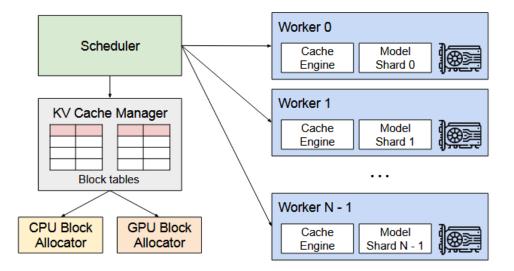

vLLM - Memory Optimizations and Multi-LoRA Serving Prototype

PRESENTED BY: OGNEN PENDAROVSKI


The Problem

- Dynamically changing KV cache size is inefficiently handled by LLM serving systems:
 - Internal and external memory fragmentation
 - Inability to share memory

The Solution

- vLLM introducesPagedAttention:
 - Idea analogous to virtual memory in operating systems
 - Stores continuous KV cache in non-contiguous memory blocks
 - Eliminates most of the fragmentation memory waste
 - Allows more complex decoding methods

Part 1 - Benchmarking

- Main objective reproduce and test vLLM performance across multiple different LLMs and various serving parameters.
- Metrics tracked:
 - TTFT (Time to First Token) latency of pre-fill phase
 - TPOT (Time per Output Token) decode phase throughput
 - Total latency
 - KV cache overhead
- Parameters: batch size, context length, quantization levels

Part 2 - Multi-LoRA Serving Prototype

- Implement prototype serving logic for dynamically routing queries to associated LoRA adapters.
 - One frozen-weights backbone with multiple LoRA kernels
 - Adding additional metadata to queries for association with specific LoRA kernel (specific tasks, writing styles, languages, etc.)
 - Queries processed in heterogeneous batch
- Benchmark the multi-LoRA server on standard benchmarks, as well as switching overhead.
 - Parameters: LoRA count, rank, quantization

Project Timeline

- Phase 1 (Dec 12 Dec 19):
 - Set up required software environment
 - Select models and parameter values
 - Write and run benchmarking script
- Phase 2 (Dec 20 Dec 31):
 - Implement multi-LoRA serving
 - Update script with additional metrics
 - Perform evaluation
- Phase 3 (Jan 1 Jan 20):
 - Compile data
 - Write final report

References

- [1] Kwon, Woosuk, et al. "Efficient memory management for large language model serving with PagedAttention." Proceedings of the 29th symposium on operating systems principles. 2023.
- [2] Hu, Edward J., et al. "Lora: Low-rank adaptation of large language models." *ICLR* 1.2 (2022): 3.
- [3] https://github.com/vllm-project/vllm/tree/main