X-RLflow: Graph Reinforcement Learning for Neural Network Subgraphs Transformation

Guoliang He, Sean Parker and Eiko Yoneki, MLSys, 2023

Presented by Yavuz Ferhatosmanoglu

Motivation

- Existing tensor graph superoptimisation systems (e.g., TASO) use greedy or backtracking search approaches
 - > Optimisation can miss globally optimal graphs
- Cost model estimates can have large discrepancy with actual costs

DNNs	COST MODEL	E2E	DIFF (%)
DALL-E	1.8269	1.7324	5.2%
INCEPTIONV3	8.3650	9.2098	10.1%
BERT	1.0453	1.1264	7.8%
SQUEEZENET	1.3082	1.4006	7.1%
RESNEXT-50	6.1545	7.6498	24%
T-T	2.4828	2.7281	9.9%

X-RLflow: RL Contribution

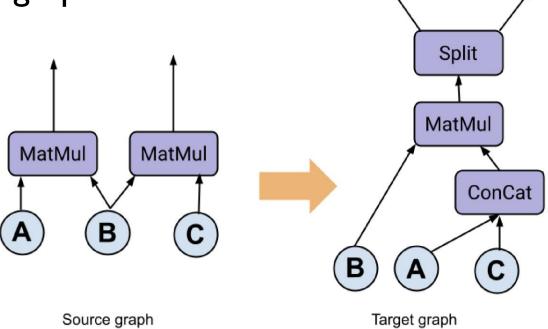
- RL can tolerate short-term performance decrease to maximise longterm rewards
 - > Sequential graph transformations can lead to globally optimal tensor graph
- RL works well with sparse or delayed reward scenarios
 - > End-to-end inference is performed every N iterations to inform the optimisation
- RL offers generalisation by reusing trained agents
 - > RL agent can be applied to graphs with different tensor shapes

X-RLflow: Graph Rewrite Rules

 Before optimisation phase: graph rewrite rules are generated by TASO's generator

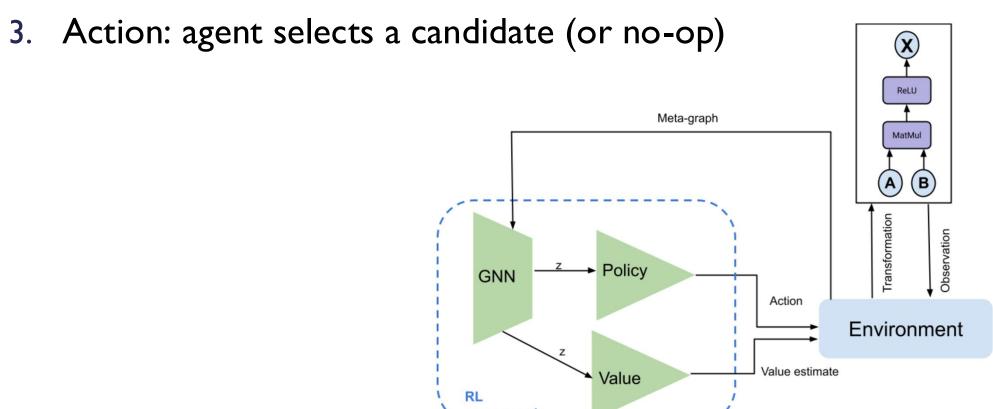
During optimisation: candidates are generated by pattern matching

rules onto the computation graph



X-RLflow: RL Architecture

- 1. Environment generates candidate graphs
- 2. Current graph and candidates are encoded into a state vector via a GNN



X-RLflow: RL Formulation

Default reward function:

$$r_t = \frac{RT_{t-1} - RT_t}{RT_0} * 100$$

Learning algorithm: Proximal Policy Optimisation (PPO) with clipping

$$J = \mathcal{L}_{clip} + c_1 \mathcal{L}_{vf} + c_2 \mathcal{L}_{entropy}$$

- End-to-end training is performed by the use of a single objective function
- > PPO enables distributed training through mini-batch updates

X-RLflow: The GNN

Update nodes through edge and node features

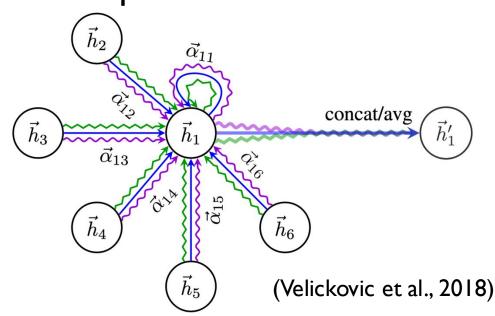
$$\vec{h'}_i = \sigma\{W(\sum_{j \in \mathcal{E}_i} \vec{e_j} || \vec{h_i})\}$$

Several graph attention layers to update node representations

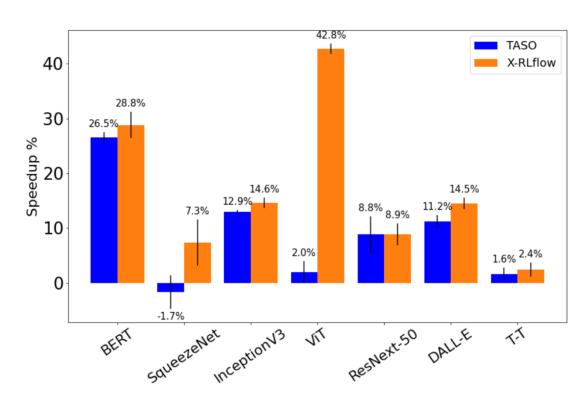
$$\vec{h'}_i = \sigma(\sum_{j \in \mathcal{N}_i} \alpha_{i,j} W \vec{h}_j)$$

Global update layer

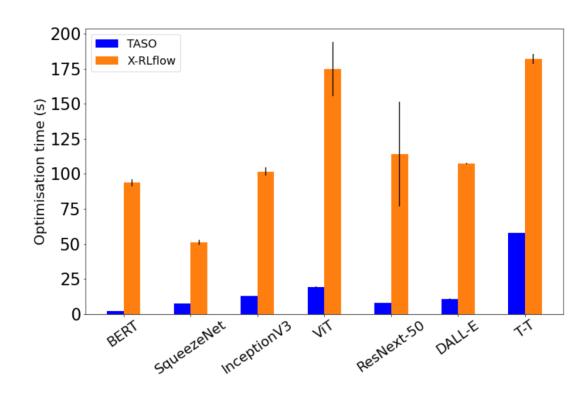
$$ec{g'} = \sigma(\sum_{\mathcal{N}} ec{h} \| ec{g})$$



Evaluation: End-to-End Benchmarks



End-to-end inference speedup

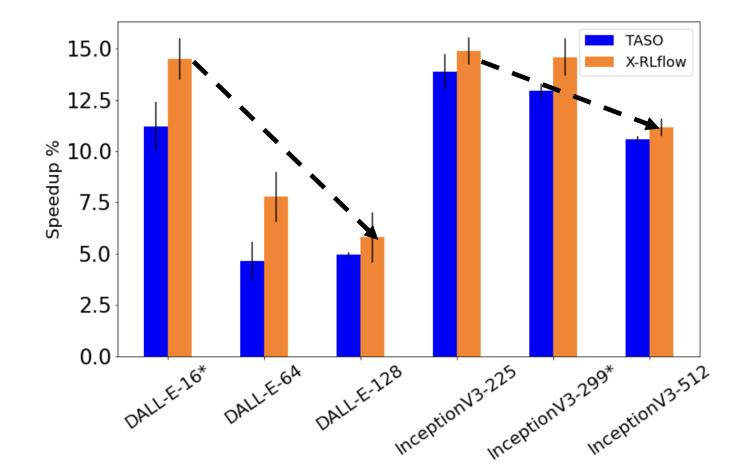


Optimisation time

Evaluation: Generalisation

Train X-RLflow in a static environment once, run on different input

tensor shapes



Final Thoughts: Strengths

- Novel approach applying RL and GNNs to graph superoptimisation
- Use of real inference latency as reward instead of proxy signals
- Strong evaluation in terms of the range of end-to-end models
- Substantial improvements over TASO and Tensat
 - > Particularly for transformer architectures
- Ability to zero-shot generalise to varying tensor shapes

Final Thoughts: Criticisms and Discussion

- High optimisation time, with training time not quantified
 - Unsuitable for just-in-time compiled scenarios
 - Training data could be generated in parallel, or RL agent could be run on GPU
- Generalisation to different tensor graphs is not supported
 - > Model-based RL with multi-graph training could enable this
- State space can become infeasibly large
 - Incorporating equality saturation can allow RL to treat semantically identical graphs as single entities

Thank you! Any Questions?

X-RLflow: Learning Algorithm

Clip objective:

$$\mathcal{L}_{clip} = -\mathbb{E}_{G}\{\min(\frac{\pi_{\theta}}{\pi_{\theta_{k}}} \cdot A^{\pi_{\theta_{k}}}, clip(\frac{\pi_{\theta}}{\pi_{\theta_{k}}}, 1 - \epsilon, 1 + \epsilon)A^{\pi_{\theta_{k}}})\}$$

Value loss:

$$\mathcal{L}_{vf} = \mathbb{E}_G\{(V_{\theta}(s_t) - V_{target})^2\}$$

Final objective:

$$J = \mathcal{L}_{clip} + c_1 \mathcal{L}_{vf} + c_2 \mathcal{L}_{entropy}$$

Evaluation: Comparison with Tensat

- Tensat: builds equality graph and employs equality saturation
- X-RLflow performs better on more complex graphs

