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Neural Networks as Computation Graphs

Modern frameworks transform a neural network implementation into
a computation graph:

Figure 1: Sample neural network code.

import tensorflow as tf

b = tf.Variable(tf.zeros([100])) # 100-d vector, init to zeroes
W = tf.Variable(tf.random_uniform([784,100],-1,1)) # 784x100 matrix w/rnd vals
x = tf.placeholder(name="x") # Placeholder for input
relu = tf.nn.relu(tf.matmul(W, x) + b) # Relu(Wx+b)
C = [...] # Cost computed as a function

# of Relu

s = tf.Session()
for step in xrange(0, 10):

input = ...construct 100-D input array ... # Create 100-d vector for input
result = s.run(C, feed_dict={x: input}) # Fetch cost, feeding x=input
print step, result

Figure 1: Example TensorFlow code fragment
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Figure 2: Corresponding computation graph for Figure 1

Category Examples
Element-wise mathematical operations Add, Sub, Mul, Div, Exp, Log, Greater, Less, Equal, ...
Array operations Concat, Slice, Split, Constant, Rank, Shape, Shuffle, ...
Matrix operations MatMul, MatrixInverse, MatrixDeterminant, ...
Stateful operations Variable, Assign, AssignAdd, ...
Neural-net building blocks SoftMax, Sigmoid, ReLU, Convolution2D, MaxPool, ...
Checkpointing operations Save, Restore
Queue and synchronization operations Enqueue, Dequeue, MutexAcquire, MutexRelease, ...
Control flow operations Merge, Switch, Enter, Leave, NextIteration

Table 1: Example TensorFlow operation types

by the session interface is Run, which takes a set of out-
put names that need to be computed, as well as an op-
tional set of tensors to be fed into the graph in place of
certain outputs of nodes. Using the arguments to Run,
the TensorFlow implementation can compute the transi-
tive closure of all nodes that must be executed in order
to compute the outputs that were requested, and can then

arrange to execute the appropriate nodes in an order that
respects their dependencies (as described in more detail
in 3.1). Most of our uses of TensorFlow set up a Session
with a graph once, and then execute the full graph or a
few distinct subgraphs thousands or millions of times via
Run calls.

3

Figure 2: Corresponding
computation graph, taken from [2].
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Computation Graph Optimization

Graph structure can be optimized, without changing the semantics:

(A× B) + (A× C) = A× (B+ C)

A B C

matmul matmul

add

A B C

add

matmul

Y Y
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Shortcomings of Existing Approaches

Existing frameworks, such as TensorFlow [2], TVM [3], MetaFlow [5] or
TensorRT [1] have one or more of the following limitations:

1. Graph substitutions have to be manually designed
2. Graph substitutions are not formally verified
3. Graph substitutions are applied greedily, decreasing the
possible graph search space

4. Graph and data layout are not jointly optimized

3



TASO’s Contributions



Finding Graph Substitutions Automatically

TASO tries to automatically find a set of potential substitutions S by
brute-force:

1. Enumerate all possible graphs of size < nthreshold, and for each
graph:
1.1 Calculate the FingerPrint (hashing computation output on a

small set of inputs)
2. For all graph pairs with the same FingerPrint

2.1 Compute graph outputs on a large set of inputs
2.2 If equivalent on the larger test set: Add to substitution set S

4



Example of an Automatically Generated Substitution
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Figure 7. End-to-end inference performance comparison among existing DNN frameworks and TASO. The experiments were
performed using a single inference sample, and all numbers were measured by averaging 1,000 runs on a NVIDIA V100 GPU.
We evaluated the TASO’s performance with both the cuDNN and TVM backends. For each DNN architecture, the numbers
above the TASO bars show the speedup over the best existing approach with the same backend.
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(a) NasNet-A Architecture.
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(b) Example substitutions discovered by TASO.
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(c) A sequence of substitutions discovered by TASO.

Figure 8. The NasNet-A architecture [40] and substitutions discovered by TASO to optimize NasNet-A. Figure 8a shows the
architecture, where avg, conv, and DWC refer to average pooling, convolution, and depth-wise convolution, respectively. The
weight tensors are eliminated for simplicity. Figures 8b and 8c shows two sequences of substitutions discovered by TASO that
are used to optimize subgraphs marked in the black and red boxes in Figure 8a. In Figures 8b and 8c, each arrow refers to a
substitution, and the subgraphs in the same color are the source and target graphs of the substitution. Cpool(3 × 3) in Figure 8b
is a constant matrix whose entries are 1/9, as de!ned in Table 1. The enlarge operator in Figure 8c increases a convolution’s
kernel size by padding the weight (i.e.,W1) with extra 0’s. For inference workloads, operators in the gray areas in Figures 8b
and 8c only depend on pre-trained weights (i.e.,Wi ), and therefore can be pre-computed.

the inputs. TASO preprocesses operators whose inputs are
all pre-trained weights (e.g., the gray areas in Figure 8) to
further reduce the inference time.

ResNeXt-50 replaces large convolutions in ResNet-50
with multiple branches of much smaller convolutions to im-
prove both model accuracy and runtime e"ciency, as shown

57

Figure 3: Example of a substitution generated by TASO, taken from [4].
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Verification of Substitutions – 1/2

Just testing is not enough to guarantee equivalence

• Instead: Use manually defined operator properties to formally
model the operators and prove the substitutions’ correctness

• Example operator property of linearity of matrix multiplication:

∀x, y, z.matmul(x,ewadd(y, z)) = ewadd(matmul(x, y),matmul(x, z))

Given the set of operator properties P and graph substitutions S ,
use a first-order theorem prover to check for entailment

P |= S
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Operator Property Verification

Substitution verification requires correctness of operator properties
P :

1. Tensor-level: Verify properties for all combinations of operator
parameters and tensors of shape < (4× 4× 4× 4)

2. Logic-level: Check P for inconsistency and redundancy

7



Graph Substitution Pruning

Resulting graph substitutions might still contain lots of
redundancies:

1. Renamed input tensors: If a substitution can be obtained from
another one, simply by renaming one (or more) input tensors,
remove all but the most general one.TASO SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

We also present a methodology for developing operator
properties, which assists the developer in two ways: (1) dis-
covery of required properties is guided by the graph substi-
tution generator, and (2) operator properties are subject to
further validation using symbolic execution on tensors of
small sizes. During the development process, we found that
the our veri!cation methodology uncovered several bugs,
both in the operator speci!cations and in the implementation
of the graph substitution generator.

Joint optimization. TASO jointly optimizes graph substi-
tutions and data layout transformations by integrating them
into a common representation. TASO uses the cost-based
backtracking search algorithm of MetaFlow [21] and extends
its cost model to also capture performance di"erences that
arise from di"erent data layouts. During the search, TASO
measures the performance of a proposed DNN operator with
a speci!c proposed data layout on the hardware. These indi-
vidual measurements are used to predict the performance of
an entire computation graph with speci!c data layouts.

Evaluation. We evaluate TASO on !ve real-world DNN ar-
chitectures. For widely used DNNs optimized by existing
frameworks, such as ResNet-50 [18], TASO matches the per-
formance of these frameworks with hand-written rules by
using operator de!nitions and speci!cations 1,400 lines long.

For new DNN architectures such as ResNeXt-50 [38], Nas-
RNN [39], NasNet-A [40], and BERT [15], TASO is up to
2.8× faster than state-of-the-art frameworks, by automati-
cally discovering novel graph substitutions to optimize these
architectures. Compared to sequentially optimizing graph
substitutions and data layout, we show that the joint opti-
mization can further improve performance by 1.2×. In all
experiments, TASO discovered an optimized graph in less
than ten minutes, making it feasible to use when optimizing
a DNN architecture before large-scale deployment.

2 Graph Substitution Generator
This section describes the TASO substitution generator that
automatically generates potential substitutions given a list
of primitive operators. The generation algorithm !nds all
valid substitutions up to a certain size.

To !nd all potential substitutions, a straightforward ap-
proach is to test all pairs of graphs for equivalence, which
requires a quadratic number of tests between graphs. We
adopt an idea from compiler superoptimization [7] and com-
pute a !ngerprint for each graph, which is a hash of the graph
outputs on some speci!c inputs. Two graphs are certainly
not equivalent if they have di"erent !ngerprints, and so by
only comparing graphs with the same !ngerprint, TASO
signi!cantly reduces the number of equivalence tests. In
the experiments, we observe that all graphs with the same
!ngerprint are veri!ed equivalent by TASO.
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(a) Associativity of matrix multiplication.
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(b) Fusing two matrix multiplications using concatenation and split.

Figure 2. Graph substitution examples.

2.1 Graph Substitution De!nition
A graph substitution consists of three components: (1) a source
graph that is matched to subgraphs in a computation graph;
(2) a target graph1 that de!nes a functionally equivalent new
subgraph to replace thematched subgraph; and (3) amapping
relation between input/output tensors in the source and tar-
get graphs. Figure 2a shows an example graph substitution
using the associativity of matrix multiplication. Figure 2b
fuses two matrix multiplications into one using concatena-
tion and split along the row dimension. A, B, C , X , and Y
identify the mapping between input and output tensors in
the source and target graphs.

A graph substitution is speci!ed independently of the con-
crete tensor shapes. For example, the substitutions of Figure 2
can be applied to tensors A,B, and C of any concrete shape.
Some operators also depend on con!guration parameters to
determine the behavior of the operator. For example, the
parameters of convolution determine the strides, padding,
and activation (e.g., applying the relu function [28] as part
of convolution); and the parameters of split or concatenation
determine the axis along which to apply the operator.

Concatenation and split operators. Concatenation and
split operators are commonly used in fusing operators with
shared inputs, as illustrated in Figure 2b. A split operator
partitions a tensor into two disjoint sub-tensors along a

1In some of the superoptimization literature, what we call the source is
called the target, and what we call the target is called the rewrite.
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generated substitutions. This veri!cation amounts to entail-
ment checking in !rst-order logic, checking that the operator
properties entail functional equivalence of the source and
target graphs of each generated substitution.
Modeling the operators using !rst-order logic involves

a degree of abstraction (e.g., the shapes of tensors are not
modeled). We found this level of abstraction to be suitable
for verifying graph substitutions. We also note that the data
layout is abstracted for veri!cation purposes—layout does
not a"ect operator semantics, and the optimizer (Section 5)
ensures that layouts are used consistently.

Methodology for developing operator properties. We de-
veloped operator properties as needed to determine the cor-
rectness of generated graph substitutions using an iterative
process. During the development process, we ran the sub-
stitution generator and tried to verify all discovered substi-
tutions. If a substitution could not be veri!ed and appeared
correct, we added an appropriate property (or properties). To
safeguard against mistakes in operator properties, we used
further validation steps.
To validate operator properties, TASO veri!es the opera-

tor properties themselves for all combinations of parameter
values and tensor sizes up to a small bound—in our evalu-
ation the bound was 4×4×4×4. For this, TASO requires a
basic symbolic implementation of each tensor operator in
Python. TASO symbolically executes this implementation
for tensors of small size, e"ectively elaborating the tensor
operations into symbolic real arithmetic expressions, where
activation functions (e.g., relu) are modeled using uninter-
preted functions. TASO then uses Z3, here as an SMT solver
for the theory of real arithmetic, to verify the operator prop-
erties. For example, if a user would try to add the (wrong)
property stating the convolution operator is linear for all
activation modes (including relu activation), then this check
would show that this property is not satis!ed by the actual
operators.
As an additional validation step that assists the develop-

ment process, TASO checks that the set of operator prop-
erties is consistent and does not contain redundancies (i.e.,
a property entailed by other properties), which amounts to
!rst-order entailment checks. These checks are also useful
for discovering erroneous properties, and are cheaper to
perform than the veri!cation for small tensor sizes.

During our development process, the veri!cation method-
ology revealed several subtle bugs. Some bugs in the graph
substitution generator were found when it generated substi-
tutions that could not be veri!ed, and the validation steps
described above revealed several bugs in candidate operator
properties. In our experience, a new operator can be sup-
ported with a small amount of e"ort, usually a few hours
of work by an expert. Typically a few properties must be
written for each operator. In our evaluation, we were able to
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(a) A redundant substitution that is equivalent to Figure 2a by renaming
input tensor C with A.
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(b) A redundant substitution with a common subgraph.
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(c) A redundant substitution with a common subgraph.

Figure 4. Example redundant substitutions pruned by TASO.
Matmul and Add refer to matrix multiplication and element-
wise addition, respectively. For each subgraph, A, B, and C
refer to its input tensors, while X refers to the output tensor.

verify all 743 generated graph substitutions using 43 operator
properties (see Table 2).

4 Pruning Redundant Substitutions
A graph substitution is redundant if it is subsumed by a
more general valid substitution. This section describes the
pruning techniques used by TASO to eliminate redundant
graph substitutions. All pruning steps preserve all optimiza-
tion opportunities: if graph G can be transformed into graph
G′ using a sequence of substitutions, then G can always be
transformed into G′ after pruning (possibly using a di"erent
set of transformations).

Input tensor renaming. TASO eliminates graph substitu-
tions identical to other substitutions modulo input tensor

53

Figure 4: Two graph substitutions that are equivalent up to tensor
names, taken from [4].
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Graph Substitution Pruning

Resulting graph substitutions might still contain lots of
redundancies:

2. Common subgraphs: If a substitution contains common
subgraphs on both sides, try to remove the common subgraph
and verify the result.

TASO SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

generated substitutions. This veri!cation amounts to entail-
ment checking in !rst-order logic, checking that the operator
properties entail functional equivalence of the source and
target graphs of each generated substitution.
Modeling the operators using !rst-order logic involves

a degree of abstraction (e.g., the shapes of tensors are not
modeled). We found this level of abstraction to be suitable
for verifying graph substitutions. We also note that the data
layout is abstracted for veri!cation purposes—layout does
not a"ect operator semantics, and the optimizer (Section 5)
ensures that layouts are used consistently.

Methodology for developing operator properties. We de-
veloped operator properties as needed to determine the cor-
rectness of generated graph substitutions using an iterative
process. During the development process, we ran the sub-
stitution generator and tried to verify all discovered substi-
tutions. If a substitution could not be veri!ed and appeared
correct, we added an appropriate property (or properties). To
safeguard against mistakes in operator properties, we used
further validation steps.
To validate operator properties, TASO veri!es the opera-

tor properties themselves for all combinations of parameter
values and tensor sizes up to a small bound—in our evalu-
ation the bound was 4×4×4×4. For this, TASO requires a
basic symbolic implementation of each tensor operator in
Python. TASO symbolically executes this implementation
for tensors of small size, e"ectively elaborating the tensor
operations into symbolic real arithmetic expressions, where
activation functions (e.g., relu) are modeled using uninter-
preted functions. TASO then uses Z3, here as an SMT solver
for the theory of real arithmetic, to verify the operator prop-
erties. For example, if a user would try to add the (wrong)
property stating the convolution operator is linear for all
activation modes (including relu activation), then this check
would show that this property is not satis!ed by the actual
operators.
As an additional validation step that assists the develop-

ment process, TASO checks that the set of operator prop-
erties is consistent and does not contain redundancies (i.e.,
a property entailed by other properties), which amounts to
!rst-order entailment checks. These checks are also useful
for discovering erroneous properties, and are cheaper to
perform than the veri!cation for small tensor sizes.

During our development process, the veri!cation method-
ology revealed several subtle bugs. Some bugs in the graph
substitution generator were found when it generated substi-
tutions that could not be veri!ed, and the validation steps
described above revealed several bugs in candidate operator
properties. In our experience, a new operator can be sup-
ported with a small amount of e"ort, usually a few hours
of work by an expert. Typically a few properties must be
written for each operator. In our evaluation, we were able to
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(a) A redundant substitution that is equivalent to Figure 2a by renaming
input tensor C with A.
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(b) A redundant substitution with a common subgraph.
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(c) A redundant substitution with a common subgraph.

Figure 4. Example redundant substitutions pruned by TASO.
Matmul and Add refer to matrix multiplication and element-
wise addition, respectively. For each subgraph, A, B, and C
refer to its input tensors, while X refers to the output tensor.

verify all 743 generated graph substitutions using 43 operator
properties (see Table 2).

4 Pruning Redundant Substitutions
A graph substitution is redundant if it is subsumed by a
more general valid substitution. This section describes the
pruning techniques used by TASO to eliminate redundant
graph substitutions. All pruning steps preserve all optimiza-
tion opportunities: if graph G can be transformed into graph
G′ using a sequence of substitutions, then G can always be
transformed into G′ after pruning (possibly using a di"erent
set of transformations).

Input tensor renaming. TASO eliminates graph substitu-
tions identical to other substitutions modulo input tensor

53

Figure 4: Graph substitution with a common subgraphs on both sides,
taken from [4].
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Graph and Layout Optimization

With the generated, verified and pruned substitution set S , try to
optimize the computation graph Gin:

1. Initialize priority queue with Gin
2. Take the currently best graph G from the priority queue
3. For every substitution s ∈ S and possible data layout l:

3.1 Apply l and s on G to obtain G′

3.2 Check that G′ contains no cycles
3.3 Estimate graph runtime by summing over individual operator

runtimes
3.4 If graph runtime is at most α worse than the current optimum:

Add G′ to priority queue

4. Repeat from 2. as long as priority queue is not empty
5. Otherwise, return the graph with the lowest runtime

9



Evaluation



Evaluation Setup

TASO was evaluated on 5 different neural network architectures,
against various frameworks:

• Architectures: ResNet, ResNeXt-50, NasNet-A, NasRNN, BERT
• Baseline frameworks: TensorFlow (XLA), TensorRT, MetaFlow, TVM
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Inference Time Comparisons
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Figure 7. End-to-end inference performance comparison among existing DNN frameworks and TASO. The experiments were
performed using a single inference sample, and all numbers were measured by averaging 1,000 runs on a NVIDIA V100 GPU.
We evaluated the TASO’s performance with both the cuDNN and TVM backends. For each DNN architecture, the numbers
above the TASO bars show the speedup over the best existing approach with the same backend.
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(a) NasNet-A Architecture.
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(b) Example substitutions discovered by TASO.
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(c) A sequence of substitutions discovered by TASO.

Figure 8. The NasNet-A architecture [40] and substitutions discovered by TASO to optimize NasNet-A. Figure 8a shows the
architecture, where avg, conv, and DWC refer to average pooling, convolution, and depth-wise convolution, respectively. The
weight tensors are eliminated for simplicity. Figures 8b and 8c shows two sequences of substitutions discovered by TASO that
are used to optimize subgraphs marked in the black and red boxes in Figure 8a. In Figures 8b and 8c, each arrow refers to a
substitution, and the subgraphs in the same color are the source and target graphs of the substitution. Cpool(3 × 3) in Figure 8b
is a constant matrix whose entries are 1/9, as de!ned in Table 1. The enlarge operator in Figure 8c increases a convolution’s
kernel size by padding the weight (i.e.,W1) with extra 0’s. For inference workloads, operators in the gray areas in Figures 8b
and 8c only depend on pre-trained weights (i.e.,Wi ), and therefore can be pre-computed.

the inputs. TASO preprocesses operators whose inputs are
all pre-trained weights (e.g., the gray areas in Figure 8) to
further reduce the inference time.

ResNeXt-50 replaces large convolutions in ResNet-50
with multiple branches of much smaller convolutions to im-
prove both model accuracy and runtime e*ciency, as shown

57

Figure 5: Inference time comparisons of different DNN frameworks and
architectures, taken from [4].
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Impact of Graph Substitution Size
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Figure 10.Aheatmap of how often the veri!ed substitutions are used to optimize the !ve DNN architectures. Only substitutions
used in at least one DNN are listed. For each architecture, the number indicates how many times a substitution is used by
TASO to obtain the optimized graph.
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Figure 11. Performance comparison by using graph substi-
tutions with di"erent size limitations. The y-axis shows the
relative speedups over the input computation graphs.
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Figure 12. End-to-end inference performance comparison
on BERT using di"erent strategies to optimize graph substi-
tution and data layout.

This graph optimization can only be captured when graph
substitution and data layout are jointly considered.

7.6 Graph Substitution Veri!er
We evaluate the performance of the graph substitution veri-
!er for its two key tasks: verifying generated substitutions
against operator speci!cations, and validating the operator
speci!cations themselves to aid in the development process

(Section 3). Our implementation uses Z3 [14] to automati-
cally discharge all proof obligations, and our experiments
were performed with Z3 version 4.8.5.

Generating the 743 graph substitutions takes around !ve
minutes, and verifying them against the 43 speci!ed oper-
ator properties takes less than 10 minutes. When checking
the speci!cation for redundancies we use Z3 to search for a
proof of an invalid formula (stating that a speci!ed property
is entailed by the rest of the speci!cation). This search can
continue inde!nitely, and in our evaluation we used a time-
out of 10 seconds per query, resulting in a run time of less
than 10 minutes (for 43 axioms). During the development
process, when we had some redundant speci!cations they
were discovered in a few seconds.

The validation check that veri!es the operator speci!-
cation for all combinations of parameter values and tensor
sizes up to 4×4×4×4 is more computationally expensive, with
roughly one million proof obligations. We parallelized it us-
ing 128 CPU cores, which resulted in a run time of roughly
one hour. During the development process, we also found it
useful to verify the operators for more restricted combina-
tions. For example, verifying the speci!cation for tensors of
size exactly 4×4×4×4 (rather than all tensors up to that size)
takes under 10 minutes using a single CPU core.

8 Related Work
Manually designed graph substitutions are used in ex-
isting DNN frameworks to optimize DNN architectures. For
example, TensorFlow, TensorRT, and TVM use a rule-based
strategy and directly perform all applicable substitutions on
an input graph [6, 8, 36]. MetaFlow [21] allows users to de-
!ne performance-decreasing substitutions to obtain a larger
space of potential graphs. The key di"erence between TASO
and these frameworks is that TASO can automatically gener-
ate candidate substitutions, and also provides semi-automatic
support for verifying their correctness. In the evaluation, we
also show that existing frameworks can directly use TASO’s
optimized graphs to improve performance.

Automated DNN code generation. Recent work has
proposed various approaches to generate hardware-speci!c
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Figure 6: Relative speedup on different neural network architectures, with
varying substitution generation thresholds.
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Table 3. The number of remaining graph substitutions after
applying the pruning techniques in order.

Pruning Remaining Reduction
Techniques Substitutions v.s. Initial
Initial 28744 1×
Input tensor renaming 17346 1.7×
Common subgraph 743 39×

renaming. For example, Figure 4a shows a redundant substi-
tution equivalent to Figure 2a by renaming input tensor C
with A. For substitutions that are equivalent through input
tensor renaming, TASO prunes all but a single most general
substitution.
Common subgraph. TASO also tries to eliminate substi-
tutions whose source and target graphs have a common
subgraph. TASO identi!es two forms of common subgraphs
that can lead to pruning.
The !rst form of common subgraph is illustrated in Fig-

ure 4b. Here, the source and target graphs both contain a
common operator with the same input tensors (highlighted
in gray boxes). The common subgraph represents an input to
other operators in both the source and target graphs. There-
fore, we can obtain a more general substitution by replacing
the common subgraph with a fresh input tensor. If this more
general substitution is indeed valid, then TASO prunes the
less general substitution.

The second form of common subgraph is demonstrated in
Figure 4c. Here, the common subgraph (highlighted in gray
boxes) includes all the outputs in both the source and target
graphs. In this case, a more general substitution can be ob-
tained by completely removing the common subgraph, mak-
ing its inputs new outputs of the source and target graphs.
TASO prunes the less general substitution if the more general
one is valid.

Table 3 shows the e"ect of the TASO pruning techniques
on the number of substitutions. We observe that both prun-
ing techniques play an important role in eliminating redun-
dant substitutions and their combination reduces the number
of substitutions TASO must consider by 39×.

5 Joint Optimizer
We now describe the TASO optimizer for jointly optimiz-
ing data layout and graph substitution. The optimizer uses
the MetaFlow [21] cost-based backtracking search algorithm
to search for an optimized computation graph by applying
veri!ed substitutions. TASO extends MetaFlow’s search al-
gorithm to also consider possible layout optimization oppor-
tunities when performing substitutions.
When applying a substitution on a matched subgraph,

based on the data layouts of tensors in the source graph and
the layouts supported by the operators, TASO enumerates
possible layouts for tensors in the target graph. As a result,
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Figure 5. A graph substitution using the transpose of ma-
trix multiplication. matmul and transpose indicate matrix
multiplication and transpose, respectively. The parentheses
show the potential layouts for each tensor in the source and
target graphs, where C and R indicate the column-major and
row-major layouts of a tensor.

Algorithm 2 Cost-Based Backtracking Search
1: Input: an input graph Gin, veri!ed substitutions S, a cost

model Cost(·), and a hyper parameter α .
2: Output: an optimized graph.
3:
4: P = {Gin} // P is a priority queue sorted by Cost.
5: while P ! {} do
6: G = P.dequeue()
7: for substitution s ∈ S do
8: // Layou&(G, s) returns possible layouts applying s on G.
9: for layout l ∈ L#$%ut(G, s) do
10: // App(y(G, s, l) applies s on G with layout l .
11: G′ = A(()$(G, s, l)
12: if G′ is valid then
13: if Cost(G′) < Cost(Gopt) then
14: Gopt = G′

15: if Cost(G′) < α × Cost(Gopt) then
16: P.enqueue(G′)
17: return Gopt

applying a substitution on a matched computation graph
may result in multiple graphs with identical graph structure
but di"erent data layouts.
For example, Figure 5 shows the potential computation

graphs that can be derived by applying the transpose of ma-
trix multiplication on a source graph with a default column-
major layout (shown as C). Both thematrixmultiplication and
transpose operators also support an alternative row-major
layout (shown as R). The data layouts for all mapped tensors
in the target graph (i.e., A, B, and X) must match the layouts
in the source graph. The two intermediate tensors in the
target graph can have either a row-major or a column-major
layout, therefore TASO considers four di"erent computation
graphs (i.e., CC, CR, RC, and RR for the two intermediate ten-
sors) when applying this substitution. This allows TASO to

54

Figure 7: Graph substitution set reductions after different pruning stages,
taken from [4].
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Figure 11. Performance comparison by using graph substi-
tutions with di"erent size limitations. The y-axis shows the
relative speedups over the input computation graphs.
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Figure 12. End-to-end inference performance comparison
on BERT using di"erent strategies to optimize graph substi-
tution and data layout.

This graph optimization can only be captured when graph
substitution and data layout are jointly considered.

7.6 Graph Substitution Veri!er
We evaluate the performance of the graph substitution veri-
!er for its two key tasks: verifying generated substitutions
against operator speci!cations, and validating the operator
speci!cations themselves to aid in the development process

(Section 3). Our implementation uses Z3 [14] to automati-
cally discharge all proof obligations, and our experiments
were performed with Z3 version 4.8.5.

Generating the 743 graph substitutions takes around !ve
minutes, and verifying them against the 43 speci!ed oper-
ator properties takes less than 10 minutes. When checking
the speci!cation for redundancies we use Z3 to search for a
proof of an invalid formula (stating that a speci!ed property
is entailed by the rest of the speci!cation). This search can
continue inde!nitely, and in our evaluation we used a time-
out of 10 seconds per query, resulting in a run time of less
than 10 minutes (for 43 axioms). During the development
process, when we had some redundant speci!cations they
were discovered in a few seconds.

The validation check that veri!es the operator speci!-
cation for all combinations of parameter values and tensor
sizes up to 4×4×4×4 is more computationally expensive, with
roughly one million proof obligations. We parallelized it us-
ing 128 CPU cores, which resulted in a run time of roughly
one hour. During the development process, we also found it
useful to verify the operators for more restricted combina-
tions. For example, verifying the speci!cation for tensors of
size exactly 4×4×4×4 (rather than all tensors up to that size)
takes under 10 minutes using a single CPU core.

8 Related Work
Manually designed graph substitutions are used in ex-
isting DNN frameworks to optimize DNN architectures. For
example, TensorFlow, TensorRT, and TVM use a rule-based
strategy and directly perform all applicable substitutions on
an input graph [6, 8, 36]. MetaFlow [21] allows users to de-
!ne performance-decreasing substitutions to obtain a larger
space of potential graphs. The key di"erence between TASO
and these frameworks is that TASO can automatically gener-
ate candidate substitutions, and also provides semi-automatic
support for verifying their correctness. In the evaluation, we
also show that existing frameworks can directly use TASO’s
optimized graphs to improve performance.

Automated DNN code generation. Recent work has
proposed various approaches to generate hardware-speci!c
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Figure 8: Inference time comparison of BERT using different optimization
strategies, taken from [4].
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Opinions

Strengths:

• First-in-Class: First automated generator for graph substitutions.
• Versatility: Functions as a framework-agnostic optimization
backend.

• Thorough evaluation: Tested rigorously, including ablation.
• Impact: Tackles multiple critical bottlenecks inherent to manual
heuristic definition.

Limitations:

• Expert Knowledge Required: Requires manual abstraction of
operators into first-order logic.

• Combinatorial Explosion: Brute-force enumeration fails for
subgraph sizes > 4.

• Operator Scalability: Only tested on a small operator set
(n = 12); larger scaling is unclear.
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TLDR

Key contributions:

• Auto-generation: Finds substitutions via brute-force
backtracking.

• Formal Verification: Uses a theorem prover to ensure
correctness.

• Auto-pruning: Automatically filters the substitution search
space.

• Joint Optimization: Tunes graph structure and data layout
together.

• Proven Results: Outperforms established frameworks.

16



Questions?
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Total Optimization Overhead

The authors report an overhead of 10 minutes for the overall
procedure (generating and verifying substitutions, optimizing
computation graph with the substitutions), with a maximum graph
size threshold of 4
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