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Application compartmentalization

Conventional gunzip Compartmentalized gunzip
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Application compartmentalization mitigates
vulnerabilities by decomposing applications into
isolated compartments delegated limited rights
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Code-centred compartmentalisation
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URL-specific sandbox
[CRL=Spacie sendbor * But the process model is problematic:
| URL-specific sandbox

* Virtual addressing scales poorly due to page
tables, Translation Look-aside Buffer (TLB)

* Multiple address spaces and Inter-Process
Communication (IPC) are hard to program

* Quite poor for library compartmentalization

due to memory-centered APIs (e.g, zlib)
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CHERI capability model

* ISCA 2014:Fine-grained, in-address-space memory protection
via a capability model

* Capabilities replace pointers for data references

* Capability registers and tagged memory enforce
strong pointer and control-flow integrity, bounds checking

* Hybrid model composes naturally with an MMU
« ASPLOS 2015: Compiler support for capabilities

* Converge fat-pointer and capability models

* C pointers compiled into capabilities with various ABIs
* Can we build efficient compartmentalization over

CHERI memory protection ?
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Virtual memory vs. capabilities
___________|VirtualMemory ___|Capabilities

Protects Virtual addresses and pages References (pointers) to C
code, data structures

Hardware MMU, TLB Capability registers,
tagged memory
Costs TLB, page tables, lookups, = Per-pointer overhead,
shootdowns context switching
Compartment scalability Tens to hundreds Thousands or more
Domain crossing IPC Function calls
Optimization goals Isolation, full virtualization = Memory sharing,

frequent domain transitions
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Hybrid capability/ MMU OSes
ﬁ
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) CHERI capabilities

|-bit tag

otype (24bits)  permissions (31 bits) s

length (64 bits)

offset (64 bits)

256-bit capability
|

base (64 bits)

* Sealed bit prevents further modification

* Object types atomically link code, data capabilities virtual
address

* CCall/CReturn instructions provide hardware- space

assisted, software-defined domain transitions & UNIVERSITY OF
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CheriBSD object capabilities

* In-process object-capability model

* libcheri loads and links classes,
instantiates objects

* Per-thread capability register file
describes its protection domain

« Domain transition within threads
via register-file transformation

| * CCall/CReturn exception handlers
unseal capabilities, allow delegation

Thread, {
ili . .
izp?si!z * Trusted stack provides reliable
& e — software-defined return, recovery
Thread,
capability * Many other software-defined models
Y
Virtual registers possible; e.g., asynchronous closures
address
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Object-capability call/return

_— | * Initial registers after execve()
| Ambient object i grant ambient authority

CReturn

* Synchronous function-like call
| Compartmentalized object . eases application/library

CCaII<—> CReturn adaptatlon
R * CCall/CReturn ABI clears

CcCall _ CReturn unused regISterS to Prevent
5 i leakage

Ambient object

( > * Only authorized system

System- classes can make system calls

call return

Kernel

e Constant overhead to
function-call cost
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CHERI hardware/software prototypes

-

Implementation on FPGA

Pipeline
(Overlaid)

Capability

* Bluespec FPGA prototype

« 64-bit MIPS + CHERI ISA 5 1 caene
+ Pipelined, L1/L2 caches, MMU ) I L2 Cache
B Tag Cache

* Synthesizes at ~100MHz

* Capability-aware software
* CheriBSD OS
* CHERI clang/LLVM compiler

* Adapted applications

* Open-source release
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cycles overhead
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Application implications

Pros Cons

* Single address-space  Still have to reason about the
programming model security properties

* Referential integrity matches * Shared memory is more subtle
programmer model than copy semantics

* Modest work to insert * Capability overhead in data
protection-domain boundaries cache is real and measurable

* Objects permit mutual distrust * ABI subtleties between MIPS

and CHERI compiled code
* Constant (low) overhead

relative to function calls even * Lower overhead raises further
with large memory flows cache side-channel concerns
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Conclusions

* Hybrid object-capability model over memory capabilities

* Software-defined, fine-grained, in-address-space
compartmentalization

* Cleanly extends the MMU-based process model
* Targets C-language userspace TCBs
* Non-IPC model supports library compartmentalization

* Orders of magnitude more efficient
compartmentalization that conventional designs

* Open-source reference implementation, ISA specification:

http://www.cheri-cpu.org/
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