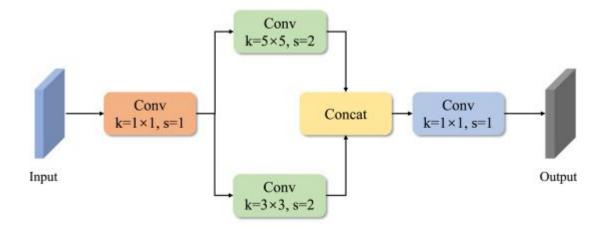
EEINet: Optimizing Tensor Programs with Derivation-Based Transformations

Presented by Ruquaiya Shuaibu (rs2377)

Motivation

- A DNN is a tensor program, which is a DAG containing tensor operators performed on a set of tensors.
- They are critical in a variety of tasks, but expensive to run
- Current optimization methods only work based on predefined operators
- But this leaves very limited discovery space



Current Optimisers

Operator level

- Uses the idea of compute/schedule
- Schedules faster kernels for each operator

Graph level

- Reorganizes operators to optimise graph
- Enumerates possible subgraphs over predefined operators

jiazhihao/**TASO**

The Tensor Algebra SuperOptimizer for Deep Learning

thu-pacman/PET

PET: Optimizing Tensor Programs with Partially Equivalent Transformations and Automated Corrections

Both sides stay within a fixed vocabulary of existing operators

Limitations

Restricted to Predefined Operator Representable (POR) Transformations

- Transformations restricted to existing ops (Conv, Matmul, Add, etc)
- Optimizers cannot create new operators

Small optimization spaces and limited speedups

Think of a calculator that can only add, subtract, multiply and divide

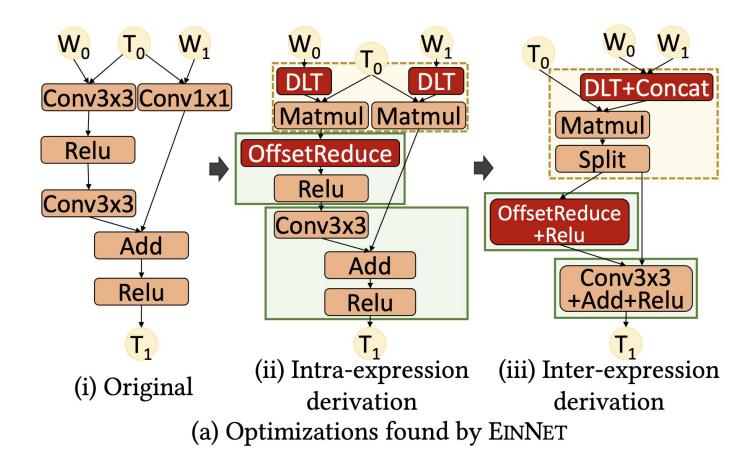
Liminting, right?

EINNet's Key Idea

General tensor algorithms to rewrite the math itself

Examples

- 1. Rewrite an op to do the same thing, but faster
- 2. Replacing old ops with new ones + customised ones
- 3. Reorganize graphs more deeply



The Three Main Challenges Addressed

Automatically discovering transformations over general expressions

- There are infinitely possible algebraic expressions
- Cannot rely on manually-written rules or superoptimzation
- EINNET uses derivation rules to systematically rewrite expressions

Turning expressions into kernels

- General expressions may not match any known operator
- Need a way to:
 - Match parts existing highly optimised kernels
 - Auto-generate kernels for the rest (eOperators)

Searching hygge space efficiently

- Transformations may require long sequences of derivations
- Brute-force search is impossible
- So a two-stage, distance guided search is used to find promising transformations

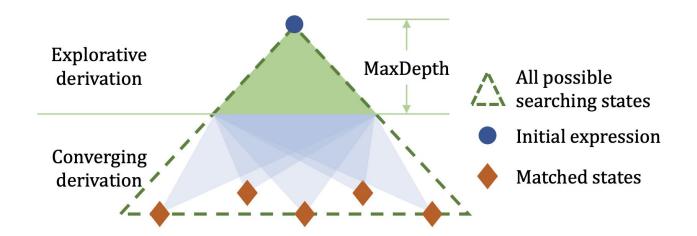
Search Strategy

Exploration Derivation Stage

Apply all possible derivation rules to expand search space

Converging Derivation Stage

Use "expression distance" to guide search toward target operators



Evaluation

On 7 DNN models:

- Up to 2.72x speedup over best existing optimizer
- Tested on both A100 and V100 GPUs
- Particularly strong on Conv-heavy models (ResNet, DCGAN, FSRCNN)
- EINNet discovers optimizations these systems cannot even represent

Key Takeaways/Contributions

- Extending the POR optimization space
- Present the first attempt to explore a significantly larger expression search space
- Built EINNET achieving 2.72x speedup over existing tensor program optimizers

Weakness/Criticisms

- Compilation time
- Requires non-trivial search time
- Some generated operators may still be memory-bound
- Can it handle dynamic graphs?

Questions?