
Arrow-Backed Streaming Dataframes
in Timely Dataflow

Bridging Efficient Columnar Storage with Low-Latency Streaming

Florian Klein

University of Cambridge

December 1, 2025

+

Motivation: The Divide

The ”Batch” World

Tools: DuckDB, Polars, Pandas

Format: Apache Arrow (Columnar)

High Throughput, SIMD

Static Data, High Latency

Static Table

The ”Streaming” World

Tools: Flink, Timely Dataflow

Format: Row / Event-based

Low Latency, Iterative

Row overhead, No Standard

Infinite Stream

Florian Klein (University of Cambridge) Arrow-Backed Streaming December 1, 2025 2 / 10

Background: Apache Arrow

Why Arrow?

De-facto standard for in-memory
analytics.

Columnar Layout:

Data of the same type is
contiguous.
CPU Cache efficient.
Enables SIMD vectorization.

Zero-copy reads.

Row-Based Memory (e.g., CSV, Objects)

Scan Age? Cache Misses!

Columnar Memory (Arrow)

IDs Names Ages

Scan Age? Sequential Access!

Florian Klein (University of Cambridge) Arrow-Backed Streaming December 1, 2025 3 / 10

Background: Timely Dataflow

Timely Dataflow (Rust)

Distributed data-parallel compute engine.

Based on the Naiad system.

Key Feature: Cyclic dataflow.

Supports loops (Iteration).
Essential for Graph algorithms (PageRank) and ML.

Tracks progress with logical timestamps.

Source

Map

Join

Sink

Iteration
Loop

Florian Klein (University of Cambridge) Arrow-Backed Streaming December 1, 2025 4 / 10

The Solution: Arrow-Backed Streaming

Objective: Bring Arrow’s efficiency to Timely’s streaming power.

Parquet Files
or IPC Stream

Input

Stream of Batches
Stream<RecordBatch>

Timely Dataflow

DataFrame Ops
.filter(col("x") > 5)

.select(col("y"))

New API

Arrow Batches

Core Idea: Instead of streaming single events, stream micro-batches of Arrow columns.

Benefit: Amortize overhead, enable vectorized processing inside streaming operators.

Florian Klein (University of Cambridge) Arrow-Backed Streaming December 1, 2025 5 / 10

Implementation: Minimal API

Goal: A fluent, DataFrame-like API on top of Timely scopes.

// 1. Define the Schema

let schema = Schema ::new(vec![

Field::new("id", DataType ::Int32 , false),

Field::new("val", DataType ::Float64 , false),

]);

timely :: execute_from_args(std::env::args(), move |worker| {

worker.dataflow (|scope| {

// 2. Create Arrow Source

let stream = scope.arrow_source("data.parquet", schema.clone ());

// 3. Apply DataFrame transformations

stream

.filter(col("val").gt(lit (10.0))) // Vectorized Filter

.select(vec![col("id")]) // Columnar Projection

.inspect (| batch| println !("Row count: {}\n", batch.num_rows ()));

});

}). unwrap ();

Florian Klein (University of Cambridge) Arrow-Backed Streaming December 1, 2025 6 / 10

Technical Challenges

The Core Tension
Throughput vs. Latency: Arrow thrives on large batches
(SIMD), but streaming requires low latency (small batches).
Finding the ”sweet spot” size is critical.

Key Obstacles:

Memory Management: Integrating Arrow’s
reference-counted buffers (Arc<Array>) with Timely’s
ownership model.

Serialization: Efficiently moving Arrow batches between
workers without expensive copies.

Batch Size

Metric

Latency (Bad)

Overhead (Bad)

Optimization
Target

Florian Klein (University of Cambridge) Arrow-Backed Streaming December 1, 2025 7 / 10

Evaluation Plan

1. Functionality

Implement common operators: Filter,
Select, Map.

Demonstrate an iterative algorithm (e.g., BFS)
using DataFrames.

2. Performance (Throughput)

Compare Row-based Timely (Standard) vs.
Arrow-Timely (Ours).

Hypothesis: Arrow version will have higher
throughput due to cache locality and fewer
allocations.

Filter Aggregate Join
0

5

10

5.5

10.2

2.1

S
p
ee

d
u
p
F
a
ct
o
r
(v
s.

R
ow

-B
as
ed
) Target Performance Gains

*Estimated gains based on SIMD & cache locality benefits.

Florian Klein (University of Cambridge) Arrow-Backed Streaming December 1, 2025 8 / 10

Project Timeline

Weeks
1 2 3 4 5

Arrow Source

Operators (Filter/Map)

Iteration Support

Benchmarking

Florian Klein (University of Cambridge) Arrow-Backed Streaming December 1, 2025 9 / 10

Conclusion

”Arrow-Backed Streaming Dataframes”

Problem: Current streaming systems miss out on columnar performance optimizations.

Solution: Native Arrow integration in Timely Dataflow.

Impact:

Faster real-time analytics.
Unified data representation (Batch ↔ Stream).
Enabler for complex iterative algorithms on DataFrames.

Thank you! Questions?

Florian Klein (University of Cambridge) Arrow-Backed Streaming December 1, 2025 10 / 10

