Real-time Air Quality Anomaly Detection using Apache Flink

Ruquaiya Shuaibu

Apache Flink

- Flink is a distributed dataflow engine for stateful stream processing
- Key innovations:
 - True streaming (event-at-a-time, not micro-batches)
 - Distributed snapshots for fault tolerance (Chandy-Lamport algorithm)
 - State management at scale
 - Low-latency processing (millisecond range)
- Used in production for real-time analytics, ETL pipelines, event-driven applications

Why this project

Interest in understanding distributed stream processing architectures

Key technical questions:

- How does Flink achieve fault tolerance with exactly-once semantics?
- How does state management work in a distributed setting?
- What are the trade-offs between latency, throughput, and consistency?

Technical Goals and Exploration

- Primary goal: Understand Flink's architecture through hands-on implementation
- Technical aspects to explore:
 - Dataflow model
 - Windowing mechanisms
 - State backends
 - Checkpointing
 - Parallelism & partitioning
- Concrete implementation: Anomaly detection pipeline as test workload
 - Requires stateful operations (windowing, aggregations)
 - Pushes Flink's state management capabilities
 - Measurable performance metrics

Technical Architecture

Pipeline Architecture

```
Data Source → Flink Stream → Windowing → Stateful Processing → Sink
```

- Key components I'll use:
 - DataStream API
 - Window operators (for temporal aggregations)
 - State API (for tracking historical patterns)
 - Checkpointing (for fault tolerance)

Benchmarking and Analysis Plan

- Performance metrics:
 - Throughput (events/second)
 - Latency (end-to-end processing time)
 - State size growth
 - Checkpoint overhead
- Configurations to compare:
 - Different parallelism levels
 - Different state backends (RocksDB vs heap)
 - Different checkpointing intervals
- Analysis: Understanding trade-offs in Flink's design decisions

Progress and Timeline

Progress so far:

Project selected and approved

Initial research on Flink architecture

Identified data sources

Remaining timeline:

Week 1: Set up Flink environment, begin data ingestion pipeline

Week 2:: Implement anomaly detection algorithms, basic visualization

Week 3: Benchmarking, performance analysis

Week 4: Complete testing, write report

Questions?