
Deep generative models with
latent variables

Brooks Paige

12 Nov 2025

Goals

Topics covered in these slides include

• why we might want to learn generative models

• what a deep generative model is, and how to perform inference in a
variational autoencoder

• two different Monte Carlo estimators for gradients of expectations, and the
reparameterization trick

• what some applications and extensions are for variational autoencoders.

Generative models and deep generative models

Most machine learning models you’ve run into are probably discriminative models
for supervised learning.

• Data: pairs of instances and labels (xi, yi), for i = 1, . . . , N .

• Goal: estimate fθ(xi) ≈ yi, or maximize pθ(yi|xi).

The learning task is to characterize the conditional distribution of labels yi given
data xi. We typically do this by estimating a parameter θ to minimize prediction
error on the training set, or (equivalently) to maximize the training log-likelihood.

Generative models and deep generative models

In contrast, generative models also estimate the distribution of the data xi. This
means we estimate a model for p(xi), or the joint distribution p(xi, yi).

• Data: pairs of instances and labels (xi, yi), for i = 1, . . . , N .

• Generative model: learn an approximation to pθ(xi) or pθ(xi, yi) .

• Discriminative model: learn an approximation to pθ(yi|xi).

Why use generative models?

Q: Why do this? If all we care about is prediction, this sounds like a lot of extra
work!

Data: the grass is wet. Prediction task: Is it raining?

Why use generative models?

One traditional answer: a joint model allows us to capture causal relationships
and reason about how different unknown quantities relate to observed data.

Data: the grass is wet. Prediction task: Is it raining?

From generative models to discriminative models

Bayes’ rule relates joint distributions with conditional distributions.

• We can use Bayes’ rule to run the generative model “backward” to do
inference over unknown quantities (e.g. class labels, regression targets).

Latent variable modeling in medical diagnostics

Data: Patient exhibits
shortness of breath.

Prediction task: Do
they have tuberculosis?

Question: Should we
run an X-ray?

Lauritzen & Spiegelhalter (1988)

Latent variable modeling in medical diagnostics

Data: Patient exhibits
shortness of breath.

Prediction task: Do
they have tuberculosis?

Question: Should we
run an X-ray?

Lauritzen & Spiegelhalter (1988)

A tale of two binary linear classifiers
Logistic regression: learn p(y|x)
Gaussian näıve Bayes: learn p(y), p(x|y = +1), and p(x|y = −1)

Two distinct regimes! (Small data vs Large data limit. . .)
Ng & Jordan (2002)

Learning linear latent variable models
There’s a long history of learning linear latent variable models directly from
data, including

• Principal components analysis (PCA)

• Independent components analysis (ICA)

• Factor analysis

• Non-negative matrix factorization

• . . .

Typically, these correspond to learning a
low-rank factorization X ≈ WV, where
each instance xi is a weighted sum of
dictionary elements.

Figure: Hastie et al.

Probabilistic PCA (teaser)
While PCA is often introduced as a means for finding projections that explain the
most possible variance, and estimated using SVD, PCA also can be formulated as
a probabilistic generative model:

p(zi) = N (zi|0, I) p(xi|zi) = N (xi|Wzi + µ, σ2I),

for i = 1, . . . , N , zi ∈ RK and xi ∈ RD, with K < D. This model has a
tractable marginal likelihood

p(xi) =

∫
p(xi|zi)p(zi)dzi) = N (xi|µ,M),

where M = WW⊤ + σ2I, and posterior distribution

p(zi|xi) = N (zi|M−1W⊤(x− µ), σ−2M).

Roweis (1998), Tipping & Bishop (1999)

Probabilistic PCA: Generative viewpoint

This is a K = 1 dimensional latent space for D = 2 dimensional data. Data is
generated by sampling a value of z, projecting it up into 2d space with a
x = Wz+ µ, and adding noise σ2. The rightmost plot shows the marginal
density on x.

Figure: Bishop (2006)

Auto-encoding variational Bayes

Variational Auto-Encoders

Now let’s consider a deep generative model which has a Gaussian prior, and a
likelihood defined by a deep net, e.g.

p(zi) = N (zi|0, I) p(xi|zi) = N (xi|fθ(zi), σ2I),

for i = 1, . . . , N . As before, assume zi ∈ RK and xi ∈ RD, with K < D.

Computing the marginal likelihood

Challenge: In this model, the marginal likelihood p(X) is completely intractable.

log p(X) =
N∑

i=1

log p(xi) =
N∑

i=1

log

∫
p(xi|zi, θ)p(zi)dzi

In the linear model, we had closed forms for both the marginal likelihood terms
p(xi) and the posterior distribution p(zi|xi).

• If we have a nonlinear fθ in p(xi|zi) = N (xi|fθ(zi), σ2I), neither of these
are the case.

Learning an approximate posterior

We will use an approximate inference approach known as Variational Bayes.

• Variational Bayes turns an inference problem into an optimization problem,
by defining an approximating family of distributions qϕ(z|x), parameterized
by ϕ

• Inference entails finding a value of ϕ that makes qϕ(z|x) “close” to the true
posterior pθ(z|x)

We now have two questions to answer:

1. What is a good choice of qϕ(z|x)?
2. What is an appropriate notion of “closeness” between distributions?

Amortized inference networks

What is a good choice of qϕ(z|x)? The typical choice is to use a Gaussian
distribution whose mean and variance are output by another deep network, with

qϕ(z|x) = N (z|µ(x), diag(σ(x)2))

where

• µ : RD → RK is a deep net which outputs a posterior mean, and

• σ : RD → RK is a deep net which outputs a posterior standard deviation.

Note that in practice the network for σ typically will output the log of the standard deviation,

which is then exponentiated, in order to enforce a positivity constraint.

High-level diagram: autoencoder interpretation

The Kullback-Leibler divergence

The Kullback-Leibler (KL) divergence is a natural notion of “close”:

DKL(qϕ(z|x)∥pθ(z|x)) =
∫

qϕ(z|x) log
qϕ(z|x)
pθ(z|x)

dz.

• DKL(qϕ∥pθ) ≥ 0 for all qϕ, pθ
• It takes a value 0 if and only if the two distributions are identical

• Note: it is not symmetric — it is a divergence measure, but not a distance.

The evidence lower bound (ELBO)
We can re-arrange the KL divergence to find a tractable objective,

DKL(qϕ(z|x)∥pθ(z|x)) =
∫

qϕ(z|x) log
qϕ(z|x)
pθ(z|x)

dz

=

∫
qϕ(z|x) log

pθ(x)qϕ(z|x)
pθ(x, z)

dz

=

∫
qϕ(z|x) log

qϕ(z|x)
pθ(x, z)

dz+

∫
qϕ(z|x) log pθ(x)dz

= −Eqϕ(z|x)

[
log

pθ(x, z)

qϕ(z|x)

]

︸ ︷︷ ︸
ELBO, L(x;ϕ,θ)

+ log pθ(x).

The ELBO is tractable in the sense that it only includes the joint distribution
pθ(x, z), not the (intractable) posterior p(z|x) or marginal likelihood pθ(x).

The evidence lower bound (ELBO)
We can re-arrange the KL divergence to find a tractable objective,

DKL(qϕ(z|x)∥pθ(z|x)) =
∫

qϕ(z|x) log
qϕ(z|x)
pθ(z|x)

dz

=

∫
qϕ(z|x) log

pθ(x)qϕ(z|x)
pθ(x, z)

dz

=

∫
qϕ(z|x) log

qϕ(z|x)
pθ(x, z)

dz+

∫
qϕ(z|x) log pθ(x)dz

= −Eqϕ(z|x)

[
log

pθ(x, z)

qϕ(z|x)

]

︸ ︷︷ ︸
ELBO, L(x;ϕ,θ)

+ log pθ(x).

The ELBO is tractable in the sense that it only includes the joint distribution
pθ(x, z), not the (intractable) posterior p(z|x) or marginal likelihood pθ(x).

The evidence lower bound (ELBO)
We can re-arrange the KL divergence to find a tractable objective,

DKL(qϕ(z|x)∥pθ(z|x)) =
∫

qϕ(z|x) log
qϕ(z|x)
pθ(z|x)

dz

=

∫
qϕ(z|x) log

pθ(x)qϕ(z|x)
pθ(x, z)

dz

=

∫
qϕ(z|x) log

qϕ(z|x)
pθ(x, z)

dz+

∫
qϕ(z|x) log pθ(x)dz

= −Eqϕ(z|x)

[
log

pθ(x, z)

qϕ(z|x)

]

︸ ︷︷ ︸
ELBO, L(x;ϕ,θ)

+ log pθ(x).

The ELBO is tractable in the sense that it only includes the joint distribution
pθ(x, z), not the (intractable) posterior p(z|x) or marginal likelihood pθ(x).

The evidence lower bound (ELBO)
We can re-arrange the KL divergence to find a tractable objective,

DKL(qϕ(z|x)∥pθ(z|x)) =
∫

qϕ(z|x) log
qϕ(z|x)
pθ(z|x)

dz

=

∫
qϕ(z|x) log

pθ(x)qϕ(z|x)
pθ(x, z)

dz

=

∫
qϕ(z|x) log

qϕ(z|x)
pθ(x, z)

dz+

∫
qϕ(z|x) log pθ(x)dz

= −Eqϕ(z|x)

[
log

pθ(x, z)

qϕ(z|x)

]

︸ ︷︷ ︸
ELBO, L(x;ϕ,θ)

+ log pθ(x).

The ELBO is tractable in the sense that it only includes the joint distribution
pθ(x, z), not the (intractable) posterior p(z|x) or marginal likelihood pθ(x).

The evidence lower bound (ELBO)
We can re-arrange the KL divergence to find a tractable objective,

DKL(qϕ(z|x)∥pθ(z|x)) =
∫

qϕ(z|x) log
qϕ(z|x)
pθ(z|x)

dz

=

∫
qϕ(z|x) log

pθ(x)qϕ(z|x)
pθ(x, z)

dz

=

∫
qϕ(z|x) log

qϕ(z|x)
pθ(x, z)

dz+

∫
qϕ(z|x) log pθ(x)dz

= −Eqϕ(z|x)

[
log

pθ(x, z)

qϕ(z|x)

]

︸ ︷︷ ︸
ELBO, L(x;ϕ,θ)

+ log pθ(x).

The ELBO is tractable in the sense that it only includes the joint distribution
pθ(x, z), not the (intractable) posterior p(z|x) or marginal likelihood pθ(x).

The evidence lower bound (ELBO)

Re-arranging, we have

log pθ(x) = L(x;ϕ, θ) +DKL(qϕ(z|x)∥pθ(z|x)).

This is a very useful relationship between the KL-divergence, the marginal
likelihood p(x), and the ELBO

L(x;ϕ, θ) = Eqϕ(z|x)

[
log

pθ(x, z)

qϕ(z|x)

]
.

The evidence lower bound (ELBO)

Re-arranging, we have

log pθ(x) = L(x;ϕ, θ) +DKL(qϕ(z|x)∥pθ(z|x)).

Notably, since

• DKL is lower-bounded by zero, and

• log pθ(x) is constant with respect to ϕ,

then, for the parameter ϕ, maximizing the ELBO is equivalent to minimizing
the KL divergence.

The evidence lower bound (ELBO)

What about θ? Again,

log pθ(x) = L(x;ϕ, θ) +DKL(qϕ(z|x)∥pθ(z|x)).

Our desired objective function is the marginal likelihood log pθ(x), which we wish
to maximize. However, again DKL ≥ 0 means we have

L(x;ϕ, θ) ≤ log pθ(x);

that is, the ELBO is a lower-bound on the log marginal likelihood, which we can
use as a surrogate and maximize instead.

Note: This lower bound is tight when the KL divergence is zero, i.e. if we have
learned the correct posterior!

Optimizing the ELBO

So far, we have seen that maximizing the ELBO

L(x;ϕ, θ) = Eqϕ(z|x)

[
log

pθ(x, z)

qϕ(z|x)

]

is a sensible objective function for both

• the generative parameters θ, and

• the inference network parameters ϕ.

But, we haven’t discussed how to maximize the ELBO.

We’ll use stochastic gradient descent, with one trick.

Estimators for gradients of expectations

Computing the gradient of the ELBO requires computing the gradient of an
expectation. Is that a problem?

Let’s step back from our problem for a moment and consider trying to compute
the derivative of the expectation of a simple scalar function f(x) under the
distribution p(x|θ),

∂

∂θ
Ep(x|θ)[f(x)].

We will make use of the identity

p(x|θ) ∂
∂θ

log p(x|θ) = ∂

∂θ
p(x|θ).

Score-function estimator
The following derivation leads to the so-called score-function estimator:

∂

∂θ
Ep(x|θ)[f(x)]

=
∂

∂θ

∫
p(x|θ)f(x)dx

=

∫
∂

∂θ
p(x|θ)f(x)dx

=

∫
f(x)

∂

∂θ
p(x|θ)dx

=

∫
f(x)p(x|θ) ∂

∂θ
log p(x|θ)dx

= Ep(x|θ)

[
f(x)

∂

∂θ
log p(x|θ)

]

Schulman et al., 2015

Score-function estimator
The following derivation leads to the so-called score-function estimator:

∂

∂θ
Ep(x|θ)[f(x)] =

∂

∂θ

∫
p(x|θ)f(x)dx

=

∫
∂

∂θ
p(x|θ)f(x)dx

=

∫
f(x)

∂

∂θ
p(x|θ)dx

=

∫
f(x)p(x|θ) ∂

∂θ
log p(x|θ)dx

= Ep(x|θ)

[
f(x)

∂

∂θ
log p(x|θ)

]

Schulman et al., 2015

Score-function estimator
The following derivation leads to the so-called score-function estimator:

∂

∂θ
Ep(x|θ)[f(x)] =

∂

∂θ

∫
p(x|θ)f(x)dx

=

∫
∂

∂θ
p(x|θ)f(x)dx

=

∫
f(x)

∂

∂θ
p(x|θ)dx

=

∫
f(x)p(x|θ) ∂

∂θ
log p(x|θ)dx

= Ep(x|θ)

[
f(x)

∂

∂θ
log p(x|θ)

]

Schulman et al., 2015

Score-function estimator
The following derivation leads to the so-called score-function estimator:

∂

∂θ
Ep(x|θ)[f(x)] =

∂

∂θ

∫
p(x|θ)f(x)dx

=

∫
∂

∂θ
p(x|θ)f(x)dx

=

∫
f(x)

∂

∂θ
p(x|θ)dx

=

∫
f(x)p(x|θ) ∂

∂θ
log p(x|θ)dx

= Ep(x|θ)

[
f(x)

∂

∂θ
log p(x|θ)

]

Schulman et al., 2015

Score-function estimator
The following derivation leads to the so-called score-function estimator:

∂

∂θ
Ep(x|θ)[f(x)] =

∂

∂θ

∫
p(x|θ)f(x)dx

=

∫
∂

∂θ
p(x|θ)f(x)dx

=

∫
f(x)

∂

∂θ
p(x|θ)dx

=

∫
f(x)p(x|θ) ∂

∂θ
log p(x|θ)dx

= Ep(x|θ)

[
f(x)

∂

∂θ
log p(x|θ)

]

Schulman et al., 2015

Score-function estimator
The following derivation leads to the so-called score-function estimator:

∂

∂θ
Ep(x|θ)[f(x)] =

∂

∂θ

∫
p(x|θ)f(x)dx

=

∫
∂

∂θ
p(x|θ)f(x)dx

=

∫
f(x)

∂

∂θ
p(x|θ)dx

=

∫
f(x)p(x|θ) ∂

∂θ
log p(x|θ)dx

= Ep(x|θ)

[
f(x)

∂

∂θ
log p(x|θ)

]

Schulman et al., 2015

Score-function estimator

That identity, and its Monte Carlo approximation,

∂

∂θ
Ep(x|θ)[f(x)] = Ep(x|θ)

[
f(x)

∂

∂θ
log p(x|θ)

]

≈ 1

S

S∑

i=1

f(x(s))
∂

∂θ
log p(x(s)|θ), for x(s) ∼ p(x|θ)

holds even if f(x) is non-differentiable, or x is discrete!

Unfortunately, it is often too high-variance to be useful, requiring many, many
samples.

Problem: both the gradient, and the expectation, involved the same variable θ.

Schulman et al., 2015

Score-function estimator

That identity, and its Monte Carlo approximation,

∂

∂θ
Ep(x|θ)[f(x)] = Ep(x|θ)

[
f(x)

∂

∂θ
log p(x|θ)

]

≈ 1

S

S∑

i=1

f(x(s))
∂

∂θ
log p(x(s)|θ), for x(s) ∼ p(x|θ)

holds even if f(x) is non-differentiable, or x is discrete!

Unfortunately, it is often too high-variance to be useful, requiring many, many
samples.

Problem: both the gradient, and the expectation, involved the same variable θ.

Schulman et al., 2015

Pathwise derivative estimator

Consider an alternative setting in which we have a separate random variable
ϵ ∼ p(ϵ), and x = x(θ, ϵ) is a deterministic function, e.g.

∂

∂θ
Ep(ϵ)[f(x(θ, ϵ))]

=
∂

∂θ

∫
p(ϵ)f(x(θ, ϵ))dx

=

∫
p(ϵ)

∂

∂θ
f(x(θ, ϵ))dx

= Ep(ϵ)

[
∂

∂θ
f(x(θ, ϵ))

]

.

Here, the derivative of the expectation is the expectation of the derivative!

• While this does require f(·) and x(θ, ϵ) to be differentiable, it has the
advantage of leading to much lower-variance Monte Carlo estimators.

Schulman et al., 2015

Pathwise derivative estimator

Consider an alternative setting in which we have a separate random variable
ϵ ∼ p(ϵ), and x = x(θ, ϵ) is a deterministic function, e.g.

∂

∂θ
Ep(ϵ)[f(x(θ, ϵ))] =

∂

∂θ

∫
p(ϵ)f(x(θ, ϵ))dx

=

∫
p(ϵ)

∂

∂θ
f(x(θ, ϵ))dx

= Ep(ϵ)

[
∂

∂θ
f(x(θ, ϵ))

]

.

Here, the derivative of the expectation is the expectation of the derivative!

• While this does require f(·) and x(θ, ϵ) to be differentiable, it has the
advantage of leading to much lower-variance Monte Carlo estimators.

Schulman et al., 2015

Pathwise derivative estimator

Consider an alternative setting in which we have a separate random variable
ϵ ∼ p(ϵ), and x = x(θ, ϵ) is a deterministic function, e.g.

∂

∂θ
Ep(ϵ)[f(x(θ, ϵ))] =

∂

∂θ

∫
p(ϵ)f(x(θ, ϵ))dx

=

∫
p(ϵ)

∂

∂θ
f(x(θ, ϵ))dx

= Ep(ϵ)

[
∂

∂θ
f(x(θ, ϵ))

]

.

Here, the derivative of the expectation is the expectation of the derivative!

• While this does require f(·) and x(θ, ϵ) to be differentiable, it has the
advantage of leading to much lower-variance Monte Carlo estimators.

Schulman et al., 2015

Pathwise derivative estimator

Consider an alternative setting in which we have a separate random variable
ϵ ∼ p(ϵ), and x = x(θ, ϵ) is a deterministic function, e.g.

∂

∂θ
Ep(ϵ)[f(x(θ, ϵ))] =

∂

∂θ

∫
p(ϵ)f(x(θ, ϵ))dx

=

∫
p(ϵ)

∂

∂θ
f(x(θ, ϵ))dx

= Ep(ϵ)

[
∂

∂θ
f(x(θ, ϵ))

]
.

Here, the derivative of the expectation is the expectation of the derivative!

• While this does require f(·) and x(θ, ϵ) to be differentiable, it has the
advantage of leading to much lower-variance Monte Carlo estimators.

Schulman et al., 2015

Pathwise derivative estimator

Consider an alternative setting in which we have a separate random variable
ϵ ∼ p(ϵ), and x = x(θ, ϵ) is a deterministic function, e.g.

∂

∂θ
Ep(ϵ)[f(x(θ, ϵ))] =

∂

∂θ

∫
p(ϵ)f(x(θ, ϵ))dx

=

∫
p(ϵ)

∂

∂θ
f(x(θ, ϵ))dx

= Ep(ϵ)

[
∂

∂θ
f(x(θ, ϵ))

]
.

Here, the derivative of the expectation is the expectation of the derivative!

• While this does require f(·) and x(θ, ϵ) to be differentiable, it has the
advantage of leading to much lower-variance Monte Carlo estimators.

Schulman et al., 2015

Estimating gradients of the ELBO

Now, back to our ELBO. First, we will further decompose it as

L(x;ϕ, θ) = Eqϕ(z|x)

[
log

pθ(x, z)

qϕ(z|x)

]

= Eqϕ(z|x)[log pθ(x|z) + log p(z)− log qϕ(z|x)]

= Eqϕ(z|x)[log pθ(x|z)] + Eqϕ(z|x)

[
log

p(z)

qϕ(z|x)

]

= Eqϕ(z|x)[log pθ(x|z)]︸ ︷︷ ︸
reconstruction term

−DKL(qϕ(z|x)∥p(z))︸ ︷︷ ︸
regularization term

You will often see the ELBO written this way. This is (partially) because
DKL(qϕ(z|x)∥p(z)) can often be computed in closed form.

Kingma & Welling, 2014

Estimating gradients of the ELBO

Now, back to our ELBO. First, we will further decompose it as

L(x;ϕ, θ) = Eqϕ(z|x)

[
log

pθ(x, z)

qϕ(z|x)

]

= Eqϕ(z|x)[log pθ(x|z) + log p(z)− log qϕ(z|x)]

= Eqϕ(z|x)[log pθ(x|z)] + Eqϕ(z|x)

[
log

p(z)

qϕ(z|x)

]

= Eqϕ(z|x)[log pθ(x|z)]︸ ︷︷ ︸
reconstruction term

−DKL(qϕ(z|x)∥p(z))︸ ︷︷ ︸
regularization term

You will often see the ELBO written this way. This is (partially) because
DKL(qϕ(z|x)∥p(z)) can often be computed in closed form.

Kingma & Welling, 2014

Estimating gradients of the ELBO

Now, back to our ELBO. First, we will further decompose it as

L(x;ϕ, θ) = Eqϕ(z|x)

[
log

pθ(x, z)

qϕ(z|x)

]

= Eqϕ(z|x)[log pθ(x|z) + log p(z)− log qϕ(z|x)]

= Eqϕ(z|x)[log pθ(x|z)] + Eqϕ(z|x)

[
log

p(z)

qϕ(z|x)

]

= Eqϕ(z|x)[log pθ(x|z)]︸ ︷︷ ︸
reconstruction term

−DKL(qϕ(z|x)∥p(z))︸ ︷︷ ︸
regularization term

You will often see the ELBO written this way. This is (partially) because
DKL(qϕ(z|x)∥p(z)) can often be computed in closed form.

Kingma & Welling, 2014

Estimating gradients of the ELBO

Let’s look at the reconstruction term in the ELBO, Eqϕ(z|x)[log pθ(x|z)].
• Gradients ∇θ: not a problem,

∇θEqϕ(z|x)[log pθ(x|z)] = Eqϕ(z|x)[∇θ log pθ(x|z)]

• Gradients ∇ϕ: ???

We will use the reparameterization trick: define a function gϕ(ϵ,x) and
distribution p(ϵ) such that if

ϵ ∼ p(ϵ), z̃ = gϕ(ϵ,x)

then z̃ ∼ qϕ(z|x).

Kingma & Welling, 2014

Reparameterization trick

Define a function gϕ(ϵ,x) and distribution p(ϵ) such that if

ϵ ∼ p(ϵ), z̃ = gϕ(ϵ,x)

then z̃ ∼ qϕ(z|x).

Example: suppose

qϕ(z|x) = N (z|µ(x), diag(σ(x)2)).
Then let

p(ϵ) = N (0, I)

z̃ = gϕ(ϵ,x) = µ(x) + σ(x)⊙ ϵ.

Similar expressions hold for many common probability densities — we are not
limited to Gaussian latent variables.

Kingma & Welling, 2014

Reparameterization trick

Define a function gϕ(ϵ,x) and distribution p(ϵ) such that if

ϵ ∼ p(ϵ), z̃ = gϕ(ϵ,x)

then z̃ ∼ qϕ(z|x).

Example: suppose

qϕ(z|x) = N (z|µ(x), diag(σ(x)2)).
Then let

p(ϵ) = N (0, I)

z̃ = gϕ(ϵ,x) = µ(x) + σ(x)⊙ ϵ.

Similar expressions hold for many common probability densities — we are not
limited to Gaussian latent variables.

Kingma & Welling, 2014

Reparameterization trick

Using this “reparameterization trick”, we can compute the gradient

∇ϕ,θEqϕ(z|x)[log pθ(x|z)] = ∇ϕ,θEp(ϵ)[log pθ(x|z̃ = gϕ(ϵ,x))]

= Ep(ϵ)[∇ϕ,θ log pθ(x|z̃ = gϕ(ϵ,x))]

This can be computed by automatic differentiation.

Note that if pθ(x|z) is Gaussian, e.g. N (x|fθ(z), σ2I), then this term involves
differentiating the squared error loss

log pθ(x|z̃ = gϕ(ϵ,x)) = − 1

2σ2
∥x− fθ(gϕ(ϵ,x))∥22 + const.

Kingma & Welling, 2014

Mini-batch gradient estimation

The last missing step is considering mini-batch gradient updates. Since

log pθ(X) =
N∑

i=1

log pθ(xi) ≥
N∑

i=1

L(xi;ϕ, θ)

then we can use a minibatch estimator

N∑

i=1

L(xi;ϕ, θ) ≈
N

M

M∑

j=1

L(xj;ϕ, θ),

where xj are M random samples from the dataset.

Note: This is unbiased if xi are i.i.d. samples from the underlying p̃(x).

Summary
A variational autoencoder is

• a deep generative model for data x,
with a latent variable z

• . . . which takes the form

pθ(X,Z) =
N∏

i=1

pθ(xi|zi)p(zi)

• . . . trained jointly with an
approximation to the posterior

qϕ(zi|xi) ≈ pθ(zi|xi)

• . . . by maximizing an ELBO.

Figure: Kingma & Welling (2019)

Examples

The “hello world” of machine learning

MNIST dataset.

• Encoder: feed-forward
network, Gaussian posterior

• Decoder: feed-forward
network, Bernoulli or Gaussian
likelihood

• 2-dimensional latent space z

Plot shows the mean of the decoder
for different values of the latent z.

Kingma & Welling (2014)

MNIST: latent space comparison

• Non-obvious question: how big should the latent space be?

Kingma & Welling (2014)

Convolutional networks

CelebA dataset.

• Encoder: Fully convolutional
network, Gaussian posterior

• Decoder: Fully convolutional
network, Gaussian likelihood

Note: recent papers with different
architectures and likelihoods can
produce more photorealistic random
samples.

Lamb et al. (2016)

Perturbations in latent space

• Uses: We can identify directions in the latent space that correspond to
properties, and manipulate them

White (2016)

A sequence model: SketchRNN

• Encoder: bi-directional LSTM, Gaussian posterior

• Decoder: LSTM that outputs parameters of a distribution over 5-tuples
(∆i,∆j, “pen up”, “pen down”, “stop”)

Ha & Eck (2017)

A sequence model: SketchRNN

• Uses: Reconstruction, generation, latent space manipulation, . . .
Ha & Eck (2017)

A sequence model: SketchRNN

• Uses: Automatic completion of partial sketches
Ha & Eck (2017)

Sequence model for molecules

• Molecules are complex, discrete objects, but can be described succinctly as
strings in a formal language

• Uses: Lift discrete optimization to a continuous latent space
Gomez-Bombarelli et al. (2018)

Application:

Latent space optimisation

Bayesian optimization cartoonBayesian optimization

objective
1 Get initial sample.

2 Fit a model to the data:

p(y |x, Dn) .

3 Select data collection strategy:

↵(x) = Ep(y |x,Dn)[U(y |x, Dn)] .

4 Optimize acquisition function ↵(x).

5 Collect data and update model.

6 Repeat!

5 / 142

Figures: Miguel Hernández-Lobato

Bayesian optimization cartoonBayesian optimization

objective
objective 1 Get initial sample.

2 Fit a model to the data:

p(y |x, Dn) .

3 Select data collection strategy:

↵(x) = Ep(y |x,Dn)[U(y |x, Dn)] .

4 Optimize acquisition function ↵(x).

5 Collect data and update model.

6 Repeat!

6 / 142

Figures: Miguel Hernández-Lobato

Bayesian optimization cartoonBayesian optimization

Objective
1 Get initial sample.

2 Fit a model to the data:

p(y |x, Dn) .

3 Select data collection strategy:

↵(x) = Ep(y |x,Dn)[U(y |x, Dn)] .

4 Optimize acquisition function ↵(x).

5 Collect data and update model.

6 Repeat!

9 / 142

Figures: Miguel Hernández-Lobato

Bayesian optimization cartoonBayesian optimization

Objective

Acquisition Function �(x)

1 Get initial sample.

2 Fit a model to the data:

p(y |x, Dn) .

3 Select data collection strategy:

↵(x) = Ep(y |x,Dn)[U(y |x, Dn)] .

4 Optimize acquisition function ↵(x).

5 Collect data and update model.

6 Repeat!

10 / 142

Figures: Miguel Hernández-Lobato

Bayesian optimization cartoonBayesian optimization

Objective

Acquisition Function �(x)

1 Get initial sample.

2 Fit a model to the data:

p(y |x, Dn) .

3 Select data collection strategy:

↵(x) = Ep(y |x,Dn)[U(y |x, Dn)] .

4 Optimize acquisition function ↵(x).

5 Collect data and update model.

6 Repeat!

11 / 142

Figures: Miguel Hernández-Lobato

Bayesian optimization cartoonBayesian optimization

Objective

Acquisition Function �(x)

1 Get initial sample.

2 Fit a model to the data:

p(y |x, Dn) .

3 Select data collection strategy:

↵(x) = Ep(y |x,Dn)[U(y |x, Dn)] .

4 Optimize acquisition function ↵(x).

5 Collect data and update model.

6 Repeat!

12 / 142

Figures: Miguel Hernández-Lobato

Bayesian optimization cartoonBayesian optimization

Objective

Acquisition Function �(x)

1 Get initial sample.

2 Fit a model to the data:

p(y |x, Dn) .

3 Select data collection strategy:

↵(x) = Ep(y |x,Dn)[U(y |x, Dn)] .

4 Optimize acquisition function ↵(x).

5 Collect data and update model.

6 Repeat!

14 / 142

Figures: Miguel Hernández-Lobato

Bayesian optimization cartoonBayesian optimization

Objective

Acquisition Function �(x)

1 Get initial sample.

2 Fit a model to the data:

p(y |x, Dn) .

3 Select data collection strategy:

↵(x) = Ep(y |x,Dn)[U(y |x, Dn)] .

4 Optimize acquisition function ↵(x).

5 Collect data and update model.

6 Repeat!

16 / 142

Figures: Miguel Hernández-Lobato

Bayesian optimization cartoonBayesian optimization

Objective

Acquisition Function �(x)

1 Get initial sample.

2 Fit a model to the data:

p(y |x, Dn) .

3 Select data collection strategy:

↵(x) = Ep(y |x,Dn)[U(y |x, Dn)] .

4 Optimize acquisition function ↵(x).

5 Collect data and update model.

6 Repeat!

18 / 142

Figures: Miguel Hernández-Lobato

Bayesian optimization cartoonBayesian optimization

Objective

Acquisition Function �(x)

1 Get initial sample.

2 Fit a model to the data:

p(y |x, Dn) .

3 Select data collection strategy:

↵(x) = Ep(y |x,Dn)[U(y |x, Dn)] .

4 Optimize acquisition function ↵(x).

5 Collect data and update model.

6 Repeat!

20 / 142

Figures: Miguel Hernández-Lobato

Bayesian optimization cartoonBayesian optimization

Objective

Acquisition Function �(x)

1 Get initial sample.

2 Fit a model to the data:

p(y |x, Dn) .

3 Select data collection strategy:

↵(x) = Ep(y |x,Dn)[U(y |x, Dn)] .

4 Optimize acquisition function ↵(x).

5 Collect data and update model.

6 Repeat!

22 / 142

Figures: Miguel Hernández-Lobato

Bayesian optimization cartoonBayesian optimization

Objective

Acquisition Function �(x)

1 Get initial sample.

2 Fit a model to the data:

p(y |x, Dn) .

3 Select data collection strategy:

↵(x) = Ep(y |x,Dn)[U(y |x, Dn)] .

4 Optimize acquisition function ↵(x).

5 Collect data and update model.

6 Repeat!

24 / 142

Figures: Miguel Hernández-Lobato

Bayesian optimization cartoonBayesian optimization

Objective

Acquisition Function �(x)

1 Get initial sample.

2 Fit a model to the data:

p(y |x, Dn) .

3 Select data collection strategy:

↵(x) = Ep(y |x,Dn)[U(y |x, Dn)] .

4 Optimize acquisition function ↵(x).

5 Collect data and update model.

6 Repeat!

26 / 142

Figures: Miguel Hernández-Lobato

Representation: Molecules as text

CC(C)(C)c1ccc2occ(CC(=O)Nc3ccccc3F)c2c1

C[C@@H]1CC(Nc2cncc(-c3nncn3C)c2)C[C@@H](C)C1

N#Cc1ccc(-c2ccc(O[C@@H](C(=O)N3CCCC3)c3ccccc3)cc2)cc1

CCOC(=O)[C@@H]1CCCN(C(=O)c2nc(-c3ccc(C)cc3)n3c2CCCCC3)C1

O

O

NH

F

NH

N

NN

N

N

O

O
N

O
O

N

O

NN

Variational autoencoder for “text”

Grammar Variational Autoencoder
O

OH

'c1ccccc1'

smiles

chain
 ...

chain

branched
atom

atom

aromatic
organic

'c'

ringbond

digit

'1'

branched
atom

smiles chain
chain branched

atom

chain branched
atom

3

atom, ringbond branched
atom

aromatic
organic atom

'c' aromatic
organic

2

ringbond digit
digit '1'

4 5
form parse tree extract rules convert to 1-hot vectors

input SMILES

map to latent space
6

chain,
 ...

 ...
chain branched atom

smiles chain
chain chain, branched atom

atom, ringbond branched atom
atom branched atom
aromatic organic atom
aliphatic organic atom

ringbond digit

digit '1'

'c' aromatic organic
'C' aliphatic organic
'N' aliphatic organic

digit '2'

1
SMILES grammar

Figure 1. The encoder of the GVAE. We denote the start rule in blue and all rules that decode to terminal in green. See text for details.

tion rules. We describe how the GVAE works using a sim-
ple example.

Encoding. Consider a subset of the SMILES grammar as
shown in Figure 1, box 1 . These are the possible pro-
duction rules that can be used for constructing a molecule.
Imagine we are given as input the SMILES string for ben-
zene: ‘c1ccccc1’. Figure 1, box 2 shows this molecule.
To encode this molecule into a continuous latent represen-
tation we begin by using the SMILES grammar to parse this
string into a parse tree (partially shown in box 3). This
tree describes how ‘c1ccccc1’ is generated by the grammar.
We decompose this tree into a sequence of production rules
by performing a pre-order traversal on the branches of the
parse tree going from left-to-right, shown in box 4 . We
convert these rules into 1-hot indicator vectors, where each
dimension corresponds to a rule in the SMILES grammar,
box 5 . Letting K denote the total number of production
rules in the entire grammar, and T (X) the number of pro-
ductions applied in total to generate the output string for X,
the collection of 1-hot vectors can be written as a T (X)⇥K
matrix X. We use a deep convolutional neural network to
map this collection of 1-hot vectors X to a continuous la-
tent vector z The architecture of the encoding network is
described in the supplementary material.

Decoding. We now describe how we map continuous
vectors back to a sequence of production rules (and thus
SMILES strings). Crucially we construct the decoder so
that at any time while we are decoding this sequence the
decoder will only be allowed to select a subset of produc-
tion rules that are ‘valid’. This will cause the decoder to
only produce valid parse sequences from the grammar.

We begin by passing the continuous vector z through a re-
current neural network which produces a set of unnormal-
ized log probability vectors (or ‘logits’), shown in Figure 2,
box 1 and 2 . Exactly like the 1-hot vectors produced
by the encoder, each dimension of the logit vectors cor-
responds to a production rule in the grammar. We can
again write these collection of logit vectors as a matrix
F 2 RTmax⇥K , where Tmax is the maximum number of

timesteps (production rules) allowed by the decoder. We
will use these vectors in the rest of the decoder to select
production rules.

To ensure that any sequence of production rules generated
from the decoder is valid, we keep track of the state of
the parsing using a last-in first-out (LIFO) stack. This is
shown in Figure 2, box 3 . At the beginning, every valid
parse from the grammar must start with the start symbol:
smiles, which is placed on the stack. Next we pop off
whatever non-terminal symbol that was placed last on the
stack (in this case smiles), and we use it to mask out the
invalid dimensions of the logit vector. Formally, for ev-
ery non-terminal ↵ we define a fixed binary mask vector
m↵ 2 [0, 1]K . This takes the value ‘1’ for all indices in
1, . . . , K corresponding to production rules that have ↵ on
their left-hand-side.

In this case the only production rule in the grammar begin-
ning with smiles is the first so we zero-out every dimension
except the first, shown in Figure 2, box 4 . We then sam-
ple from the remaining unmasked rules, using their values
in the logit vector. To sample from this masked logit at any
timestep t we form the following masked distribution:

p(xt = k|↵, z) =
m↵,k exp(ftk)

PK
j=1 m↵,k exp(ftj)

, (2)

where ftk is the (t, k)-element of the logit matrix F. As
only the first rule is unmasked we will select this rule
smiles! chain as the first rule in our generated sequence.

Now the next rule must begin with chain, so we push it onto
the stack (Figure 2, box 3). We sample this non-terminal
and again use it to mask out all of the rules that cannot be
applied in the current logit vector. We then sample a valid
rule from this logit vector: chain! chain, branched atom.
Just as before we push the non-terminals on the right-hand
side of this rule onto the stack, adding the individual non-
terminals in from right to left, such that the leftmost non-
terminal is on the top of the stack. For the next state we
again pop the last rule placed on the stack and mask the
current logit, etc. This process continues until the stack
is empty or we reach the maximum number of logit vec-

q(z |) p(| z)

Grammar Variational Autoencoder
O

OH

'c1ccccc1'

smiles

chain
 ...

chain

branched
atom

atom

aromatic
organic

'c'

ringbond

digit

'1'

branched
atom

smiles chain
chain branched

atom

chain branched
atom

3

atom, ringbond branched
atom

aromatic
organic atom

'c' aromatic
organic

2

ringbond digit
digit '1'

4 5
form parse tree extract rules convert to 1-hot vectors

input SMILES

map to latent space
6

chain,
 ...

 ...
chain branched atom

smiles chain
chain chain, branched atom

atom, ringbond branched atom
atom branched atom
aromatic organic atom
aliphatic organic atom

ringbond digit

digit '1'

'c' aromatic organic
'C' aliphatic organic
'N' aliphatic organic

digit '2'

1
SMILES grammar

Figure 1. The encoder of the GVAE. We denote the start rule in blue and all rules that decode to terminal in green. See text for details.

tion rules. We describe how the GVAE works using a sim-
ple example.

Encoding. Consider a subset of the SMILES grammar as
shown in Figure 1, box 1 . These are the possible pro-
duction rules that can be used for constructing a molecule.
Imagine we are given as input the SMILES string for ben-
zene: ‘c1ccccc1’. Figure 1, box 2 shows this molecule.
To encode this molecule into a continuous latent represen-
tation we begin by using the SMILES grammar to parse this
string into a parse tree (partially shown in box 3). This
tree describes how ‘c1ccccc1’ is generated by the grammar.
We decompose this tree into a sequence of production rules
by performing a pre-order traversal on the branches of the
parse tree going from left-to-right, shown in box 4 . We
convert these rules into 1-hot indicator vectors, where each
dimension corresponds to a rule in the SMILES grammar,
box 5 . Letting K denote the total number of production
rules in the entire grammar, and T (X) the number of pro-
ductions applied in total to generate the output string for X,
the collection of 1-hot vectors can be written as a T (X)⇥K
matrix X. We use a deep convolutional neural network to
map this collection of 1-hot vectors X to a continuous la-
tent vector z The architecture of the encoding network is
described in the supplementary material.

Decoding. We now describe how we map continuous
vectors back to a sequence of production rules (and thus
SMILES strings). Crucially we construct the decoder so
that at any time while we are decoding this sequence the
decoder will only be allowed to select a subset of produc-
tion rules that are ‘valid’. This will cause the decoder to
only produce valid parse sequences from the grammar.

We begin by passing the continuous vector z through a re-
current neural network which produces a set of unnormal-
ized log probability vectors (or ‘logits’), shown in Figure 2,
box 1 and 2 . Exactly like the 1-hot vectors produced
by the encoder, each dimension of the logit vectors cor-
responds to a production rule in the grammar. We can
again write these collection of logit vectors as a matrix
F 2 RTmax⇥K , where Tmax is the maximum number of

timesteps (production rules) allowed by the decoder. We
will use these vectors in the rest of the decoder to select
production rules.

To ensure that any sequence of production rules generated
from the decoder is valid, we keep track of the state of
the parsing using a last-in first-out (LIFO) stack. This is
shown in Figure 2, box 3 . At the beginning, every valid
parse from the grammar must start with the start symbol:
smiles, which is placed on the stack. Next we pop off
whatever non-terminal symbol that was placed last on the
stack (in this case smiles), and we use it to mask out the
invalid dimensions of the logit vector. Formally, for ev-
ery non-terminal ↵ we define a fixed binary mask vector
m↵ 2 [0, 1]K . This takes the value ‘1’ for all indices in
1, . . . , K corresponding to production rules that have ↵ on
their left-hand-side.

In this case the only production rule in the grammar begin-
ning with smiles is the first so we zero-out every dimension
except the first, shown in Figure 2, box 4 . We then sam-
ple from the remaining unmasked rules, using their values
in the logit vector. To sample from this masked logit at any
timestep t we form the following masked distribution:

p(xt = k|↵, z) =
m↵,k exp(ftk)

PK
j=1 m↵,k exp(ftj)

, (2)

where ftk is the (t, k)-element of the logit matrix F. As
only the first rule is unmasked we will select this rule
smiles! chain as the first rule in our generated sequence.

Now the next rule must begin with chain, so we push it onto
the stack (Figure 2, box 3). We sample this non-terminal
and again use it to mask out all of the rules that cannot be
applied in the current logit vector. We then sample a valid
rule from this logit vector: chain! chain, branched atom.
Just as before we push the non-terminals on the right-hand
side of this rule onto the stack, adding the individual non-
terminals in from right to left, such that the leftmost non-
terminal is on the top of the stack. For the next state we
again pop the last rule placed on the stack and mask the
current logit, etc. This process continues until the stack
is empty or we reach the maximum number of logit vec-

Encoder
(inference)

Decoder
(generative model)

Sequence
Input

Sequence
Output

μ, Σ
continuous
latent space

predictor property estimate

Gómez-Bombarelli et al, 2018

A deep generative model for molecules
Sampled molecules have statistics similar to those of real molecules:

Nearby latent representations decode into similar molecules:

34 / 142

Sampled molecules have statistics similar to those of real molecules:

Nearby latent representations decode into similar molecules:

34 / 142

• Sampled molecules
have statistics similar
to real molecules

• Nearby latent
representations
decode into similar
molecules

Gómez-Bombarelli et al, 2018

A deep generative model for molecules

Easy to add a surrogate model from latent space to property.

Gradient-based optimization can be used in latent space.

36 / 142

• Learn a “map” for
molecules

• Now it is possible to apply
continuous optimization
methods (including
Bayesian optimization)

• This can also be used for
local, gradient-based
optimization

Gómez-Bombarelli et al, 2018

Searching for new drugsSearching for new drugs

Gómez-Bombarelli et al, 2018

Searching for new drugsSearching for new drugs

Brochu et al., 2010; Snoek et al., 2013; Gardner et al., 2014

Searching in latent spaceSearching in latent space

Searching in latent spaceSearching in latent space

Searching in latent spaceSearching in latent space

Searching in latent spaceSearching in latent space

Searching in latent spaceSearching in latent space

Searching in latent spaceSearching in latent space

Example: OLED

Local optimization of OLED molecules

We optimize the delayed fluorescence decay rate TADF, as estimated from
TDDFT computations on 150,000 molecules.

N

N N

N
N

N

N
N

N

N

N

N

N

N

N

O

N

kNEURAL NETWORK (�s-1) = 0.067 0.795 0.804

kTDDFT (�s-1) = 0.080 0.000 0.5800.004

3 4 5 6

� � �
LA

TE
NT

SP
AC

E
M

O
LE

CU
LA

R
SP

AC
E

ENCODER DECODER

OPTIMIZATIONESTIMATED

CALCULATED

However, many of the sampled SMILES strings are not valid molecules.

37 / 142

Example: OLED

• Optimized fluorescence decay rate, estimated from
computations on 150k molecules

• Challenge: many “decoded” SMILES are not valid…

Gómez-Bombarelli et al, 2018

Local optimization of OLED molecules

We optimize the delayed fluorescence decay rate TADF, as estimated from
TDDFT computations on 150,000 molecules.

However, many of the sampled SMILES strings are not valid molecules.

38 / 142

Gómez-Bombarelli et al, 2018

Application:

Semi-supervised learning

Learning with labels

So far, we have only considered unlabelled data x.
Question: What should we do with labeled pairs (xi, yi)?

Learning with labels

Let’s take MNIST as a running example.

• Images of handwritten digits xi

• Digit labels yi ∈ 0, . . . , 9

• The 2d learned latent space is
shown again on the right.

Reminder: this was trained on an
unsupervised model, that only had
access to images xi!

Defining a joint generative model

We’re going to define a generative model over the joint distribution x, y, with a
latent variable z.

• Question: How should we factorize pθ(x, y, z)?

• How do we actually draw images? Generally, it’s helpful to mirror the
real-world causal direction as much as possible.

A reasonable choice:

pθ(x, y, z) = pθ(x|y, z)p(z)p(y)

“First, independently pick a digit y, and a latent style vector z. Then, go draw
the corresponding character x.”

Defining a joint generative model

We’re going to define a generative model over the joint distribution x, y, with a
latent variable z.

• Question: How should we factorize pθ(x, y, z)?

• How do we actually draw images? Generally, it’s helpful to mirror the
real-world causal direction as much as possible.

A reasonable choice:

pθ(x, y, z) = pθ(x|y, z)p(z)p(y)

“First, independently pick a digit y, and a latent style vector z. Then, go draw
the corresponding character x.”

Defining a joint generative model

We’re going to define a generative model over the joint distribution x, y, with a
latent variable z.

• Question: How should we factorize pθ(x, y, z)?

• How do we actually draw images? Generally, it’s helpful to mirror the
real-world causal direction as much as possible.

A reasonable choice:

pθ(x, y, z) = pθ(x|y, z)p(z)p(y)

“First, independently pick a digit y, and a latent style vector z. Then, go draw
the corresponding character x.”

Generative model and inference networks

We’ll mostly follow the same structure used before, but now with an extra
random variable y.

Generative model:

p(z) = N (z|0, I)
p(y) = Discrete(y|π)

pθ(x|y, z) = f(x; y, z, θ)

where π is a prior probability vector, and f is an appropriate probability density
(e.g. Gaussian) with parameters given by a nonlinear transformation of z, y.

Generative model and inference networks

For the inference network, we also need to choose a factorization.

Approximate posterior:

q(y|x) = Discrete(y|πϕ(x))

q(z|x, y) = N (z|µϕ(x, y), diag(σϕ(x, y)
2))

where πϕ, µϕ, and σϕ are all deep networks.

Questions: Why infer y first? Why does z depend on both x and y?

Kingma et al. (2014)

Semi-supervised setting

In the semi-supervised setting, we assume that the labels y are known for
some instances, but not for others.

This effectively partitions the dataset into

• N s image, label pairs (xi, yi)

• Nu unlabelled images xj.

We’ll treat these two sets of data separately, looking at their per-datapoint
contributions to an ELBO.

Kingma et al. (2014)

Supervised ELBO

Let’s start with the supervised case, focusing only on instances x where y is
known, with

L(x, y;ϕ, θ) = Eqϕ(z|x,y)[log pθ(x, y, z)− log qϕ(z|x, y)].

This ELBO is essentially identical to the one we derived before, aside from the
fact that our observed “data” now also includes y.

L(x, y;ϕ, θ) ≤ log pθ(x, y)

Kingma et al. (2014)

Unsupervised ELBO

In the unsupervised case, we do not know y, and need to

U(x;ϕ, θ) = Eqϕ(y|x)qϕ(z|x,y)[log pθ(x, y, z)− log qϕ(y|x)− log qϕ(z|x, y)].

This ELBO is also essentially identical to the one we derived before, except
now our latent space also includes y.

U(x;ϕ, θ) ≤ log pθ(x)

Kingma et al. (2014)

Semi-supervised objective function
Putting these together, we can define an overall objective function

J =
Ns∑

i=1

L(xi, yi;ϕ, θ) +
Nu∑

j=1

U(xj;ϕ, θ).

There’s just one thing odd about this objective: the supervised terms do not
include the quantity we would traditionally call a classifier,

qϕ(y|x) = Discrete(y|πϕ(x)),

which means the classifier network πϕ(x) is only estimated using the
unsupervised data xi.

This counterintuitive behaviour can be avoided by adding in an additional term

J̃ = J + α
Ns∑

i=1

log qϕ(yi|xi).

Check-in

• Question: Compared to the previous VAE, what do we think the latent
space z will look like?

• Question: What is the difference between training this model when fully
supervised, and learning ten independent VAEs (one per class)?

Class-conditional simulation

• First: the generated images do represent the target class.

• Second: the latent factor z seems to capture other independent variation in
a consistent manner.

Kingma et al. (2014)

Style transfer, or visual analogies

• Holding the random variable z
constant while modifying y
transfers style across classes

• Each row corresponds to a
fixed value of zi

• Each column past the first
shows the mean pθ(x|yk, zi),
for k = 0, . . . , 9

Kingma et al. (2014)

Street view house numbers data

• Same thing, on a potentially
more impressive dataset

• First column shows real data,
the rest show label-conditional
reconstructions

Kingma et al. (2014)

How good is the classifier?

• Kingma et al. (2014) report 3.33% test error on MNIST when using only
100 labels, i.e. 10 labels per class. . .

• . . . and down to 2.18% error for 3000 labels.

• Later work, Siddharth et al. (2017), uses different network architectures and
reaches 1.57% test error on 3000 total labels, which is fairly comparable to
looking at the full dataset.

The full MNIST dataset has 60k examples.

SVHN classification performance tells a similar story.

Extension:

Compositional models

From one digit to many digitsFrom one digit to many digits
Input Reconstruction Decomposition

M
M+N Count Error (%)

w/o MNIST w/ MNIST

0.1 85.45 (± 5.77) 76.33 (± 8.91)
0.5 93.27 (± 2.15) 80.27 (± 5.45)
1.0 99.81 (± 1.81) 84.79 (± 5.11)

Figure 6: Left: Example input multi-MNIST images and reconstructions. Top-Right: Decomposition
of Multi-MNIST images into constituent MNIST digits. Bottom-Right: Count accuracy over
different supervised set sizes M for given dataset size M + N = 82000.

Here, the generative model presumes the availability of individual MNIST-digit images, generating
combinations under sampled affine transformations. In the second experiment, we extend the above
model to now also incorporate the same pre-trained MNIST model from the previous section, which
allows the generative model to sample MNIST-digit images, while also being able to predict the
underlying digits. This also demonstrates how we can leverage compositionality of models: when
a complex model has a known simpler model as a substructure, the simpler model and its learned
weights can be dropped in directly.

The count accuracy errors across different supervised set sizes, reconstructions for a random set of
inputs, and the decomposition of a given set of inputs into their constituent individual digits, are
shown in Fig. 6. All reconstructions and image decompositions shown correspond to the nested-model
configuration. We observe that not only are we able to reliably infer the counts of the digits in the
given images, we are able to simultaneously reconstruct the inputs as well as its constituent parts.

4 Discussion and Conclusion

In this paper we introduce a framework for learning disentangled representations of data using
partially-specified graphical model structures and semi-supervised learning schemes in the domain of
variational autoencoders (VAEs). This is accomplished by defining hybrid generative models which
incorporate both structured graphical models and unstructured random variables in the same latent
space. We demonstrate the flexibility of this approach by applying it to a variety of different tasks
in the visual domain, and evaluate its efficacy at learning disentangled representations in a semi-
supervised manner, showing strong performance. Such partially-specified models yield recognition
networks that make predictions in an interpretable and disentangled space, constrained by the structure
provided by the graphical model and the weak supervision.

The framework is implemented as a PyTorch library [25], enabling the construction of stochastic
computation graphs which encode the requisite structure and computation. This provides another
direction to explore in the future — the extension of the stochastic computation graph framework to
probabilistic programming [8, 34, 35]. Probabilistic programs go beyond the presented framework to
permit more expressive models, incorporating recursive structures and higher-order functions. The
combination of such frameworks with neural networks has recently been studied in Le et al. [22] and
Ritchie et al. [28], indicating a promising avenue for further exploration.

Acknowledgements

This work was supported by the EPSRC, ERC grant ERC-2012-AdG 321162-HELIOS, EPSRC
grant Seebibyte EP/M013774/1, and EPSRC/MURI grant EP/N019474/1. BP was supported by The
Alan Turing Institute under the EPSRC grant EP/N510129/1. FW and NDG were supported under
DARPA PPAML through the U.S. AFRL under Cooperative Agreement FA8750-14-2-0006. FW was
additionally supported by Intel and DARPA D3M, under Cooperative Agreement FA8750-17-2-0093.

9

MNIST with (some) Supervision

(a) (b) (c) (d)

Figure 2: (a) Visual analogies for the MNIST data, with inferred style latent variable fixed and
the label varied. (b) Exploration in “style” space for a 2D latent gaussian random variable. Visual
analogies for the SVHN data when (c) fully supervised, and (d) partially supervised with just 100
labels/digit.

To train deep generative models in a semi-supervised manner, we need to incorporate labelled data126

into the variational bound. In a fully unsupervised setting, the contribution of a particular data127

point xi to the ELBO can be expressed, with minor adjustments of Equation (1), whose Monte-Carlo128

approximation samples latents z and y from the recognition distribution q�
�
z,y | xi

�
.129

L
�
✓, �;xi

�
= Eq�(z,y|xi)

"
log

p✓
�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (2)

By contrast, in the fully supervised setting the values y are treated as observed and become fixed130

inputs into the computation graph, instead of being sampled from q�. When the label y is observed131

along with the data, for fixed (xi,yi) pairs, the lower bound on the conditional log-marginal likelihood132

log p✓(x | y) is133

Lx|y
�
✓, �z;x

i,yi
�

= Eq�z (z|xi,yi)

"
log

p✓
�
xi | z,yi

�
p
�
z | yi

�

q�z (z | xi,yi)

#
. (3)

This quantity can be optimized directly to learn model parameters ✓ and �z simultaneously via SGD.134

However, it does not contain the encoder parameters �y . This difficulty was also encountered in a135

related context by Kingma et al. [17]. Their solution was to augment the loss function by including136

an explicit additional term for learning a classifier directly on the supervised points.137

Here we propose an alternative approach. We extend the model with an auxiliary variable ỹ with138

likelihood p(ỹ | y) = �ỹ(y) to define densities139

p(ỹ,y, z,x) = p(ỹ | y)p✓(x | y, z)p(y, z)

q(ỹ,y, z | x) = p(ỹ | y)q(y, z | x).

When we marginalize the ELBO for this model over ỹ, we recover the expression in Equation (2).140

Treating ỹ = yi as observed results in the supervised objective141

L
�
✓, �;xi

���
ỹ=yi = Eq�(z,y|xi)

"
�yi(y) log

p✓
�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (4)

Integration over an observed y is then replaced with evaluation of the ELBO and the density q�y at142

yi. A Monte Carlo estimator of Equation (4) can be constructed automatically for any factorization143

of q� by sampling latent variables z and weighting the resulting ELBO estimate by the conditional144

density terms q�y (y|·).145

Note that the exact functional form of the Monte Carlo estimator will vary depending on the146

dependency structure of q�
�
z,y | xi

�
. For example, for discrete y, choosing q�(z,y | x) =147

q�z (z | y,x)q�y (y | x), decomposes the problem into simultaneously learning a classifier148

q�y (y | x) alongside the generative model parameters ✓ and encoder q�z (z|x,y) which is condi-149

tioned on the selected class. The computation graph for a model with this factorization is shown in Fig-150

ure 1. In it, the value y of the distribution q�y (· | x) is observed, while the distribution q�z (· | x,y)151

4

z
(h

an
dw

rit
in

g
sty

le)

y (digit label)
Disentangled RepresentationStochastic Computation Graph for VAE

ε z

p

q λ

η

φ n

θ

z

p

q λ

η

φ n

θ

(a) (b) (c) (d)

Figure 2: (a) Visual analogies for the MNIST data, with inferred style latent variable fixed and
the label varied. (b) Exploration in “style” space for a 2D latent gaussian random variable. Visual
analogies for the SVHN data when (c) fully supervised, and (d) partially supervised with just 100
labels/digit.

To train deep generative models in a semi-supervised manner, we need to incorporate labelled data126

into the variational bound. In a fully unsupervised setting, the contribution of a particular data127

point xi to the ELBO can be expressed, with minor adjustments of Equation (1), whose Monte-Carlo128

approximation samples latents z and y from the recognition distribution q�
�
z,y | xi

�
.129

L
�
✓, �;xi

�
= Eq�(z,y|xi)

"
log

p✓
�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (2)

By contrast, in the fully supervised setting the values y are treated as observed and become fixed130

inputs into the computation graph, instead of being sampled from q�. When the label y is observed131

along with the data, for fixed (xi,yi) pairs, the lower bound on the conditional log-marginal likelihood132

log p✓(x | y) is133

Lx|y
�
✓, �z;x

i,yi
�

= Eq�z (z|xi,yi)

"
log

p✓
�
xi | z,yi

�
p
�
z | yi

�

q�z (z | xi,yi)

#
. (3)

This quantity can be optimized directly to learn model parameters ✓ and �z simultaneously via SGD.134

However, it does not contain the encoder parameters �y . This difficulty was also encountered in a135

related context by Kingma et al. [17]. Their solution was to augment the loss function by including136

an explicit additional term for learning a classifier directly on the supervised points.137

Here we propose an alternative approach. We extend the model with an auxiliary variable ỹ with138

likelihood p(ỹ | y) = �ỹ(y) to define densities139

p(ỹ,y, z,x) = p(ỹ | y)p✓(x | y, z)p(y, z)

q(ỹ,y, z | x) = p(ỹ | y)q(y, z | x).

When we marginalize the ELBO for this model over ỹ, we recover the expression in Equation (2).140

Treating ỹ = yi as observed results in the supervised objective141

L
�
✓, �;xi

���
ỹ=yi = Eq�(z,y|xi)

"
�yi(y) log

p✓
�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (4)

Integration over an observed y is then replaced with evaluation of the ELBO and the density q�y at142

yi. A Monte Carlo estimator of Equation (4) can be constructed automatically for any factorization143

of q� by sampling latent variables z and weighting the resulting ELBO estimate by the conditional144

density terms q�y (y|·).145

Note that the exact functional form of the Monte Carlo estimator will vary depending on the146

dependency structure of q�
�
z,y | xi

�
. For example, for discrete y, choosing q�(z,y | x) =147

q�z (z | y,x)q�y (y | x), decomposes the problem into simultaneously learning a classifier148

q�y (y | x) alongside the generative model parameters ✓ and encoder q�z (z|x,y) which is condi-149

tioned on the selected class. The computation graph for a model with this factorization is shown in Fig-150

ure 1. In it, the value y of the distribution q�y (· | x) is observed, while the distribution q�z (· | x,y)151

4

p

λ

y

η

ε

z p

λ

q

ηφ

φ

x (data) y (partial labels)

p

ηθ

q

Recognition Model

z x

y

Generative Model

z x
ε

y

x

Separate interpretable y  
from “nuisance” variables z

Disentangled  
Representation

(a) (b) (c) (d)

Figure 2: (a) Visual analogies for the MNIST data, with inferred style latent variable fixed and
the label varied. (b) Exploration in “style” space for a 2D latent gaussian random variable. Visual
analogies for the SVHN data when (c) fully supervised, and (d) partially supervised with just 100
labels/digit.

To train deep generative models in a semi-supervised manner, we need to incorporate labelled data126

into the variational bound. In a fully unsupervised setting, the contribution of a particular data127

point xi to the ELBO can be expressed, with minor adjustments of Equation (1), whose Monte-Carlo128

approximation samples latents z and y from the recognition distribution q�
�
z,y | xi

�
.129

L
�
✓, �;xi

�
= Eq�(z,y|xi)

"
log

p✓
�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (2)

By contrast, in the fully supervised setting the values y are treated as observed and become fixed130

inputs into the computation graph, instead of being sampled from q�. When the label y is observed131

along with the data, for fixed (xi,yi) pairs, the lower bound on the conditional log-marginal likelihood132

log p✓(x | y) is133

Lx|y
�
✓, �z;x

i,yi
�

= Eq�z (z|xi,yi)

"
log

p✓
�
xi | z,yi

�
p
�
z | yi

�

q�z (z | xi,yi)

#
. (3)

This quantity can be optimized directly to learn model parameters ✓ and �z simultaneously via SGD.134

However, it does not contain the encoder parameters �y . This difficulty was also encountered in a135

related context by Kingma et al. [17]. Their solution was to augment the loss function by including136

an explicit additional term for learning a classifier directly on the supervised points.137

Here we propose an alternative approach. We extend the model with an auxiliary variable ỹ with138

likelihood p(ỹ | y) = �ỹ(y) to define densities139

p(ỹ,y, z,x) = p(ỹ | y)p✓(x | y, z)p(y, z)

q(ỹ,y, z | x) = p(ỹ | y)q(y, z | x).

When we marginalize the ELBO for this model over ỹ, we recover the expression in Equation (2).140

Treating ỹ = yi as observed results in the supervised objective141

L
�
✓, �;xi

���
ỹ=yi = Eq�(z,y|xi)

"
�yi(y) log

p✓
�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (4)

Integration over an observed y is then replaced with evaluation of the ELBO and the density q�y at142

yi. A Monte Carlo estimator of Equation (4) can be constructed automatically for any factorization143

of q� by sampling latent variables z and weighting the resulting ELBO estimate by the conditional144

density terms q�y (y|·).145

Note that the exact functional form of the Monte Carlo estimator will vary depending on the146

dependency structure of q�
�
z,y | xi

�
. For example, for discrete y, choosing q�(z,y | x) =147

q�z (z | y,x)q�y (y | x), decomposes the problem into simultaneously learning a classifier148

q�y (y | x) alongside the generative model parameters ✓ and encoder q�z (z|x,y) which is condi-149

tioned on the selected class. The computation graph for a model with this factorization is shown in Fig-150

ure 1. In it, the value y of the distribution q�y (· | x) is observed, while the distribution q�z (· | x,y)151

4

z
(h

an
dw

rit
in

g
sty

le)

y (digit label)
Disentangled RepresentationStochastic Computation Graph for VAE

ε z

p

q λ

η

φ n

θ

z

p

q λ

η

φ n

θ

(a) (b) (c) (d)

Figure 2: (a) Visual analogies for the MNIST data, with inferred style latent variable fixed and
the label varied. (b) Exploration in “style” space for a 2D latent gaussian random variable. Visual
analogies for the SVHN data when (c) fully supervised, and (d) partially supervised with just 100
labels/digit.

To train deep generative models in a semi-supervised manner, we need to incorporate labelled data126

into the variational bound. In a fully unsupervised setting, the contribution of a particular data127

point xi to the ELBO can be expressed, with minor adjustments of Equation (1), whose Monte-Carlo128

approximation samples latents z and y from the recognition distribution q�
�
z,y | xi

�
.129

L
�
✓, �;xi

�
= Eq�(z,y|xi)

"
log

p✓
�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (2)

By contrast, in the fully supervised setting the values y are treated as observed and become fixed130

inputs into the computation graph, instead of being sampled from q�. When the label y is observed131

along with the data, for fixed (xi,yi) pairs, the lower bound on the conditional log-marginal likelihood132

log p✓(x | y) is133

Lx|y
�
✓, �z;x

i,yi
�

= Eq�z (z|xi,yi)

"
log

p✓
�
xi | z,yi

�
p
�
z | yi

�

q�z (z | xi,yi)

#
. (3)

This quantity can be optimized directly to learn model parameters ✓ and �z simultaneously via SGD.134

However, it does not contain the encoder parameters �y . This difficulty was also encountered in a135

related context by Kingma et al. [17]. Their solution was to augment the loss function by including136

an explicit additional term for learning a classifier directly on the supervised points.137

Here we propose an alternative approach. We extend the model with an auxiliary variable ỹ with138

likelihood p(ỹ | y) = �ỹ(y) to define densities139

p(ỹ,y, z,x) = p(ỹ | y)p✓(x | y, z)p(y, z)

q(ỹ,y, z | x) = p(ỹ | y)q(y, z | x).

When we marginalize the ELBO for this model over ỹ, we recover the expression in Equation (2).140

Treating ỹ = yi as observed results in the supervised objective141

L
�
✓, �;xi

���
ỹ=yi = Eq�(z,y|xi)

"
�yi(y) log

p✓
�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (4)

Integration over an observed y is then replaced with evaluation of the ELBO and the density q�y at142

yi. A Monte Carlo estimator of Equation (4) can be constructed automatically for any factorization143

of q� by sampling latent variables z and weighting the resulting ELBO estimate by the conditional144

density terms q�y (y|·).145

Note that the exact functional form of the Monte Carlo estimator will vary depending on the146

dependency structure of q�
�
z,y | xi

�
. For example, for discrete y, choosing q�(z,y | x) =147

q�z (z | y,x)q�y (y | x), decomposes the problem into simultaneously learning a classifier148

q�y (y | x) alongside the generative model parameters ✓ and encoder q�z (z|x,y) which is condi-149

tioned on the selected class. The computation graph for a model with this factorization is shown in Fig-150

ure 1. In it, the value y of the distribution q�y (· | x) is observed, while the distribution q�z (· | x,y)151

4

p

λ

y

η

ε

z p

λ

q

ηφ

φ

x (data) y (partial labels)

p

ηθ

q

Recognition Model

z x

y

Generative Model

z x
ε

y

x

Predict y from pixels x, 
then predict z from y and x

Probabilistic Encoder

(a) (b) (c) (d)

Figure 2: (a) Visual analogies for the MNIST data, with inferred style latent variable fixed and
the label varied. (b) Exploration in “style” space for a 2D latent gaussian random variable. Visual
analogies for the SVHN data when (c) fully supervised, and (d) partially supervised with just 100
labels/digit.

To train deep generative models in a semi-supervised manner, we need to incorporate labelled data126

into the variational bound. In a fully unsupervised setting, the contribution of a particular data127

point xi to the ELBO can be expressed, with minor adjustments of Equation (1), whose Monte-Carlo128

approximation samples latents z and y from the recognition distribution q�
�
z,y | xi

�
.129

L
�
✓, �;xi

�
= Eq�(z,y|xi)

"
log

p✓
�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (2)

By contrast, in the fully supervised setting the values y are treated as observed and become fixed130

inputs into the computation graph, instead of being sampled from q�. When the label y is observed131

along with the data, for fixed (xi,yi) pairs, the lower bound on the conditional log-marginal likelihood132

log p✓(x | y) is133

Lx|y
�
✓, �z;x

i,yi
�

= Eq�z (z|xi,yi)

"
log

p✓
�
xi | z,yi

�
p
�
z | yi

�

q�z (z | xi,yi)

#
. (3)

This quantity can be optimized directly to learn model parameters ✓ and �z simultaneously via SGD.134

However, it does not contain the encoder parameters �y . This difficulty was also encountered in a135

related context by Kingma et al. [17]. Their solution was to augment the loss function by including136

an explicit additional term for learning a classifier directly on the supervised points.137

Here we propose an alternative approach. We extend the model with an auxiliary variable ỹ with138

likelihood p(ỹ | y) = �ỹ(y) to define densities139

p(ỹ,y, z,x) = p(ỹ | y)p✓(x | y, z)p(y, z)

q(ỹ,y, z | x) = p(ỹ | y)q(y, z | x).

When we marginalize the ELBO for this model over ỹ, we recover the expression in Equation (2).140

Treating ỹ = yi as observed results in the supervised objective141

L
�
✓, �;xi

���
ỹ=yi = Eq�(z,y|xi)

"
�yi(y) log

p✓
�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (4)

Integration over an observed y is then replaced with evaluation of the ELBO and the density q�y at142

yi. A Monte Carlo estimator of Equation (4) can be constructed automatically for any factorization143

of q� by sampling latent variables z and weighting the resulting ELBO estimate by the conditional144

density terms q�y (y|·).145

Note that the exact functional form of the Monte Carlo estimator will vary depending on the146

dependency structure of q�
�
z,y | xi

�
. For example, for discrete y, choosing q�(z,y | x) =147

q�z (z | y,x)q�y (y | x), decomposes the problem into simultaneously learning a classifier148

q�y (y | x) alongside the generative model parameters ✓ and encoder q�z (z|x,y) which is condi-149

tioned on the selected class. The computation graph for a model with this factorization is shown in Fig-150

ure 1. In it, the value y of the distribution q�y (· | x) is observed, while the distribution q�z (· | x,y)151

4

z
(h

an
dw

rit
in

g
sty

le)

y (digit label)
Disentangled RepresentationStochastic Computation Graph for VAE

ε z

p

q λ

η

φ n

θ

z

p

q λ

η

φ n

θ

(a) (b) (c) (d)

Figure 2: (a) Visual analogies for the MNIST data, with inferred style latent variable fixed and
the label varied. (b) Exploration in “style” space for a 2D latent gaussian random variable. Visual
analogies for the SVHN data when (c) fully supervised, and (d) partially supervised with just 100
labels/digit.

To train deep generative models in a semi-supervised manner, we need to incorporate labelled data126

into the variational bound. In a fully unsupervised setting, the contribution of a particular data127

point xi to the ELBO can be expressed, with minor adjustments of Equation (1), whose Monte-Carlo128

approximation samples latents z and y from the recognition distribution q�
�
z,y | xi

�
.129

L
�
✓, �;xi

�
= Eq�(z,y|xi)

"
log

p✓
�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (2)

By contrast, in the fully supervised setting the values y are treated as observed and become fixed130

inputs into the computation graph, instead of being sampled from q�. When the label y is observed131

along with the data, for fixed (xi,yi) pairs, the lower bound on the conditional log-marginal likelihood132

log p✓(x | y) is133

Lx|y
�
✓, �z;x

i,yi
�

= Eq�z (z|xi,yi)

"
log

p✓
�
xi | z,yi

�
p
�
z | yi

�

q�z (z | xi,yi)

#
. (3)

This quantity can be optimized directly to learn model parameters ✓ and �z simultaneously via SGD.134

However, it does not contain the encoder parameters �y . This difficulty was also encountered in a135

related context by Kingma et al. [17]. Their solution was to augment the loss function by including136

an explicit additional term for learning a classifier directly on the supervised points.137

Here we propose an alternative approach. We extend the model with an auxiliary variable ỹ with138

likelihood p(ỹ | y) = �ỹ(y) to define densities139

p(ỹ,y, z,x) = p(ỹ | y)p✓(x | y, z)p(y, z)

q(ỹ,y, z | x) = p(ỹ | y)q(y, z | x).

When we marginalize the ELBO for this model over ỹ, we recover the expression in Equation (2).140

Treating ỹ = yi as observed results in the supervised objective141

L
�
✓, �;xi

���
ỹ=yi = Eq�(z,y|xi)

"
�yi(y) log

p✓
�
xi | z,y

�
p(z,y)

q�(z,y | xi)

#
. (4)

Integration over an observed y is then replaced with evaluation of the ELBO and the density q�y at142

yi. A Monte Carlo estimator of Equation (4) can be constructed automatically for any factorization143

of q� by sampling latent variables z and weighting the resulting ELBO estimate by the conditional144

density terms q�y (y|·).145

Note that the exact functional form of the Monte Carlo estimator will vary depending on the146

dependency structure of q�
�
z,y | xi

�
. For example, for discrete y, choosing q�(z,y | x) =147

q�z (z | y,x)q�y (y | x), decomposes the problem into simultaneously learning a classifier148

q�y (y | x) alongside the generative model parameters ✓ and encoder q�z (z|x,y) which is condi-149

tioned on the selected class. The computation graph for a model with this factorization is shown in Fig-150

ure 1. In it, the value y of the distribution q�y (· | x) is observed, while the distribution q�z (· | x,y)151

4

p

λ

y

η

ε

z p

λ

q

ηφ

φ

x (data) y (partial labels)

p

ηθ

q

Recognition Model

z x

y

Generative Model

z x
ε

y

x

Predict pixels x  
from y and z

Probabilistic Decoder

Nuisance

Pixels

Label

Generative model

Siddharth et al., 2017

From one digit to many digitsFrom one digit to many digits

Input Recon. Varying Identity

Input Recon. Varying Lighting

Identity Lighting

Ours
(Full Supervision)

1.9% (± 1.5) 3.1% (± 3.8)

Ours
(Semi-Supervised)

3.5% (± 3.4) 17.6% (± 1.8)

Jampani et al. [11]
(plot asymptotes)

⇡ 30 ⇡ 10

Figure 4: Left: Exploring the generative capacity of the supervised model by manipulating identity
and lighting given a fixed (inferred) value of the other latent variables. Right: Classification and
regression error rates for identity and lighting latent variables, fully-supervised, and semi-supervised
(with 6 labelled example images for each of the 38 individuals, a supervision rate of ⇢ = 0.5,
and ↵ = 10). Classification is a direct 1-out-of-38 choice, whereas for the comparison, error is a
nearest-neighbour loss based on the inferred reflectance. Regression loss is angular distance.

3.3 Multi-MNIST

Finally, we conduct an experiment that extends the complexity from the prior models even further.
Particularly, we explore the capacity of our framework to handle models with stochastic dimension-
ality – having the number of latent variables itself determined by a random variable, and models
that can be composed of other smaller (sub-)models. We conduct this experiment in the domain of
multi-MNIST. This is an apposite choice as it satisfies both the requirements above – each image can
have a varying number of individual digits, which essentially dictates that the model must learn to
count, and as each image is itself composed of (scaled and translated) exemplars from the MNIST
data, we can employ the MNIST model itself within the multi-MNIST model.

The model structure that we assume for the generative and recognition networks is shown in Fig. 5.
We extend the models from the MNIST experiment by composing it with a stochastic sequence
generator, in which the loop length K is a random variable. For each loop iteration k = 1, . . . , K,
the generative model iteratively samples a digit yk, style zk, and uses these to generate a digit image
xk in the same manner as in the earlier MNIST example. Additionally, an affine tranformation is also
sampled for each digit in each iteration to transform the digit images xk into a common, combined
canvas that represents the final generated image x, using a spatial transformer network [10].

In the recognition model, we predict the number of digits K from the pixels in the image. For each
loop iteration k = 1, . . . , K, we define a Bernoulli-distributed digit image xk. When supervision is
available, we compute the probability of xk from the binary cross-entropy in the same manner as in
the likelihood term for the MNIST model. When no supervision is available, we deterministically set
xk to the mean of the distribution. This can be seen akin to providing bounding-boxes around the
constituent digits as supervision for the labelled data, which must be taken into account when learning
the affine transformations that decompose a multi-MNIST image into its constituent MNIST-like
images. This model design is similar to the one used in DRAW [9], recurrent VAEs [3], and AIR [4].

In the absence of a canonical multi-MNIST dataset, we created our own from the MNIST dataset by
manipulating the scale and positioning of the standard digits into a combined canvas, evenly balanced
across the counts (1-3) and digits. We then conducted two experiments within this domain. In the
first experiment, we seek to measure how well the stochastic sequence generator learns to count
on its own, with no heed paid to disentangling the latent representations for the underlying digits.

Intrinsic Faces Multi-MNIST

x

i `s

r x

i`

r

s

xak

xkzk

yk

K

K

x

K

ak

xk

hk

zk

yk

hk�1

K

Generative Model Recognition Model Generative Model Recognition Model

Figure 5: Generative and recognition models for the intrinsic-faces and multi-MNIST experiments.

8

Nuisance

Pixels
Label

Pixels

Transformation

Count

Input Reconstruction Decomposition

M
M+N Count Error (%)

w/o MNIST w/ MNIST

0.1 85.45 (± 5.77) 76.33 (± 8.91)
0.5 93.27 (± 2.15) 80.27 (± 5.45)
1.0 99.81 (± 1.81) 84.79 (± 5.11)

Figure 6: Left: Example input multi-MNIST images and reconstructions. Top-Right: Decomposition
of Multi-MNIST images into constituent MNIST digits. Bottom-Right: Count accuracy over
different supervised set sizes M for given dataset size M + N = 82000.

Here, the generative model presumes the availability of individual MNIST-digit images, generating
combinations under sampled affine transformations. In the second experiment, we extend the above
model to now also incorporate the same pre-trained MNIST model from the previous section, which
allows the generative model to sample MNIST-digit images, while also being able to predict the
underlying digits. This also demonstrates how we can leverage compositionality of models: when
a complex model has a known simpler model as a substructure, the simpler model and its learned
weights can be dropped in directly.

The count accuracy errors across different supervised set sizes, reconstructions for a random set of
inputs, and the decomposition of a given set of inputs into their constituent individual digits, are
shown in Fig. 6. All reconstructions and image decompositions shown correspond to the nested-model
configuration. We observe that not only are we able to reliably infer the counts of the digits in the
given images, we are able to simultaneously reconstruct the inputs as well as its constituent parts.

4 Discussion and Conclusion

In this paper we introduce a framework for learning disentangled representations of data using
partially-specified graphical model structures and semi-supervised learning schemes in the domain of
variational autoencoders (VAEs). This is accomplished by defining hybrid generative models which
incorporate both structured graphical models and unstructured random variables in the same latent
space. We demonstrate the flexibility of this approach by applying it to a variety of different tasks
in the visual domain, and evaluate its efficacy at learning disentangled representations in a semi-
supervised manner, showing strong performance. Such partially-specified models yield recognition
networks that make predictions in an interpretable and disentangled space, constrained by the structure
provided by the graphical model and the weak supervision.

The framework is implemented as a PyTorch library [25], enabling the construction of stochastic
computation graphs which encode the requisite structure and computation. This provides another
direction to explore in the future — the extension of the stochastic computation graph framework to
probabilistic programming [8, 34, 35]. Probabilistic programs go beyond the presented framework to
permit more expressive models, incorporating recursive structures and higher-order functions. The
combination of such frameworks with neural networks has recently been studied in Le et al. [22] and
Ritchie et al. [28], indicating a promising avenue for further exploration.

Acknowledgements

This work was supported by the EPSRC, ERC grant ERC-2012-AdG 321162-HELIOS, EPSRC
grant Seebibyte EP/M013774/1, and EPSRC/MURI grant EP/N019474/1. BP was supported by The
Alan Turing Institute under the EPSRC grant EP/N510129/1. FW and NDG were supported under
DARPA PPAML through the U.S. AFRL under Cooperative Agreement FA8750-14-2-0006. FW was
additionally supported by Intel and DARPA D3M, under Cooperative Agreement FA8750-17-2-0093.

9

Generative model

Siddharth et al., 2017

How do we build these models?How do we build models?

Input Recon. Varying Identity

Input Recon. Varying Lighting

Identity Lighting

Ours
(Full Supervision)

1.9% (± 1.5) 3.1% (± 3.8)

Ours
(Semi-Supervised)

3.5% (± 3.4) 17.6% (± 1.8)

Jampani et al. [11]
(plot asymptotes)

⇡ 30 ⇡ 10

Figure 4: Left: Exploring the generative capacity of the supervised model by manipulating identity
and lighting given a fixed (inferred) value of the other latent variables. Right: Classification and
regression error rates for identity and lighting latent variables, fully-supervised, and semi-supervised
(with 6 labelled example images for each of the 38 individuals, a supervision rate of ⇢ = 0.5,
and ↵ = 10). Classification is a direct 1-out-of-38 choice, whereas for the comparison, error is a
nearest-neighbour loss based on the inferred reflectance. Regression loss is angular distance.

3.3 Multi-MNIST

Finally, we conduct an experiment that extends the complexity from the prior models even further.
Particularly, we explore the capacity of our framework to handle models with stochastic dimension-
ality – having the number of latent variables itself determined by a random variable, and models
that can be composed of other smaller (sub-)models. We conduct this experiment in the domain of
multi-MNIST. This is an apposite choice as it satisfies both the requirements above – each image can
have a varying number of individual digits, which essentially dictates that the model must learn to
count, and as each image is itself composed of (scaled and translated) exemplars from the MNIST
data, we can employ the MNIST model itself within the multi-MNIST model.

The model structure that we assume for the generative and recognition networks is shown in Fig. 5.
We extend the models from the MNIST experiment by composing it with a stochastic sequence
generator, in which the loop length K is a random variable. For each loop iteration k = 1, . . . , K,
the generative model iteratively samples a digit yk, style zk, and uses these to generate a digit image
xk in the same manner as in the earlier MNIST example. Additionally, an affine tranformation is also
sampled for each digit in each iteration to transform the digit images xk into a common, combined
canvas that represents the final generated image x, using a spatial transformer network [10].

In the recognition model, we predict the number of digits K from the pixels in the image. For each
loop iteration k = 1, . . . , K, we define a Bernoulli-distributed digit image xk. When supervision is
available, we compute the probability of xk from the binary cross-entropy in the same manner as in
the likelihood term for the MNIST model. When no supervision is available, we deterministically set
xk to the mean of the distribution. This can be seen akin to providing bounding-boxes around the
constituent digits as supervision for the labelled data, which must be taken into account when learning
the affine transformations that decompose a multi-MNIST image into its constituent MNIST-like
images. This model design is similar to the one used in DRAW [9], recurrent VAEs [3], and AIR [4].

In the absence of a canonical multi-MNIST dataset, we created our own from the MNIST dataset by
manipulating the scale and positioning of the standard digits into a combined canvas, evenly balanced
across the counts (1-3) and digits. We then conducted two experiments within this domain. In the
first experiment, we seek to measure how well the stochastic sequence generator learns to count
on its own, with no heed paid to disentangling the latent representations for the underlying digits.

Intrinsic Faces Multi-MNIST

x

i `s

r x

i`

r

s

xak

xkzk

yk

K

K

x

K

ak

xk

hk

zk

yk

hk�1

K

Generative Model Recognition Model Generative Model Recognition Model

Figure 5: Generative and recognition models for the intrinsic-faces and multi-MNIST experiments.

8

Generative model

Input Recon. Varying Identity

Input Recon. Varying Lighting

Identity Lighting

Ours
(Full Supervision)

1.9% (± 1.5) 3.1% (± 3.8)

Ours
(Semi-Supervised)

3.5% (± 3.4) 17.6% (± 1.8)

Jampani et al. [11]
(plot asymptotes)

⇡ 30 ⇡ 10

Figure 4: Left: Exploring the generative capacity of the supervised model by manipulating identity
and lighting given a fixed (inferred) value of the other latent variables. Right: Classification and
regression error rates for identity and lighting latent variables, fully-supervised, and semi-supervised
(with 6 labelled example images for each of the 38 individuals, a supervision rate of ⇢ = 0.5,
and ↵ = 10). Classification is a direct 1-out-of-38 choice, whereas for the comparison, error is a
nearest-neighbour loss based on the inferred reflectance. Regression loss is angular distance.

3.3 Multi-MNIST

Finally, we conduct an experiment that extends the complexity from the prior models even further.
Particularly, we explore the capacity of our framework to handle models with stochastic dimension-
ality – having the number of latent variables itself determined by a random variable, and models
that can be composed of other smaller (sub-)models. We conduct this experiment in the domain of
multi-MNIST. This is an apposite choice as it satisfies both the requirements above – each image can
have a varying number of individual digits, which essentially dictates that the model must learn to
count, and as each image is itself composed of (scaled and translated) exemplars from the MNIST
data, we can employ the MNIST model itself within the multi-MNIST model.

The model structure that we assume for the generative and recognition networks is shown in Fig. 5.
We extend the models from the MNIST experiment by composing it with a stochastic sequence
generator, in which the loop length K is a random variable. For each loop iteration k = 1, . . . , K,
the generative model iteratively samples a digit yk, style zk, and uses these to generate a digit image
xk in the same manner as in the earlier MNIST example. Additionally, an affine tranformation is also
sampled for each digit in each iteration to transform the digit images xk into a common, combined
canvas that represents the final generated image x, using a spatial transformer network [10].

In the recognition model, we predict the number of digits K from the pixels in the image. For each
loop iteration k = 1, . . . , K, we define a Bernoulli-distributed digit image xk. When supervision is
available, we compute the probability of xk from the binary cross-entropy in the same manner as in
the likelihood term for the MNIST model. When no supervision is available, we deterministically set
xk to the mean of the distribution. This can be seen akin to providing bounding-boxes around the
constituent digits as supervision for the labelled data, which must be taken into account when learning
the affine transformations that decompose a multi-MNIST image into its constituent MNIST-like
images. This model design is similar to the one used in DRAW [9], recurrent VAEs [3], and AIR [4].

In the absence of a canonical multi-MNIST dataset, we created our own from the MNIST dataset by
manipulating the scale and positioning of the standard digits into a combined canvas, evenly balanced
across the counts (1-3) and digits. We then conducted two experiments within this domain. In the
first experiment, we seek to measure how well the stochastic sequence generator learns to count
on its own, with no heed paid to disentangling the latent representations for the underlying digits.

Intrinsic Faces Multi-MNIST

x

i `s

r x

i`

r

s

xak

xkzk

yk

K

K

x

K

ak

xk

hk

zk

yk

hk�1

K

Generative Model Recognition Model Generative Model Recognition Model

Figure 5: Generative and recognition models for the intrinsic-faces and multi-MNIST experiments.

8

Nuisance

Pixels
Label

Pixels

Transformation

Count

Inference model
(recurrent neural network)

Siddharth et al., 2017

Inference: counting and locatingInference: counting and locating

Input Reconstruction Decomposition

M
M+N Count Error (%)

w/o MNIST w/ MNIST

0.1 85.45 (± 5.77) 76.33 (± 8.91)
0.5 93.27 (± 2.15) 80.27 (± 5.45)
1.0 99.81 (± 1.81) 84.79 (± 5.11)

Figure 6: Left: Example input multi-MNIST images and reconstructions. Top-Right: Decomposition
of Multi-MNIST images into constituent MNIST digits. Bottom-Right: Count accuracy over
different supervised set sizes M for given dataset size M + N = 82000.

Here, the generative model presumes the availability of individual MNIST-digit images, generating
combinations under sampled affine transformations. In the second experiment, we extend the above
model to now also incorporate the same pre-trained MNIST model from the previous section, which
allows the generative model to sample MNIST-digit images, while also being able to predict the
underlying digits. This also demonstrates how we can leverage compositionality of models: when
a complex model has a known simpler model as a substructure, the simpler model and its learned
weights can be dropped in directly.

The count accuracy errors across different supervised set sizes, reconstructions for a random set of
inputs, and the decomposition of a given set of inputs into their constituent individual digits, are
shown in Fig. 6. All reconstructions and image decompositions shown correspond to the nested-model
configuration. We observe that not only are we able to reliably infer the counts of the digits in the
given images, we are able to simultaneously reconstruct the inputs as well as its constituent parts.

4 Discussion and Conclusion

In this paper we introduce a framework for learning disentangled representations of data using
partially-specified graphical model structures and semi-supervised learning schemes in the domain of
variational autoencoders (VAEs). This is accomplished by defining hybrid generative models which
incorporate both structured graphical models and unstructured random variables in the same latent
space. We demonstrate the flexibility of this approach by applying it to a variety of different tasks
in the visual domain, and evaluate its efficacy at learning disentangled representations in a semi-
supervised manner, showing strong performance. Such partially-specified models yield recognition
networks that make predictions in an interpretable and disentangled space, constrained by the structure
provided by the graphical model and the weak supervision.

The framework is implemented as a PyTorch library [25], enabling the construction of stochastic
computation graphs which encode the requisite structure and computation. This provides another
direction to explore in the future — the extension of the stochastic computation graph framework to
probabilistic programming [8, 34, 35]. Probabilistic programs go beyond the presented framework to
permit more expressive models, incorporating recursive structures and higher-order functions. The
combination of such frameworks with neural networks has recently been studied in Le et al. [22] and
Ritchie et al. [28], indicating a promising avenue for further exploration.

Acknowledgements

This work was supported by the EPSRC, ERC grant ERC-2012-AdG 321162-HELIOS, EPSRC
grant Seebibyte EP/M013774/1, and EPSRC/MURI grant EP/N019474/1. BP was supported by The
Alan Turing Institute under the EPSRC grant EP/N510129/1. FW and NDG were supported under
DARPA PPAML through the U.S. AFRL under Cooperative Agreement FA8750-14-2-0006. FW was
additionally supported by Intel and DARPA D3M, under Cooperative Agreement FA8750-17-2-0093.

9

Input Recon. Varying Identity

Input Recon. Varying Lighting

Identity Lighting

Ours
(Full Supervision)

1.9% (± 1.5) 3.1% (± 3.8)

Ours
(Semi-Supervised)

3.5% (± 3.4) 17.6% (± 1.8)

Jampani et al. [11]
(plot asymptotes)

⇡ 30 ⇡ 10

Figure 4: Left: Exploring the generative capacity of the supervised model by manipulating identity
and lighting given a fixed (inferred) value of the other latent variables. Right: Classification and
regression error rates for identity and lighting latent variables, fully-supervised, and semi-supervised
(with 6 labelled example images for each of the 38 individuals, a supervision rate of ⇢ = 0.5,
and ↵ = 10). Classification is a direct 1-out-of-38 choice, whereas for the comparison, error is a
nearest-neighbour loss based on the inferred reflectance. Regression loss is angular distance.

3.3 Multi-MNIST

Finally, we conduct an experiment that extends the complexity from the prior models even further.
Particularly, we explore the capacity of our framework to handle models with stochastic dimension-
ality – having the number of latent variables itself determined by a random variable, and models
that can be composed of other smaller (sub-)models. We conduct this experiment in the domain of
multi-MNIST. This is an apposite choice as it satisfies both the requirements above – each image can
have a varying number of individual digits, which essentially dictates that the model must learn to
count, and as each image is itself composed of (scaled and translated) exemplars from the MNIST
data, we can employ the MNIST model itself within the multi-MNIST model.

The model structure that we assume for the generative and recognition networks is shown in Fig. 5.
We extend the models from the MNIST experiment by composing it with a stochastic sequence
generator, in which the loop length K is a random variable. For each loop iteration k = 1, . . . , K,
the generative model iteratively samples a digit yk, style zk, and uses these to generate a digit image
xk in the same manner as in the earlier MNIST example. Additionally, an affine tranformation is also
sampled for each digit in each iteration to transform the digit images xk into a common, combined
canvas that represents the final generated image x, using a spatial transformer network [10].

In the recognition model, we predict the number of digits K from the pixels in the image. For each
loop iteration k = 1, . . . , K, we define a Bernoulli-distributed digit image xk. When supervision is
available, we compute the probability of xk from the binary cross-entropy in the same manner as in
the likelihood term for the MNIST model. When no supervision is available, we deterministically set
xk to the mean of the distribution. This can be seen akin to providing bounding-boxes around the
constituent digits as supervision for the labelled data, which must be taken into account when learning
the affine transformations that decompose a multi-MNIST image into its constituent MNIST-like
images. This model design is similar to the one used in DRAW [9], recurrent VAEs [3], and AIR [4].

In the absence of a canonical multi-MNIST dataset, we created our own from the MNIST dataset by
manipulating the scale and positioning of the standard digits into a combined canvas, evenly balanced
across the counts (1-3) and digits. We then conducted two experiments within this domain. In the
first experiment, we seek to measure how well the stochastic sequence generator learns to count
on its own, with no heed paid to disentangling the latent representations for the underlying digits.

Intrinsic Faces Multi-MNIST

x

i `s

r x

i`

r

s

xak

xkzk

yk

K

K

x

K

ak

xk

hk

zk

yk

hk�1

K

Generative Model Recognition Model Generative Model Recognition Model

Figure 5: Generative and recognition models for the intrinsic-faces and multi-MNIST experiments.

8

Transformation

Count

Inference model
(recurrent neural network)

Siddharth et al., 2017

How to do all this (easily)

Pyro: deep “probabilistic
programming”

• Adds probabilistic modeling on
top of PyTorch

• Write two programs: a model

and a guide, defined over the
same random variables

• Implements automatic inference
by computing and optimizing
the ELBO

Other VAE extensions

How can you improve a VAE?

Improve the inference over z, given x?

• Use q(z|x) as an importance sampling proposal (IWAE; Burda et al., 2015)

• Use q(z|x) as an initialization for MCMC (Hoffman, 2015)

• Use a much more powerful q(z|x), instead of a factorized Gaussian

Improve the prior over z?

• Mixture models as priors

• Autoregressive models as priors

Automatically “disentangle” the dimensions of z to have axis-aligned features?

• Beta-VAE, Higgins et al.

• Total correlation VAE, Chen et al.

• . . .

Thanks!

	Introduction
	Learning goals

