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Motivation
The Eternal War in Memory*

Example bug: Heartbleed
…allows attackers to eavesdrop 
on communications, steal data 
directly from the services and 
users and to impersonate 
services and users.

Yet another memory safety bug!
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*Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. SoK: Eternal War in Memory. 
In Proceedings of the 2013 IEEE Symposium on Security and Privacy. IEEE 2013.
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DARPA CRASH

If you could revise the
fundamental principles of
computer-system design
to improve security…

…what would you change?
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Principle of least privilege

Every program and every privileged user 
of the system should operate using the 
least amount of privilege necessary to 

complete the job.

Saltzer 1974 - CACM 17(7)
Saltzer and Schroeder 1975 - Proc. IEEE 63(9)

Needham 1972 - AFIPS 41(1)



Principle of least privilege (2)
• Access control

• Minimize privileges held by users (and hence their 
processes) in accordance to policy

• Fault tolerance

• Limit the impact of software/hardware faults

• Vulnerability and Trojan mitigation

• Constrain rights gained as a result of software supply-
chain compromise (Karger IEEE S&P 1987)

• Motivation for sandboxing, privilege separation, and 
software compartmentalization used to mitigate 
vulnerabilities in contemporary applications
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Architectural least privilege
• Classical buffer-overflow attack

• Buggy code overruns a buffer, 
overwriting an on-stack return address

• Overwritten return address is loaded 
and jumped to, corrupting control flow

• Why did we allow these privileges:

• Ability to overrun the buffer?

• Ability to inject a code pointer that can 
be used as a jump target?

• Ability to execute data as code?

• Wouldn’t eliminate the bug – but 
would provide effective 
vulnerability mitigation 6
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Application-level least privilege (1)

Software compartmentalization decomposes software into 
isolated compartments that are delegated limited rights

Able to mitigate not only unknown vulnerabilities, but also
as-yet undiscovered classes of vulnerabilities/exploits!
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Application-level least privilege (2)
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• Compartmentalization options for software 
describe a compartmentalization space

• Each trade off security against performance 
and programming complexity

• But MMU-based processes are problematic:

• Poor spatial protection granularity

• Limited simultaneous-process scalability

• Multi-address-space programming model



REVISITING RISC
IN AN AGE OF RISK
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CTSRD: Revisiting the hardware-
software interface for security
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Guiding design principles
• De-conflate virtualization and protection using a hybrid model

• Hybrid capability-system model

• Memory Management Unit (MMU) protects virtual addresses

• Capabilities protect pointers – “unforgeable tokens of authority”

• RISC approach – keep instructions simple, targeted at compilers

• C-language pointers map cleanly into ISA-level capabilities

• Tags, bounds, permissions, monotonicity, sealing protect pointers

• Spatial safety protects against many pointer-misuse vulnerabilities

• Temporal safety protects against many memory re-use attacks

• Scalable compartmentalization for exploit-independent mitigation

• Target: C-language TCBs – OS kernels, language runtimes, …
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CHERI architectural elements

• Tagged memory tags capability-sized words in DRAM as pointers

• Capability register file holds in-use capabilities (pointers)

• Program counter capability extends program counter

• Default data capability ($ddc) controls legacy MIPS loads/stores

• NB: System control registers are also extended – e.g., $epc→$epcc, TLB
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pointer (64 bits)

Pointers today

• Pointers are integer virtual addresses

• Pointers (usually) point into allocations, mappings

• Derived from other pointers via integer arithmetic

• Dereferenced via jump, load, store

• No integrity protection: easily accidentally/maliciously overwritten

• Arithmetic errors lead to out-of-bounds memory leaks/overwrites

• Inappropriate pointer use – e.g., executable data, format strings
14
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pointer (64 bits)

Tags for integrity and provenance

• Tags on capability registers indicate a valid capability

• Dereferencing an untagged capability throws an exception

• Tagged memory holds tags when capabilities are loaded/stored

• Capabilities can be embedded within data structures

• Tags track pointer provenance:

• Tag is set in primordial capabilities

• Valid capability manipulations maintain tag

• Data stores to in-memory capabilities clear tags
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pointer (64 bits)

Bounds checking

• Capability bounds restrict access to a range of memory

• Base, length, and base-relative offset

• Pointer can float within bounds – and beyond

• Set bounds instruction subsets a current range

• Used by heap, stack allocators – but also for explicit subsetting

• Out-of-bounds dereference throws a hardware exception
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pointer (64 bits)

permissions (31 bits)

Permissions

• Permissions limit how a pointer may be dereferenced

• Load, store, instruction fetch (and others)

• E.g., cannot jump to a data pointer, write to a code pointer

• Permission mask instruction reduces permissions

• Unauthorized dereference throws a hardware exception
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Pointer provenance and monotonicity

• Capability instructions and tags implement guarded manipulation

• Pointer provenance: pointers must be derived from other pointers

• Monotonicity: cannot increase rights associated with a capability

• Bounds can be narrowed but not widened

• Permissions can be cleared but not set

• Data received over the network cannot be interpreted as a pointer

• Heap pointers cannot be manipulated to allow access other heap objects
18
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objtype (24bits) s

Sealed capabilities

• Sealed bit provides strong encapsulation

• Enforce a TCB-defined calling convention

• Sealed capabilities are immutable, cannot be dereferenced

• Object types atomically link multiple capabilities

• Object capabilities pair code and data capabilities

• Foundation for secure hardware-software object invocation
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objtype (24bits) s

pointer (64 bits)

256-bit architectural capabilities

• CHERI capabilities are fat pointers with strong integrity

• Tags protect integrity; can’t dereference invalid capability

• Bounds limit range of address space accessible via pointer

• Permissions limit operations – e.g., load, store, instruction fetch

• Guarded manipulation enforces monotonic rights decrease

• Architectural description not the micro-architectural implementation
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128-bit micro-architectural capabilities
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• Exchange bounds precision for register size, cache footprint

• Floating-point(-like) bounds relative to pointer

• Must support out-of-bound C pointers – unlike prior schemes

• Must retain monotonicity for safe delegation!

• Care required with security-imprecision trade offs

• DRAM tag density from 0.4% to 0.8% of memory size

• Fully functioning prototype with software stack on FPGA
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counterCHERI memory protection:

• Eliminates out-of-bounds accesses
• Prevents injected data being used as a 

code or data pointer
• Data pointers cannot be used as 

branch or jump targets

• Efficiently implements least privilege, 
mitigating as-yet undiscovered attack 
techniques and software trojans

While:
• Retaining current programming 

languages and models
• Supporting incremental deployment



Virtual memory and capabilities
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Virtual Memory Capabilities
Protects Virtual addresses and pages References (pointers) to C 

code, data structures

Hardware MMU,TLB Capability registers,
tagged memory

Costs TLB, page tables, lookups, 
shootdowns

Per-pointer overhead,
context switching

Compartment scalability Tens to hundreds Thousands or more

Domain crossing IPC Function calls

Optimization goals Isolation, full virtualization Memory sharing,
frequent domain transitions

CHERI hybridizes these models: pick two!



Binary and source-code compatibility

• MIPS code lives side-by-side with CHERI code

• Incremental adoption – e.g., return addresses, 
stack pointers, heap pointers, by type, etc.
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Software deployment models
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Hybrid MMU-capability models: protection and 
compartmentalization within virtual address spaces

Single-address-space 
systems are possible but 

not our focus



COMPARTMENTALIZATION

26



CheriBSD object capabilities
• In-process object-capability model 

• Protection domain

• Capability register file, transitive closure 
over reachable in-memory capabilities

• Domain transition

• Register transformation within a thread

• libcheri implements classes, objects

• Encapsulation, mutual distrust

• Objects are pairs of sealed code and 
data capabilities with identical types

• Capability arguments / return 
values allow memory and object 
references to be delegated efficiently
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Object-capability call and return

Compartmentalized object

Ambient object

Compartmentalized object

Ambient object

Kernel

CCall

CCall

System
call

CReturn

CReturn

System-
call return

CReturnCCall

• Initial object has ambient authority 
to full address space and system calls

• Compartmentalization runtime 
constructs object with explicitly 
delegated rights

• Synchronous function-call-like 
CCall/CReturn supports current 
application/library interfaces

• Trusted stack stitches together 
stacks of mutually distrusting objects

• CCall/CReturnABI clears unused 
registers to prevent data/capability 
leakage between objects
28
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Application implications

Pros
• Single address-space 

programming model

• Referential integrity matches 
programmer model

• Only modest work to insert 
protection-domain boundaries

• Objects permit mutual distrust

• Constant (low) overhead 
relative to function calls even 
with large memory flows

Cons
• Still have to reason about the 

security properties

• Shared memory is more subtle 
than copy semantics

• Capability overhead in data 
cache is real and measurable

• ABI subtleties between MIPS 
and CHERI compiled code

• Lower overhead raises further 
cache side-channel concerns

29



VALIDATION AND 
REFINEMENT
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CTSRD: Revisiting the hardware-
software interface for security
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CHERI1 experimental prototype
• Hardware:

• 64-bit MIPS + CHERI ISA extensions

• Formal ISA model (in Cambridge L3)

• BSV HDL prototypes (FPGA target)

• Pipelined, L1/L2 caches, MMU, multicore

• Capability extensions, tagged memory

• 256-bit and 128-bit prototypes

• Software:
• CheriBSD operating system

• CHERI clang/LLVM compiler

• Adapted applications

• Open-source HW and SW32

Implementation on FPGA
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Instruction
Fetch

Register 
Fetch Decode Execute Writeback

Capability Coprocessor

Instruction Cache MMU: TLB Data Cache

Memory

Memory
Access

L2 Cache

Tag Controller

CHERI micro-architectural additions

• ‘Capability coprocessor’ provides capability registers, instructions

• $ddc, $pcc interpose on MIPS load/store ISA, instruction fetch

• Processing ‘before’ MMU makes capabilities address-space relative

• Tag controller associates tags with in-memory capabilities

• Our implementation: memory partitioned, with a region holding all tags
33



Demo Tablet Platform
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Terasic DE-4 tablet hosting 100MHz CHERI processor, CheriBSD OS



Pointer-intensive benchmarks for
pure-capability code (worst case)

• Primary cost: D-cache footprint from pointer-size increase

• Cycles overhead vs. data-size parameter (range of working-set sizes)

• 8.1% - 80.1% 256-bit capabilities

• 2.5% - 24.3% 128-bit capabilities

• “In the noise” for Dhrystone & tcpdump (256-bit capabilities)

• Other security/performance options – e.g., only return-address capabilities
35

40 

45 

50 

55 

60 

65 

70 

75 

80 

85 

1000 10000 100000 1000000 

cy
cl

es
 p

er
 b

yt
e 

of
 d

at
as

et
 

bytes of dataset 

Bitonic Sort 

CHERI256)

CHERI128)

BERI)

100 

150 

200 

250 

300 

350 

400 

4000 40000 400000 

cy
cl

es
 p

er
 b

yt
e 

of
 d

at
as

et
 

bytes of dataset 

Minimum Spanning Tree 

CHERI256)

CHERI128)

BERI)

5 

7 

9 

11 

13 

15 

17 

19 

21 

23 

4000 40000 400000 

cy
cl

es
 p

er
 b

yt
e 

of
 d

at
as

et
 

bytes of dataset 

Olden Perimeter 

CHERI256)

CHERI128)

BERI)

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

4000 40000 400000 

cy
cl

es
 p

er
 b

yt
e 

of
 d

at
as

et
 

bytes of dataset 

Olden TreeAdd 

CHERI256)

CHERI128)

BERI)



36

Sandboxing: Domain-switching overhead

Function-call 
baseline

CHERI domain X

process-based
separation
approaches
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Library compartmentalization

• Compartmentalize within 
libraries without disturbing 
public API/ABI

• Allows unmodified 
applications to benefit from 
compartmentalization of key 
system classes/libraries

• Memory-based APIs are 
extremely inefficient to pass 
between processes

• Very efficient between CHERI 
compartments as pointers 
delegate memory access

37

Application vs. library-based 
compartmentalization for gzip and zlib

Library-based compartmentalization of zlib
and gif2png performance



CHERI papers (1)
• ISCA 2014: Fine-grained, in-address-space memory protection

• Deconflate virtualization and protection

• Hybrid model adds capabilities while retaining an MMU

• Capabilities: pointers with tags, permissions, bounds

• Manual annotations protect selected stack/heap pointers

• C-language TCBs: OSes, language runtimes, etc.

• ASPLOS 2015: Explore and refine C-language compatibility

• Converge fat-pointer and capability models

• Binary-compatibility models and C compilation

• Large-scale software study of C-language compatibility
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CHERI papers (2)
• Oakland 2015: Hybrid hardware-software compartmentalization

• Sealed capabilities and object types

• Hardware-enforced object-capability model

• Efficient, in-address-space HW-SW domain transition

• ACM CCS 2015: Compartmentalization modeling and analysis

• Conceptual model for software compartmentalization

• LLVM-based static analysis tools to analyze 
compartmentalized designs to validate security goals

• Annotations for security goals, compartments, sensitive data, 
vendor information, past vulnerabilities, …

• Analyses of Chromium, OpenSSH; KDE compartmentalization

39



CHERI technical reports
• Capability Hardware Enhanced RISC Instructions: 

CHERI Instruction-Set Architecture. (UCAM-CL-
TR-876).

• ISAv4 released in November 2015

• Experimental 128-bit capabilities, domain-switching 
optimisations, further C-language support; also 
chapters on protection model

• Capability Hardware Enhanced RISC Instructions: 
CHERI Programmer’s Guide. (UCAM-CL-TR-877).

• New document released in November 2015

• Compiler, OS internals
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Current R&D directions
• Improve architecture, micro-architectural performance

• Converge register files, 128-bit “compressed” capabilities

• Opcode footprint reduction through ISA load/store reuse

• Explore and mature software security and development models

• Compiler, linker, and ABI refinement

• Control-Flow Integrity (CFI)

• Compartmentalization programming models

• Selected system calls within compartments (a la Capsicum)

• Complete pure-capability CheriBSD implementation

• Temporal safety (e.g., accurate C garbage collection)

41



Broader implications
• Model is applicable to other RISC ISAs – ARMv8, RISC-V, etc.

• Some design decisions are ‘deep’ – e.g., tags, monotonicity

• Others are ‘shallow’ – e.g.,  separate vs. merged register files

• Many incremental SW paths, security/performance tradeoffs

• Deploy for some or all data or code pointers? (e.g., stack, CFI)

• Deploy in key class libraries – no need to recompile applications

• Kernel compartmentalization (i.e., microkernels)

• Language runtimes / JIT: Java, Javascript, memory safety

• Reduce protection pressure on the TLB/page-table system

• Opportunity for large page sizes as physical memory grows 
toward petabytes (e.g. HP’s, “The Machine”)
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Conclusions

• RISC ISA and CPU design implement capability model

• In-address-space pointers become capabilities

• Complements MMU-based virtual memory

• Fine-grained memory protection for code, data

• Scalable compartmentalization

• Strong compatibility with C-Language TCBs

• Open-source implementation, ISA specification: 
http://www.cheri-cpu.org/
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Q&A
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