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Neural Networks as Computation Graphs

Modern frameworks transform a neural network implementation into
a computation graph:

Figure 1: Sample neural network code.

Figure 2: Corresponding
computation graph, taken from [2].



Computation Graph Optimization

Graph structure can be optimized, without changing the semantics:

(AxB)+(Ax(C)=Ax(B+0)




Shortcomings of Existing Approaches

Existing frameworks, such as TensorFlow [2], TVM [3], MetaFlow [5] or
TensorRT [1] have one or more of the following limitations:

1. Graph substitutions have to be manually designed

2. Graph substitutions are not formally verified

3. Graph substitutions are applied greedily, decreasing the
possible graph search space

4. Graph and data layout are not jointly optimized



TASQ’s Contributions




Finding Graph Substitutions Automatically

TASO tries to automatically find a set of potential substitutions S by
brute-force:

1. Enumerate all possible graphs of size < Ninreshold, and for each
graph:
11 Calculate the FingerPrint (hashing computation output on a
small set of inputs)
2. For all graph pairs with the same FingerPrint

21 Compute graph outputs on a large set of inputs
2.2 If equivalent on the larger test set: Add to substitution set S



Example of an Automatically Generated Substitution

Y Y Y
t 4 +
add add b
v 4. >3
avg avg DWC DWC \
3x3 3x3 3x3 33 add
— 7 T T
X X Cy3x3) X Cy3:3)

Figure 3: Example of a substitution generated by TASO, taken from [4].



Verification of Substitutions — 1/2

Just testing is not enough to guarantee equivalence

- Instead: Use manually defined operator properties to formally
model the operators and prove the substitutions’ correctness

- Example operator property of linearity of matrix multiplication:

VX, y,z.matmul(x, ewadd(y,z)) = ewadd(matmul(x,y), matmul(x,z))



Verification of Substitutions — 1/2

Just testing is not enough to guarantee equivalence

- Instead: Use manually defined operator properties to formally
model the operators and prove the substitutions’ correctness

- Example operator property of linearity of matrix multiplication:
VX, y,z.matmul(x, ewadd(y,z)) = ewadd(matmul(x,y), matmul(x,z))

Given the set of operator properties P and graph substitutions S,
use a first-order theorem prover to check for entailment

PES



Operator Property Verification

Substitution verification requires correctness of operator properties
P:

1. Tensor-level: Verify properties for all combinations of operator
parameters and tensors of shape < (4 x 4 x 4 x 4)

2. Logic-level: Check P for inconsistency and redundancy



Graph Substitution Pruning

Resulting graph substitutions might still contain lots of
redundancies:

1. Renamed input tensors: If a substitution can be obtained from
another one, simply by renaming one (or more) input tensors,
remove all but the most general one.

X X
X ¢ L} 1
t n 4 matmul matmul
matmu. matmul >\ /v
/ \t A t/‘; \ / matmul matmul
matmu; matmu 7 VAR
/N 7N n & » @
A B c A B C
source graph: A x (B x C) target graph: (AxB)x C source graph: A x (B x A) target graph: (A x B) x A

Figure 4: Two graph substitutions that are equivalent up to tensor
names, taken from [4].



Graph Substitution Pruning

Resulting graph substitutions might still contain lots of
redundancies:

2. Common subgraphs: If a substitution contains common
subgraphs on both sides, try to remove the common subgraph
and verify the result.

X X
3 3
add add
/ matmul matmul \
A B C B C A
source graph: A + (B x C) target graph: (B x C) + A

Figure 4: Graph substitution with a common subgraphs on both sides,
taken from [4].



Graph and Layout Optimization

With the generated, verified and pruned substitution set S, try to
optimize the computation graph Gj,:

1. Initialize priority queue with Gj,
2. Take the currently best graph G from the priority queue

3. For every substitution s € S and possible data layout [:

31 Apply [and s on G to obtain G’

3.2 Check that G’ contains no cycles

3.3 Estimate graph runtime by summing over individual operator
runtimes

3.4 If graph runtime is at most o worse than the current optimum:
Add G’ to priority queue

4. Repeat from 2. as long as priority queue is not empty

5. Otherwise, return the graph with the lowest runtime



Evaluation




Evaluation Setup

TASO was evaluated on 5 different neural network architectures,
against various frameworks:

- Architectures: ResNet, ResNeXt-50, NasNet-A, NasRNN, BERT
- Baseline frameworks: TensorFlow (XLA), TensorRT, MetaFlow, TVM



Inference Time Comparisons

mmm (A) TensorFlow mmm (C) TensorRT mmm (E) TASO w/ cuDNN (F) TVM mm (G) TASO w/ TVM
(B) TensorFlow XLA (D) MetaFlow
< o " ” =0
20 1.0x 10
'E s 1.3x L .
PRt * 8 1.4x
9 6 15
H 10 ° 10
g s 0 . Lax |
€0 0s
£ 2 s 2.8 1.8x
oo A B C D E F G ° A B C D E F G 0 A B C D E F G ° A B C D E F G o0 A B C D E
ResNet-50 NasNet-A ResNeXt-50 NasRNN BERT

Figure 5: Inference time comparisons of different DNN frameworks and
architectures, taken from [4].
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Impact of Graph Substitution Size
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Figure 6: Relative speedup on different neural network architectures, with
varying substitution generation thresholds.



Impact of Pruning Substitutions

Pruning Remaining Reduction
Techniques Substitutions v.s. Initial
Initial 28744 1x
Input tensor renaming 17346 1.7x
Common subgraph 743 39%

Figure 7: Graph substitution set reductions after different pruning stages,
taken from [4].



Impact of Jointly Optimizing Graph and Data Layout
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Figure 8: Inference time comparison of BERT using different optimization
strategies, taken from [4].
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Conclusion




Strengths:

- First-in-Class: First automated generator for graph substitutions.

- Versatility: Functions as a framework-agnostic optimization
backend.

- Thorough evaluation: Tested rigorously, including ablation.

- Impact: Tackles multiple critical bottlenecks inherent to manual
heuristic definition.



Strengths:

- First-in-Class: First automated generator for graph substitutions.

- Versatility: Functions as a framework-agnostic optimization
backend.

- Thorough evaluation: Tested rigorously, including ablation.

- Impact: Tackles multiple critical bottlenecks inherent to manual
heuristic definition.

Limitations:

- Expert Knowledge Required: Requires manual abstraction of
operators into first-order logic.

- Combinatorial Explosion: Brute-force enumeration fails for
subgraph sizes > 4.

- Operator Scalability: Only tested on a small operator set
(n = 12); larger scaling is unclear.



TLDR

Key contributions:
- Auto-generation: Finds substitutions via brute-force
backtracking.

- Formal Verification: Uses a theorem prover to ensure
correctness.

- Auto-pruning: Automatically filters the substitution search
space.

- Joint Optimization: Tunes graph structure and data layout
together.

- Proven Results: Outperforms established frameworks.
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Questions?
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Total Optimization Overhead

The authors report an overhead of 10 minutes for the overall
procedure (generating and verifying substitutions, optimizing
computation graph with the substitutions), with a maximum graph
size threshold of 4
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