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Goals

Topics covered in these slides include

e why we might want to learn generative models

e what a deep generative model is, and how to perform inference in a
variational autoencoder

e two different Monte Carlo estimators for gradients of expectations, and the
reparameterization trick

e what some applications and extensions are for variational autoencoders.



Generative models and deep generative models

Most machine learning models you've run into are probably discriminative models
for supervised learning.

e Data: pairs of instances and labels (x;,y;), fori =1,..., N.
e Goal: estimate fy(x;) ~ y;, or maximize pg(y;|X;).

The learning task is to characterize the conditional distribution of labels y; given
data x;. We typically do this by estimating a parameter 6 to minimize prediction
error on the training set, or (equivalently) to maximize the training log-likelihood.



Generative models and deep generative models

In contrast, generative models also estimate the distribution of the data x;. This
means we estimate a model for p(x;), or the joint distribution p(x;, y;).

e Data: pairs of instances and labels (x;,y;), fori =1,..., N.
e Generative model: learn an approximation to py(x;) or py(x;, ;) .
)

¢ Discriminative model: learn an approximation to pg(y;|X;)-



Why use generative models?

Q: Why do this? If all we care about is prediction, this sounds like a lot of extra
work!



Why use generative models?

One traditional answer: a joint model allows us to capture causal relationships
and reason about how different unknown quantities relate to observed data.

Sprinkler

Grass wet

Data: the grass is wet. Prediction task: Is it raining?



From generative models to discriminative models

p(x |y) = p(y |x)p(x)/p(y)]

L Posterior

| Likelihood L Prior

Bayes’ rule relates joint distributions with conditional distributions.

e We can use Bayes' rule to run the generative model “backward” to do
inference over unknown quantities (e.g. class labels, regression targets).



Latent variable modeling in medical diagnostics

Data: Patient exhibits
shortness of breath.

arrows: causal relationships
circles: random variables

recent travel
abroad?
tuberculosis?
either tb. or
lung cancer?
abnormal
X-ray?

Prediction task: Do
they have tuberculosis?

shortness of
breath?

Lauritzen & Spiegelhalter (1988)



Latent variable modeling in medical diagnostics

Data: Patient exhibits
shortness of breath.

arrows: causal relationships
circles: random variables

recent travel
abroad?
either tb. or
lung cancer?
Question: Should we
= ? abnormal
run an X-ray’?

Prediction task: Do
they have tuberculosis?

shortness of
breath?

Lauritzen & Spiegelhalter (1988)



A tale of two binary linear classifiers

Logistic regression: learn p(y|x)
Gaussian naive Bayes: learn p(y), p(x|y = +1), and p(x|y = —1)
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Two distinct regimes! (Small data vs Large data limit. . .)
Ng & Jordan (2002)



Learning linear latent variable models

There's a long history of learning linear latent variable models directly from

data, including
Original

® Principal components analysis (PCA) NMF

Independent components analysis (ICA) e

Factor analysis LI
¢ Non-negative matrix factorization SRR - ) E
. . = - i‘
R

Figure: Hastie et al.

Typically, these correspond to learning a
low-rank factorization X ~ WV, where
each instance x; is a weighted sum of
dictionary elements.




Probabilistic PCA (teaser)

While PCA is often introduced as a means for finding projections that explain the
most possible variance, and estimated using SVD, PCA also can be formulated as
a probabilistic generative model:

p(z:) = N(ZJO, I) p(xi|z;) = N(Xi’WZi + W, 021),

fori=1,...,N, z; € RX and x; € R”, with K < D. This model has a
tractable marginal likelihood

p(x) = / pl(xil20)p(zs)dz:) = N (x| s, M),

where M = WW ' + 621, and posterior distribution
p(zi|x;) = N(z| MW (x — p),0*M).

Roweis (1998), Tipping & Bishop (1999)



Probabilistic PCA: Generative viewpoint

This is a K = 1 dimensional latent space for D = 2 dimensional data. Data is
generated by sampling a value of z, projecting it up into 2d space with a
x = Wz + p, and adding noise o2. The rightmost plot shows the marginal

density on x.
Figure: Bishop (2006)



Auto-encoding variational Bayes



Variational Auto-Encoders

Now let's consider a deep generative model which has a Gaussian prior, and a
likelihood defined by a deep net, e.g.

p(zi) = N(2i|0,1) p(xilzi) = N(xi| fo(2:),0°T),
fori=1,...,N. As before, assume z; € R¥ and x; € R”, with K < D.

Generative model
(decoder)

latent
representahon



Computing the marginal likelihood

Challenge: In this model, the marginal likelihood p(X) is completely intractable.

N
log p(X) = > log p(x;) = Zlog | vl vtz
=1

In the linear model, we had closed forms for both the marginal likelihood terms
p(x;) and the posterior distribution p(z;|x;).
e If we have a nonlinear fy in p(x;|z;) = N (x;|fo(z:), 0°T), neither of these
are the case.



Learning an approximate posterior

We will use an approximate inference approach known as Variational Bayes.

e Variational Bayes turns an inference problem into an optimization problem,
by defining an approximating family of distributions ¢,(z|x), parameterized

by ¢
e Inference entails finding a value of ¢ that makes g4(z|x) “close” to the true
posterior py(z|x)
We now have two questions to answer:
1. What is a good choice of ¢4(z|x)?
2. What is an appropriate notion of “closeness” between distributions?



Amortized inference networks

What is a good choice of ¢,(z|x)? The typical choice is to use a Gaussian
distribution whose mean and variance are output by another deep network, with

06(2|x) = N (2| u(x), diag (o (x)*))

where
e ;1 : RP — R¥ is a deep net which outputs a posterior mean, and
e 5 :RP — RX is a deep net which outputs a posterior standard deviation.

Note that in practice the network for o typically will output the log of the standard deviation,
which is then exponentiated, in order to enforce a positivity constraint.



High-level diagram: autoencoder interpretation

Inference Generative model
(encoder, guide) (decoder)

latent
representanon c O =

d¢ Zn’Xn p(zn Do Xn|zn



The Kullback-Leibler divergence

The Kullback-Leibler (KL) divergence is a natural notion of “close”:

Dict(as(a)m(z})) = [ 1otz o 2

® Drr(qyllpe) > 0 for all gy, pa
e |t takes a value O if and only if the two distributions are identical

e Note: it is not symmetric — it is a divergence measure, but not a distance.



The evidence lower bound (ELBO)

We can re-arrange the KL divergence to find a tractable objective,

Dice(as(af)pn(z) = [ as(al) 1o 207 i



The evidence lower bound (ELBO)

We can re-arrange the KL divergence to find a tractable objective,

Dicslasehn(z1x) = [ ao(al)tog 2222,

pe(z|x

)
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The evidence lower bound (ELBO)

We can re-arrange the KL divergence to find a tractable objective,

Dice(as(af)pn(z) = [ as(al) 1o 207 i
polx)aa(alx)

pe(z|x
= z|x) lo Po(x)
= [ astahorog e
= /Q¢(z|x) log g:)((j); / (z]x) log py(x)dz

I



The evidence lower bound (ELBO)

We can re-arrange the KL divergence to find a tractable objective,

(
Po(x)q
P
= x)lo 9o (2[x
—/ do(af) og 2%

Dicslaeh) () = [ a umm%@?w
Jaslzbo)
z)
dz
B po(X, o
= quqs( [ q¢,(ZX 1 + log py(x

pe(z|x
:/q¢(z|x) log
x)
)
ELBO, £(xi¢

/'ummmmd




The evidence lower bound (ELBO)

We can re-arrange the KL divergence to find a tractable objective,

o (
2
p
= z|x) lo q¢(zx

Dicslasehn(z1x) = [ ao(al)tog 2222,
Xagelx)
0(X,2) d
Ilzx) / (/) log po (x)dz
o 2]

po(z]x)
:/q¢(z|x) log
X
,Z)
ELBO, £(xi¢

The ELBO is tractable in the sense that it only includes the joint distribution
po(X,2), not the (intractable) posterior p(z|x) or marginal likelihood py(x).



The evidence lower bound (ELBO)

Re-arranging, we have

log po(x) = L(x; ¢, 0) + Drc(qs(2|%)|po(2[x)).

This is a very useful relationship between the KL-divergence, the marginal
likelihood p(x), and the ELBO

9]

O e



The evidence lower bound (ELBO)

Re-arranging, we have
log py(x) = L(x; 9, 0) + Drr(gs(2[x)[[po(2]x)).

Notably, since

® Dk is lower-bounded by zero, and

® log pp(x) is constant with respect to ¢,
then, for the parameter ¢, maximizing the ELBO is equivalent to minimizing
the KL divergence.



The evidence lower bound (ELBO)

What about 87 Again,

log po(x) = L(x; ¢, 0) + Drc(qs(2|%)|po(2[x)).

Our desired objective function is the marginal likelihood log py(x), which we wish
to maximize. However, again Dy > 0 means we have

L(x;6,0) < logpe(x);

that is, the ELBO is a lower-bound on the log marginal likelihood, which we can
use as a surrogate and maximize instead.

Note: This lower bound is tight when the KL divergence is zero, i.e. if we have
learned the correct posterior!



Optimizing the ELBO

So far, we have seen that maximizing the ELBO

L(x;¢,0) = Eq, z1x) {logm}

45 (2[x)
is a sensible objective function for both

e the generative parameters 6, and

e the inference network parameters ¢.

But, we haven't discussed how to maximize the ELBO.

We'll use stochastic gradient descent, with one trick.



Estimators for gradients of expectations

Computing the gradient of the ELBO requires computing the gradient of an
expectation. Is that a problem?

Let's step back from our problem for a moment and consider trying to compute
the derivative of the expectation of a simple scalar function f(x) under the
distribution p(z|6),

D bl F (@)

We will make use of the identity

p(s10) o5 VB P(x16) = ~-p(r10).



Score-function estimator

The following derivation leads to the so-called score-function estimator:

A HE)

Schulman et al., 2015
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Score-function estimator

The following derivation leads to the so-called score-function estimator:
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Score-function estimator

The following derivation leads to the so-called score-function estimator:
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Score-function estimator

That identity, and its Monte Carlo approximation,

689 p(al0)[f ()] = Ep(ajo) [f(x)%logp(zw)

~ g Z Fl@)— 1ogp(x(8)l9), for 2*) ~ p(x(0)

holds even if f(z) is non-differentiable, or z is discrete!

Unfortunately, it is often too high-variance to be useful, requiring many, many
samples.

Schulman et al., 2015



Score-function estimator

That identity, and its Monte Carlo approximation,

689 p(al6) Lf (2)] = Ep(apo) [f(x)%logp(zw)

~ g Z Fl@)— 1ogp(x(8)|9), for 2*) ~ p(x(0)

holds even if f(z) is non-differentiable, or z is discrete!

Unfortunately, it is often too high-variance to be useful, requiring many, many
samples.

Problem: both the gradient, and the expectation, involved the same variable 6.

Schulman et al., 2015



Pathwise derivative estimator

Consider an alternative setting in which we have a separate random variable
e ~p(e), and z = x(0,€) is a deterministic function, e.g.

D Bl (2(6.0)

Schulman et al., 2015



Pathwise derivative estimator

Consider an alternative setting in which we have a separate random variable
e ~p(e), and z = x(0,€) is a deterministic function, e.g.
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Pathwise derivative estimator

Consider an alternative setting in which we have a separate random variable
e ~p(e), and z = x(0,€) is a deterministic function, e.g.

Sl 0. = 57 [ (e f(alt. )

- [ g a0,
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Pathwise derivative estimator

Consider an alternative setting in which we have a separate random variable
e ~p(e), and z = x(0,€) is a deterministic function, e.g.

SE 0.0 = 5 [ pl)S(a(6.O)da

- [ g a0,
~ By | (0,00

Schulman et al., 2015



Pathwise derivative estimator

Consider an alternative setting in which we have a separate random variable
e ~p(e), and z = x(0,€) is a deterministic function, e.g.

A

0. = 55 [ pOre0.)ds

- / p(e)

= IE::v(é) [

f(z(0,€))dx
fa <9,e>>} |

gl

SE

Here, the derivative of the expectation is the expectation of the derivative!

e While this does require f(-) and z(0,¢) to be differentiable, it has the
advantage of leading to much lower-variance Monte Carlo estimators.

Schulman et al., 2015



Estimating gradients of the ELBO

Now, back to our ELBO. First, we will further decompose it as

L(x;¢,0) = Eq, (zlx) {logz%]

= By, (ax [log po(x|2) + log p(z) — log q,(z|x)]
p(z) }

96 (2[%)

= Ey,(alx) [log po(x|2)] + Eg, (21x) [10g

Kingma & Welling, 2014



Estimating gradients of the ELBO

Now, back to our ELBO. First, we will further decompose it as

L(x;¢,0) = Eq, (zlx) {log%}

= By, (ax) [l0g po(x|2) + log p(z) — log q4(z|x)]

= oo log 20 (x[2)} + Byt {%g << \M
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TV s
reconstruction term regularization term

Kingma & Welling, 2014



Estimating gradients of the ELBO

Now, back to our ELBO. First, we will further decompose it as

L(x;¢,0) = Eq, (zlx) {log%}

= By, (ax) [l0g po(x|2) + log p(z) — log q4(z|x)]

= oo log 20 (x[2)} + Byt {%g << \M
= Euy o logpo(x/2)] — Dice (1,21 (=)

TV s
reconstruction term regularization term

You will often see the ELBO written this way. This is (partially) because
Dr1(¢s(z|x)||p(z)) can often be computed in closed form.

Kingma & Welling, 2014



Estimating gradients of the ELBO

Let's look at the reconstruction term in the ELBO, E,, (,/x)[log py(x|2)].
e Gradients Vy: not a problem,

VoE,, (zlx) [log pe(x|z)] = Eqy, (zx) [V log pg(x|z)]

¢ Gradients V: 777
We will use the reparameterization trick: define a function g4(€,x) and
distribution p(e) such that if

e ~ p(e), Z = gs(€,x)
then z ~ g4(z|x).

Kingma & Welling, 2014



Reparameterization trick

Define a function g, (€, x) and distribution p(e) such that if
e ~ p(e), Z = g4(€,x)
then 2 ~ g4(z|x).

Example: suppose

Then let

Kingma & Welling, 2014



Reparameterization trick

Define a function g, (€, x) and distribution p(e) such that if
e ~ p(e), Z = g4(€,x)
then 2 ~ g4(z|x).

Example: suppose
66 (2|%) = N (z|u(x), diag(o(x)?)).
Then let
p(E) = N(0> I)
2= gole,x) = p(x) + o(x) O c.

Similar expressions hold for many common probability densities — we are not

limited to Gaussian latent variables.
Kingma & Welling, 2014



Reparameterization trick

Using this “reparameterization trick”, we can compute the gradient

V¢,9Eq¢(z\x)[logpe(X|Z)] = v¢9E y[log pe(x|z =

o) [V logpo(x|z =
This can be computed by automatic differentiation

go(€x))]
9o(€,%))]

Note that if py(x|z) is Gaussian, e.g. N (x|fy(2)

g °T), then this term involves
differentiating the squared error loss

N 1
log py(x]z = gp(€,x)) =

252 Ix — fo(gs(e,x))||5 + const.

Kingma & Welling, 2014



Mini-batch gradient estimation

The last missing step is considering mini-batch gradient updates. Since

lngg(X) = Z lngg (Xz Xza ¢7

||Mz

then we can use a minibatch estimator

N M
ZE Xl,gb, MZ Xj7¢7

where x; are M random samples from the dataset.

Note: This is unbiased if x; are i.i.d. samples from the underlying p(x).



Summary

A variational autoencoder is

Prior distribution: pe(z)

® a deep generative model for data x,
with a latent variable z

e ... which takes the form z-space
po(X,Z) = HPG(Xi|Zi)p(Zi) kY
i=1 Encoder: q(z|x) Decoder: pe(x|z)

® . .trained jointly with an '
approximation to the posterior

X-space

qs(2i|x:) = po(z|x;)

Dataset: D

e ... by maximizing an ELBO.

Figure: Kingma & Welling (2019)



Examples



The “hello world” of machine learning
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Kingma & Welling (2014)



MNIST: latent space comparison
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(b) 5-D latent space (c) 10-D latent space (d) 20-D latent space

(a) 2-D latent space

® Non-obvious question: how big should the latent space be?

Kingma & Welling (2014)



Convolutional networks

CelebA dataset.

e Encoder: Fully convolutional
network, Gaussian posterior

e Decoder: Fully convolutional
network, Gaussian likelihood

Note: recent papers with different
architectures and likelihoods can
produce more photorealistic random
samples.

£ an
AABAA
aD 2 NF
Qr Al
CRYh [

Lamb et al. (2016)




Perturbations in latent space

e Uses: We can identify directions in the latent space that correspond to

properties, and manipulate them
White (2016)



A sequence model: SketchRNN

Output Sequence S' conditionally generated from z

N(O, )
sample
Backward  h |Backward  h’ Backward Backward|  hy | |Backward| .- S, S, S, Sit S..
Encoder > Encoder ——~—» Encoder —------» Encoder ——» Encoder ——»
RNN RNN RNN RNN RNN T T T T T
\GMM, softmax / GMM, softmax \GMM, softmax, '\ GMM, softmax GMM, softmax
\ sample / sample . sample /. sample. sample

n—>
n—>
%”H
D—>
—>
=

h
tanh 13 De;cﬁdel

Foward | h |Fowad | h[ | Foward Foward | hy, |Fowad | h-
Encoder ————» Encoder ————>» Encoder —------ —» Encoder ————» Encoder ———»

RNN N RNN RNN r

R
T T T T Latent Vector z encoded
s s S, S, S, from Input Sequence S

e Encoder: bi-directional LSTM, Gaussian posterior
e Decoder: LSTM that outputs parameters of a distribution over 5-tuples
(Ai, Aj, "pen up”, “pen down”, “stop”)
Ha & Eck (2017)



A sequence model: SketchRNN

o+ (e -(0) =
o+ (L) - o) =

e Uses: Reconstruction, generation, latent space manipulation, ...
Ha & Eck (2017)



A sequence model: SketchRNN

N -
i \ 1 7 - = N\ X7 \ 2 A (&) =
oy sy (Oﬁ\/ 2 &) Y by D o =
S y | \ o[ - § —
N~ \- INY { \ ~| \J g | ~7 =~ ~/ =
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e Uses: Automatic completion of partial sketches
Ha & Eck (2017)



Sequence model for molecules

Property

CHs f(z)

OH
CHgs

HaC

Mol 2

Ibuprofen: CC(C)CC1=CC=C(C=C1)C(C)C(=0)O

;
Q ! Mol3
Mol 4 &

lol 6
. Mol 5 &S
Most Probable Decoding

argmax p(*lz)

® Molecules are complex, discrete objects, but can be described succinctly as
strings in a formal language

e Uses: Lift discrete optimization to a continuous latent space
Gomez-Bombarelli et al. (2018)



Application:

Latent space optimisation



Bayesian optimization cartoon

— objective

@ Get initial sample.

Figures: Miguel Herndndez-Lobato
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Bayesian optimization cartoon

— Objective
@ Get initial sample.

1 @® Fit a model to the data:

/\_/ p(y[x, D).

‘ ! © Select data collection strategy:
a(x) = Ep(yjx,p,)[U(y[x, Dp)] -

Figures: Miguel Herndndez-Lobato



Bayesian optimization cartoon

— Objective
@ Get initial sample.

1 @® Fit a model to the data:

‘/\J by, D).

! © Select data collection strategy:
a(x) = Ep(yix,p,)[U(y|x, D).

O Optimize acquisition function a(x).

— Acquisition Function a(x)

:HLM/

I | 1

Figures: Miguel Herndndez-Lobato



Bayesian optimization cartoon

— Objective
@ Get initial sample.

1 @® Fit a model to the data:
1 p(y|x,Dn) -
© Select data collection strategy:

a(x) = Ep(y|x,Dn)[U(y‘x7Dn)] .

O Optimize acquisition function «(x).

— Acquisition Function a(x)

@ Collect data and update model.

Figures: Miguel Hernandez-Lobato



Bayesian optimization cartoon

—  Objective

@ Get initial sample.
@® Fit a model to the data:
p(y[x,Dn).
© Select data collection strategy:
a(x) = Ep(yjx,p,)[U(y|%, D))

O Optimize acquisition function a(x).

— Acquisition Function a(x)

@ Collect data and update model.
@ Repeat!

Figures: Miguel Hernandez-Lobato
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— Objective

@ Get initial sample.
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Bayesian optimization cartoon

— Objective
@ Get initial sample.

@ Fit a model to the data:
p(y[x,Dn).
© Select data collection strategy:
a(x) = Epyix,0,) [U(yIX, Dn)] -

— Acquisition Function a(x)

N

O Optimize acquisition function «(x).

@ Collect data and update model.
® Repeat!

Figures: Miguel Herndndez-Lobato



Bayesian optimization cartoon

— Objectiyé

@ Get initial sample.

@ Fit a model to the data:
p(y[x,Dn).
© Select data collection strategy:
a(x) = Ep(yxp,) [U(y[x, Dn)] -

O Optimize acquisition function «(x).

— Acquisition Function a(x)

@ Collect data and update model.
® Repeat!

Figures: Miguel Herndndez-Lobato



Bayesian optimization cartoon

—— Objective

— Acquisition Function a(x)

\MAA ms

@ Get initial sample.
@ Fit a model to the data:
p(y[x,Dn).
© Select data collection strategy:
a(x) = Epyix,0,) [U(yIX, Dn)] -

O Optimize acquisition function «(x).

@ Collect data and update model.
® Repeat!

Figures: Miguel Herndndez-Lobato



Bayesian optimization cartoon

— Objective
@ Get initial sample.

@ Fit a model to the data:
p(y[x,Dn).
© Select data collection strategy:
a(x) = Epyix,0,) [U(yIX, Dn)] -

O Optimize acquisition function «(x).

— Acquisition Function a(x)

@ Collect data and update model.
® Repeat!

\/‘f\ﬂH A

Figures: Miguel Herndndez-Lobato



Bayesian optimization cartoon

— Objective
@ Get initial sample.

@ Fit a model to the data:
p(y[x,Dn).
© Select data collection strategy:
a(x) = Epyix,0,) [U(yIX, Dn)] -

O Optimize acquisition function «(x).

— Acquisition Function a(x)

%

@ Collect data and update model.
® Repeat!

—

e

—
—_—

Figures: Miguel Herndndez-Lobato



Bayesian optimization cartoon

— Objective
@ Get initial sample.

@ Fit a model to the data:
p(y[x,Dn).
© Select data collection strategy:
a(x) = Epyix,0,) [U(yIX, Dn)] -

O Optimize acquisition function «(x).

— Acquisition Function a(x)

@ Collect data and update model.
® Repeat!

Figures: Miguel Herndndez-Lobato



Representation: Molecules as text

@ CCCO (O clccc2occ(CC(=0)Nc3cccecc3F)c2cl

L
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Variational autoencoder for “text”

Encoder Decoder
(inference) (generative model)

O
Sequence ~ continuous / O ~ Sequence
Input "~ latentspace Ol "7 Output
O
a(z I@ p({ )] 2)

LICLIEE ——  property estimate

Gémez-Bombarelli et al, 2018



A deep generative model for molecules

* Sampled molecules
have statistics similar
to real molecules

* Nearby latent
representations
decode into similar
molecules

source  data set logP SAS QED
Data  ZINC 246 (143) 3.05(0.83) 0.73 (0.14)
GA ZINC 284 (1.86) 3.80 (1.01)  0.57 (0.20)
VAE  ZINC 267 (146) 3.18 (0.86) 0.70 (0.14)
Data QM9 030 (1.00) 4.25(094) 048 (0.07)
GA QM9 096 (1.53) 447 (1.01) 053 (0.13)
VAE QM9 030 (097) 434 (098) 047 (0.08)
€ Closer Farther & .
oL AD~ ALt (**/o)\ ;Q'j ;(”‘)\} ;\\H ¥ @w
2.58 5.75 7.49 11.02 13.11 15.46 = 19.96
) o N S Mo - <
o Py Ao T H\“ ol 1A <
0 307 6.08 9.25 11.07  14.07 15.77 20.94
Ibuprofen N
2Oy Aoy Rl M0 oy A0 0
2.74 5.89 8.71 12.29 14.43 17.16 19.60

Average distance between ZINC molecules latent space(19.66)

Gémez-Bombarelli et al, 2018



A deep generative model for molecules

e Learna “map” for
molecules

* Now it is possible to apply
continuous optimization
methods (including
Bayesian optimization)

* This can also be used for
local, gradient-based
optimization

Most Probable Decoding
argmax p(*|z)

Gémez-Bombarelli et al, 2018
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Searching for new drugs
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Searching for new drugs
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Searching in latent space
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Searching in latent space
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Searching in latent space
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Searching in latent space
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Searching in latent space
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Searching in latent space
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Example: OLED

Ew Kpicuma Renviom () = 0.067 oprimization  0.795 0.804
we ! ”””””””” F@- s -Q
E g ENCODER bEcopen B ey

C
o
: & £ o 0oL o
O <
wao
6' 7]
= kl‘;‘zzmﬂ,(us = 0.004 0.080 0.000 0.580

Optimized fluorescence decay rate, estimated from
computations on 150k molecules

Challenge: many “decoded” SMILES are not valid...

Gémez-Bombarelli et al, 2018



Application:

Semi-supervised learning



Learning with labels

So far, we have only considered unlabelled data x.
Question: What should we do with labeled pairs (x;,v;)?



Learning with labels
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QUAVVNNINHBE G ®VVV® e~~~
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QOOOMHIMMMMN MBIV D D W = ——
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QO MMM MM NN 00O W e o am e — —
QOMMM MMM N0 000®e e e ———
QAN 8080207000000 00 0n &~ o~ 0~ 1~ o~
R L L LG e
G rorororrrrrssoo N~
aaddddocgororrrrrrrraann~
AdddddrrrrrrrTTIIINN
SddddgorrrrrrrIITIRIRINN
SAddTTTrrrrrrrr™r22RANN
ST ToTTTr oo IR XINNN

.9

® Images of handwritten digits x;
shown again on the right.

e Digit labels y; € 0, ..
® The 2d learned latent space is
unsupervised model, that only had

Reminder: this was trained on an
access to images x;!

Let's take MNIST as a running example.



Defining a joint generative model

We're going to define a generative model over the joint distribution x,y, with a
latent variable z.

® Question: How should we factorize py(x,y,z)?
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real-world causal direction as much as possible.



Defining a joint generative model

We're going to define a generative model over the joint distribution x,y, with a
latent variable z.

® Question: How should we factorize py(x,y,z)?

e How do we actually draw images? Generally, it's helpful to mirror the
real-world causal direction as much as possible.

A reasonable choice:

Po(X,y,2) = po(X|y,2)p(2)p(y)

“First, independently pick a digit y, and a latent style vector z. Then, go draw
the corresponding character x.”



Generative model and inference networks

We'll mostly follow the same structure used before, but now with an extra
random variable y.

Generative model:

p(Z) = N(Zlov I)
p(y) = Discrete(y|m)
po(x|y,z) = f(x;y,2,0)

where 7 is a prior probability vector, and f is an appropriate probability density
(e.g. Gaussian) with parameters given by a nonlinear transformation of z, y.



Generative model and inference networks

For the inference network, we also need to choose a factorization.
Approximate posterior:

q(y|x) = Discrete(y|my(x))
Q<Z|X7 y) = N(Z|M¢(Xv y)? diag(0¢(xa y)2))

where 74, tig, and oy are all deep networks.

Questions: Why infer y first? Why does z depend on both x and y?

Kingma et al. (2014)



Semi-supervised setting

In the semi-supervised setting, we assume that the labels y are known for
some instances, but not for others.

This effectively partitions the dataset into
e N°® image, label pairs (x;, ;)
e N* unlabelled images x;.

We'll treat these two sets of data separately, looking at their per-datapoint
contributions to an ELBO.

Kingma et al. (2014)



Supervised ELBO

Let's start with the supervised case, focusing only on instances x where y is
known, with

L(x,1;0,0) = Eq, (zjx)[l0g po(x,y, 2) — log q(z|x, y)].

This ELBO is essentially identical to the one we derived before, aside from the
fact that our observed “data” now also includes y.

L(x,y;¢,0) < logpe(x,y)

Kingma et al. (2014)



Unsupervised ELBO

In the unsupervised case, we do not know v, and need to

(X ¢ ) q¢(y\x)q¢( z|x, y)[lOgPG(X Y,z ) 1Og Q¢(y|x) - Iqu¢<Z|X, y)]

This ELBO is also essentially identical to the one we derived before, except
now our latent space also includes y.

U(x; ¢,0) < log pe(x)

Kingma et al. (2014)



Semi-supervised objective function

Putting these together, we can define an overall objective function
N3 N
J = Z £(Xi7 Yis ¢7 0) + ZU(X]'; ¢7 (9)
i=1 j=1

There's just one thing odd about this objective: the supervised terms do not
include the quantity we would traditionally call a classifier,

95 (y[x) = Discrete(y|my(x)),

which means the classifier network 74(x) is only estimated using the
unsupervised data x;.

This counterintuitive behaviour can be avoided by adding in an additional term
NS

T =JT+a) logqyyilx:).

=1



Check-in

¢ Question: Compared to the previous VAE, what do we think the latent
space z will look like?

¢ Question: What is the difference between training this model when fully
supervised, and learning ten independent VAEs (one per class)?
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e First: the generated images do represent the target class.

e Second: the latent factor z seems to capture other independent variation in

a consistent manner.

Kingma et al. (2014)



Style transfer, or visual analogies

» y (digit label)

e Holding the random variable z
constant while modifying y
transfers style across classes

® Each row corresponds to a
fixed value of z;

® Each column past the first
shows the mean py(x|y, z;),
fork=0,...,9
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z (handwriting style)

Kingma et al. (2014)



Street view house numbers data

p

|

e Same thing, on a potentially
more impressive dataset
e First column shows real data,

the rest show label-conditional
reconstructions

Kingma et al. (2014)



How good is the classifier?

e Kingma et al. (2014) report 3.33% test error on MNIST when using only
100 labels, i.e. 10 labels per class. ..

e .. .and down to 2.18% error for 3000 labels.

e Later work, Siddharth et al. (2017), uses different network architectures and

reaches 1.57% test error on 3000 total labels, which is fairly comparable to
looking at the full dataset.

The full MNIST dataset has 60k examples.

SVHN classification performance tells a similar story.



Extension:

Compositional models



From one digit to many digits
Generative model

Label

2

OR°

Nuisance

Pixels

Siddharth et al., 2017



From one digit to many digits
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Generative model

Nuisance Pixels
Count
Pixels

K
Label

Transformation

Siddharth et al., 2017



How do we build these models?

Inference model
(recurrent neural network)

P

(=)

k
K

Generative model

Nuisance Pixels

A/
(%)

K
Label

Transformation

&) &
®

Count

/

N

Pixels

Siddharth et al., 2017



Inference: counting and locating

Inference model
(recurrent neural network)

Count
]
hi
[ K

Transformation

Siddharth et al., 2017



How to do all this (easily)

Pyro: deep “probabilistic
programming”
e Adds probabilistic modeling on
top of PyTorch

e Write two programs: a model
and a guide, defined over the
same random variables

® Implements automatic inference

by computing and optimizing s
the ELBO




Other VAE extensions



How can you improve a VAE?

Improve the inference over z, given x?
e Use ¢(z|x) as an importance sampling proposal (IWAE; Burda et al., 2015)
® Use ¢(z|x) as an initialization for MCMC (Hoffman, 2015)
e Use a much more powerful ¢(z|x), instead of a factorized Gaussian
Improve the prior over z?
® Mixture models as priors
e Autoregressive models as priors
Automatically “disentangle” the dimensions of z to have axis-aligned features?
e Beta-VAE, Higgins et al.
e Total correlation VAE, Chen et al.



Thanks!
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