Arrow-Backed Streaming Dataframes

in Timely Dataflow
Bridging Efficient Columnar Storage with Low-Latency Streaming

Florian Klein

University of Cambridge

December 1, 2025

APACHE

ARROW

» i

Motivation: The Divide

The " Batch” World
» Tools: DuckDB, Polars, Pandas

» Format: Apache Arrow (Columnar)
» High Throughput, SIMD
» Static Data, High Latency

The ” Streaming” World

Tools: Flink, Timely Dataflow
Format: Row / Event-based
Low Latency, Iterative

Row overhead, No Standard

-0 --9--0---@>

Infinite Stream

December 1, 2025

2/10

Background: Apache Arrow

Why Arrow?
» De-facto standard for in-memory
analytics.
» Columnar Layout:

« Data of the same type is
contiguous.

» CPU Cache efficient.

« Enables SIMD vectorization.

» Zero-copy reads.

Row-Based Memory (e.g., CSV, Objects)

\
(4

Scan Age? Cache Misses!

Columnar Memory (Arrow)

s [Names T Ases
—>

Scan Age? Sequential Access!

December 1, 2025 3/10

Background: Timely Dataflow

Timely Dataflow (Rust)
» Distributed data-parallel compute engine.

» Based on the Naiad system. Map
» Key Feature: Cyclic dataflow. i
» Supports loops (lteration).
« Essential for Graph algorithms (PageRank) and ML. Join

» Tracks progress with logical timestamps.

December 1, 2025 4/10

The Solution: Arrow-Backed Streaming
Objective: Bring Arrow’s efficiency to Timely's streaming power.

Input Timely Dataflow

Arrow Batches

New API

» Core ldea: Instead of streaming single events, stream micro-batches of Arrow columns.

» Benefit: Amortize overhead, enable vectorized processing inside streaming operators.

Florian Klein (University of Cambridge) Arrow-Backed Streaming December 1, 2025

5/10

Implementation: Minimal API

Goal: A fluent, DataFrame-like APl on top of Timely scopes.

// 1. Define the Schema
let schema = Schema::new(vec![
Field::new("id", DataType::Int32, false),
Field::new("val", DataType::Float64, false),
1)

timely::execute_from_args(std::env::args(), move |worker| {
worker .dataflow (|scopel {
// 2. Create Arrow Source

let stream = scope.arrow_source("data.parquet", schema.clone());

// 3. Apply DataFrame transformations

stream
.filter(col("val").gt(1lit (10.0))) // Vectorized Filter
.select(vec![col("id")1) // Columnar Projection

.inspect (I batch| println!("Row count: {}\n", batch.num_rows ()));
B

}) .unwrap () ;

December 1, 2025

6/10

Technical Challenges

The Core Tension
Optimization

Throughput vs. Latency: Arrow thrives on large batches Metric

i . N Target
(SIMD), but streaming requires low latency (small batches).
Finding the " sweet spot” size is critical.

Key Obstacles:

* Memory Management: Integrating Arrow'’s
reference-counted buffers (Arc<Array>) with Timely's Overhead (Bad)
ownership model. S Batch Size

» Serialization: Efficiently moving Arrow batches between
workers without expensive copies.

December 1, 2025 7/10

Evaluation Plan

1. Functionality Target Performance Gains

* Implement common operators: Filter,
Select, Map.

10.2

» Demonstrate an iterative algorithm (e.g., BFS)
using DataFrames.

2. Performance (Throughput)

» Compare Row-based Timely (Standard) vs.
Arrow-Timely (Ours).

» Hypothesis: Arrow version will have higher
throughput due to cache locality and fewer

Speedup Factor (vs. Row-Based)

Filter Aggregate Join
allocations. *Estimated gains based on SIMD & cache locality benefits.

Arrow-Backed Streaming December 1, 2025 8/10

Project Timeline

Arrow Source
Operators (Filter/Map)
Iteration Support

Benchmarking

Arrow-Backed Streaming

December 1, 2025

9/10

Conclusion

" Arrow-Backed Streaming Dataframes”

» Problem: Current streaming systems miss out on columnar performance optimizations.

» Solution: Native Arrow integration in Timely Dataflow.

+ Impact:
» Faster real-time analytics.
« Unified data representation (Batch <> Stream).
« Enabler for complex iterative algorithms on DataFrames.

Thank you! Questions?

December 1, 2025

10/10

