they can interact with the operating system and other

compartments of the program. Importantly, a compartment

must not be construed as a ‘thread’, ‘task’, or ‘process’ that

represents some execution of its code with its own set of

privileges. Rather, all executions of the code within a com-

partment share the same privileges.

Library-based software compartmentalisation is, simply

put, a programming model that treats each dynamic library

used by a program as a separate compartment. It is largely

incremental upon the C/C++ programming model, which is

a deliberate design choice that prioritises compatibility with

existing code to make migration efforts easier. More con-

cretely, programmers can expect most existing C/C++ soft-

ware to continue to function when library-based software

compartmentalisation is enabled with an ‘all-permissive’ se-

curity policy. This security policy can then be tightened to

restrict what each library is permitted to do, such as:

1. What functions it is allowed to call,

2. What global variables it is allowed to access,

3. What system calls it is allowed to make,

4. What signals it is allowed to handle, and

5. What non-standard control flow (e.g., setjmp/longjmp
and C++ exceptions) it is allowed to carry out.

Why is the dynamic library chosen as the unit of com-

partmentalisation? We hypothesise that compartmentalising

at library boundaries sufficiently minimises the privileges

granted to each piece of untrusted code to contain the dam-

age of potential security vulnerabilities. This is because most

modern software comprise a main executable linked against

several dynamic libraries, each of which typically serving a

narrow set of purposes such as image decoding, language

interpreter, and cryptography. Moreover, libraries are also a

convenient target to compartmentalise. Finer-grained com-

partmentalisation, where compartment boundaries can be

drawn within libraries, is not supported due to the high mi-

gration costs it would entail—non-trivial modifications to the

source code would likely be needed to demarcate compart-

ment boundaries [1, 2, 4, 6]. However, such modifications

can potentially be automated in the future to make more

granular compartmentalisation feasible at scale.

3 Threat model
The discussion up to this point has only referred to ‘un-

trusted code’ informally. While it would certainly be ideal

to be able to claim that a model of compartmentalisation

can achieve the desired security guarantees for arbitrary

binaries, a trade-off between feasibility, performance, and

security likely exists in practice. This trade-off induces a

wide range of threat models: this section explains the one

assumed by the present work.

The key assumption of our threat model is that the ELF

files containing the untrusted dynamic libraries are well-

formed. This means that the file not only conforms to the

ELF format, but the metadata within also follow appropriate

security standards. For example, the virtual memory map-

pings specified in the segment header should have correct

https://orcid.org/0000-0001-9045-3174


Dapeng Gao and Robert N. M. Watson

permissions, and the dynamic symbol table should not export

function or data symbols that are intended to be private.

In practice, executables and libraries that are built from

source by a trusted toolchain will satisfy the above require-

ments. Hence, the toolchain used for creating these libraries

is considered part of the trusted computing base (TCB).

By adopting this threat model, we intend to mitigate vul-

nerabilities in the source code of untrusted dynamic libraries

but do not aim to tackle threats that use maliciously-crafted

ELF files as an attack vector. However, it is conceivable to

design a program that can statically check untrusted ELF

files against a pre-specified list of properties to gain more

assurance about their security.

4 Implementation overview
Because libraries can only gain access to external resources

through function or data symbols resolved by the dynamic

linker, we identify dynamic linkage as the ideal place to in-

corporate compartmentalisation into the existing C/C++ pro-

gramming model. Moreover, since the dynamic linker is the

first piece of user-space code to execute when a dynamically-

linked program is launched, it is naturally in a position of

trust and hence chosen to be part of the TCB.

More concretely, when resolving a function symbol, in-

stead of directly writing the target function’s address into

the requesting library’s GOT, the dynamic linker generates a

trampoline and inserts the trampoline’s address into the GOT

entry. Consequently, when that function is called from an

external library, the PLT transfers control to the trampoline,

which performs a domain transition before redirecting con-

trol to the actual function. And when the function returns, it

returns back to the trampoline, which reverses the domain

transition before actually returning control to the caller.

The domain transition primarily enforces two properties:

well-bracketed control flow and stack safety, of which Georges
et al. [3] provided a detailed formalisation. The former is en-

forced by keeping an authoritative chain of return addresses

in a trusted stack accessible only to the TCB, the latter by

assigning a distinct stack to each compartment which is

switched by the trampoline during domain transition.

Register File Register File

Caller Trampoline Callee

Dynamic Linker

via PLT

Generates Updates

Updates

Library A

Library B

TCB

The diagram above illustrates the interaction between

various elements during a inter-library function call when

compartmentalisation is enabled. The trampoline intercepts

the control flow both during call and return, but is intended

to be completely transparent to the software. It pushes the

return address to the trusted stack and updates the content

of the register file, including switching the stack pointer.

Several complications arise from this design. Non-standard

control flow such as setjmp/longjmp and C++ exceptions

need special handling to function correctly. The calling con-

vention needs to be modified so that no function arguments

are passed implicitly via the stack. The threading library

needs to be aware of multiple stacks per thread. And the

special GOT entries belonging each library that point to the

dynamic linker’s internal data structures need to be secured

against corruption from untrusted code.

Initial performance benchmarks on an earlier version of

the prototype see a low single-digit percentage of overhead.

5 Next steps
The current prototype provides no security guarantees and

is intended to serve as a foundation for researching and

implementing various policies. The following next steps have

been identified as essential for a mature solution.

Compartment-aware debuggers In particular, it should

be able to unwind call frames across multiple stacks.

Security policy description language Security policies

should be expressible in a concise language, which may

then be embedded at compile-time into the main exe-

cutable to be used by the linker.

Fine-grained system call restriction It is often only use-

ful when system calls can be restricted depending the

arguments passed to them. In these cases, a mechanism

for intercepting system calls and filtering them based on

the arguments passed needs to be developed.

Register clearing Unused caller-saved registers can con-

tain sensitive data that may be unintentionally leaked to

the callee. They should thus be cleared before transition-

ing to a new domain. However, information about which

registers need to be cleared can only be known at compile-

time. Therefore, the compiler should generate code to clear

such registers for potentially domain-crossing calls.

Function pointers Currently, when a pointer to a static

function is passed to another compartment and called

there, a domain transition back to the original compart-

ment is not triggered, resulting in the function executing

with incorrect privileges. The compiler should detect this

type of usage and force such function symbols to be dy-

namically relocated and hence interposed by a trampoline.

Compartment interface vulnerabilities The compart-

mentalisationmodel does notmitigate vulnerabilities caused

by mis-designed APIs (e.g., failure to validate input data),

as identified by Lefeuvre et al. [5]. In addition, it is unclear

how memory buffers shared between compartments can

be secured against corruption without resorting to rela-

tively costly message-passing or MMU-based solutions.



Library-based Compartmentalisation on CHERI

Acknowledgments
Approved for public release; distribution is unlimited. This

work is sponsored by Innovate UK project 105694, ‘Digital

Security by Design (DSbD) Technology Platform Prototype’,

Office of Naval Research (ONR) Contract No. N00014-22-1-

2463 (‘SoftWare Integrated with Secure Hardware (SWISH)’),

and the Croucher Foundation. The views, opinions, and/or

findings contained in this report are those of the authors and

should not be interpreted as representing the official views

or policies, either expressed or implied, of the Department

of Defense or the U.S. Government.

References
[1] Bittau, A., Marchenko, P., Handley, M., and Karp, B. Wedge: Split-

ting Applications into Reduced-Privilege Compartments. In 5th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 08)
(San Francisco, CA, Apr. 2008), USENIX Association.

[2] Brumley, D., and Song, D. Privtrans: Automatically Partitioning

Programs for Privilege Separation. In 13th USENIX Security Symposium
(USENIX Security 04) (San Diego, CA, Aug. 2004), USENIX Association.

[3] Georges, A. L., Trieu, A., and Birkedal, L. Le temps des cerises:

efficient temporal stack safety on capability machines using directed

capabilities. Proceedings of the ACM on Programming Languages 6,
OOPSLA1 (Apr. 2022), 1–30.

[4] Kilpatrick, D. Privman: A Library for Partitioning Applications. In

2003 USENIX Annual Technical Conference (USENIX ATC 03) (San Anto-

nio, TX, June 2003), USENIX Association.

[5] Lefeuvre, H., Bădoiu, V.-A., Chen, Y., Huici, F., Dautenhahn, N.,

and Olivier, P. Assessing the Impact of Interface Vulnerabilities

in Compartmentalized Software. In Proceedings 2023 Network and
Distributed System Security Symposium (San Diego, CA, USA, 2023),

Internet Society.

[6] Provos, N., Friedl, M., and Honeyman, P. Preventing Privilege Es-

calation. In 12th USENIX Security Symposium (USENIX Security 03)
(Washington, D.C., Aug. 2003), USENIX Association.

[7] Watson, R. N. M., Moore, S. W., Sewell, P., and Neumann, P. G. An

Introduction to CHERI. Tech. rep., Computer Laboratory, University of

Cambridge.

[8] Watson, R. N. M., Neumann, P. G., Woodruff, J., Roe, M., Almatary,

H., Anderson, J., Baldwin, J., Barnes, G., Chisnall, D., Clarke, J.,

Davis, B., Eisen, L., Filardo, N. W., Grisenthwaite, R., Joannou, A.,

Laurie, B., Markettos, A. T., Moore, S. W., Murdoch, S. J., Nien-

huis, K., Norton, R., Richardson, A., Rugg, P., Sewell, P., Son, S.,

and Xia, H. Capability Hardware Enhanced RISC Instructions: CHERI

Instruction-Set Architecture (Version 8). Tech. rep., Computer Labora-

tory, University of Cambridge.


	1 Introduction
	2 Programming model
	3 Threat model
	4 Implementation overview
	5 Next steps
	Acknowledgments
	References

