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Motivation — High-performance Tensor Programs
• High-performance tensor programs are crucial for efficiently executing deep learning models
• Deep learning models are being deployed on a variety of hardware platforms (CPUs, GPUs,

TPUs, FPGAs, ASICs, etc.)
• It is difficult to obtain high-performance tensor programs for different operators across various

hardware platforms
• It typically requires a significant amount of engineering work to develop hardware-platform-

specific optimized code
• We need automated methods to find (generate) high-performance tensor programs
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Previous Work — Template-guided search
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• The search space is defined by templates manually written by users
• Example: TVM [5] (An Automated End-to-End Optimizing Compiler for Deep Learning)
• Templates define tensor program structures with adjustable parameters
• The compiler searches for the best values of these parameters for the

specific input shape configuration and specific hardware target
• Developing these templates requires substantial efforts
• TVM repository contains over 15K lines of code for these templates
• Constructing quality templates requires expertise in both tensor operators and hardware
• Only cover limited program structures (manually enumerating all optimization choices is prohibitive)



Previous Work — Sequential construction based search
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• The search space is defined by decomposing the program into a fixed sequence of decisions
• Example: Halide Auto-Scheduler [1]
• The compiler constructs a tensor program by sequentially unfolding

all nodes in the computation graph and making decisions at each node,
using algorithms such as beam search to search for good decisions

• When making decisions, the program is incomplete, and cost models
trained on complete programs cannot accurately predict performance

• The fixed order of sequential decisions limits the design of the search space
• Sequential construction based search is not scalable



Ansor — Design Overview
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• Ansor, a framework for automated tensor program generation
• The input of Ansor is a set of to be optimized DNNs
• Program Sampler

w Constructs a large search space and samples diverse
programs from it

• Performance Tuner
w Fine-tunes the performance of sampled programs

• Task Scheduler
w Allocates time resources for optimizing multiple subgraphs in the DNNs



Program Sampler — Sketch Generation
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• To sample programs that can cover a large search space, Ansor define a hierarchical search
space with two levels: sketch and annotation

• The high-level structure of a program is defined as sketches
• Ansor generates sketches by recursively applying a few derivation rules
• Ansor allows users to register new derivation rules and integrate them seamlessly with existing

rules to adapt to emerging algorithms and hardware



Program Sampler — Random Annotation
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• The sketches generated are incomplete programs because they only have tile structures
• Billions of low-level choices (e.g., tile size, parallel, unroll annotations) as annotations
• Ansor randomly annotates these sketches to get complete programs for fine-tuning and evaluation
• Ansor allows users to give simple hints in the computation definition to adjust the annotation policy



Performance Tuner — Evolutionary Search
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• The quality of the program sampled randomly by the program sampler cannot be guaranteed
• Ansor needs to fine-tune the performance of the sampled program through the performance tuner
• The performance tuner performs fine-tuning via evolutionary search and a learned cost model
• Initial population used in the evolutionary search:

w randomly sampled programs
w high-quality programs from the previous measurement

• Evolution operations in the evolutionary search:
w Tile size mutation
w Parallel, vectorization mutation
w Node-based crossover



Performance Tuner — Learned Cost Model
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• The learned cost model is used to predict the fitness of each program
• In Ansor, fitness is the throughput of programs
• The evolutionary search iteratively finds a small batch of promising programs based on the learned

cost model, then measures their actual execution time costs on hardware
• The cost model is orders of magnitude faster than the actual measurement, allowing us to compare

tens of thousands of programs in the search space in seconds
• The profiling data got from measurement is used to re-train the cost model to make it more accurate
• The evolutionary search gradually generates higher-quality programs for the target hardware



Task Scheduler
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• For some subgraphs, spending time in tuning them does not improve the end-to-end DNN
performance significantly
w The subgraph is not a performance bottleneck
w Tuning brings only minimal improvement in the subgraph’s performance

• Ansor needs to avoid wasting time tuning unimportant (low returns) subgraphs
• Ansor uses a gradient descent-based scheduling algorithm to efficiently optimize the objective

function (predefined or user-provided)
• Ansor prioritizes subgraphs with high initial latency, optimistically guessing to quickly reduce its

latency. If Ansor spends many iterations on the subgraph without observing a decrease in
latency, Ansor leaves the subgraph



The authors evaluated tensor programs generated by Ansor on Intel CPU, ARM CPU, NVIDIA GPU
• Single Operator Benchmark

w Common deep learning operators: C1D, C2D, C3D, GMM, GRP, etc.
w Ansor outperforms existing search frameworks by 1.1 −32.7x

• Subgraph Benchmark
w Two common subgraphs in DNNs: ConvLayer and TBG
w Ansor outperforms manual libraries and other search frameworks by 1.1 −1.8x

• End-to-End Network Benchmark
w The end-to-end inference execution time of several DNNs: ResNet-50, MobileNet-V2, etc.
w Ansor performs the best or equally the best on 24 out of 25 cases

Evaluation
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Conclusion & Key Contributions
• Proposed Ansor, a high-performance tensor program generation framework
• Proposed a hierarchical representation mechanism that can cover a large tensor program

search space
• Proposed an evolutionary search with a learned cost model to fine-tune the performance of

sampled tensor programs
• Proposed a scheduling algorithm based on gradient descent to prioritize important subgraphs
• Evaluated Ansor in common deep learning operators, subgraphs, and end-to-end networks
• Ansor outperforms state-of-the-art systems
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Agree & Strength
• Covering large search spaces via hierarchical search space representation without relying

on manually defined templates
• Efficiently fine-tune sampled programs via evolutionary search with learned cost model
• Avoid wasting time on low-return fine-tuning via gradient descent-based task scheduler
• Encouraging performance, larger search space, and generation of higher-performance

tensor programs in a shorter time
• Ansor enables automatic extensions to new operators
• All Ansor source code is publicly available
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Disagree & Weaknesses
• No sufficiently diverse hardware was evaluated. Only evaluated on Intel CPUs, ARM CPUs, and

NVIDIA GPUs. Can Ansor work well on other GPUs (such as AMD GPUs) or TPUs?
• Only evaluated common deep learning operators such as C1D, GMM, etc, but did not consider

user-defined operators. Can Ansor optimize user-defined operators?
• Only evaluated the ConvLayer and TBG subgraphs, which is very limited. Can the Ansor work

well on other subgraphs?
• In the learned cost model, the fitness only considers throughput. In actual deployment, more

factors need to be considered, such as memory consumption, energy consumption, etc.
• The scenario of multi-GPU or distributed environments has not been considered. For example,

model parallelism, data parallelism, communication overhead, synchronization, etc.
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Related Research
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• This paper was influenced by previous works:
w Automatic generation based on scheduling languages: Halide [7], TVM [5], etc.
w Search-based compilation and auto-tuning: Stock[8], OpenTuner[2], etc.
w Polyhedral compilation models: Tiramisu [3], TensorComprehensions [10], etc.
w ...

• This paper (2nd generation auto tuner. 1st: AutoTVM [5]) influenced subsequent works:
w MetaSchedule [9] (3rd generation auto tuner. Introduced modularity based on DSL)
w ML2Tuner [4] (Potential 4th generation auto tuner. Multi-level machine learning-guided)
w LoopTune [6] (Potential 4th generation auto tuner. Based on reinforcement learning)
w ...



Impact & Possible Impact
• Impact:

w This paper was accepted by OSDI 2020 [12]
w This paper has been cited 578 times
w Ansor integrated into Apache TVM as AutoScheduler [11]

• Possible Impact:
w Other areas of compilation may be inspired to explore automated high-performance program

generation, such as traditional compilers
w Other areas that rely on manual templates may be inspired to move towards automation,

such as system configuration
w Application deployment may involve increasing automation optimization
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Possible Discussion Questions
• How to achieve an automatic high-performance program search framework for traditional

compilers (C++, Java, Rust)? What are the challenges?
• How to extend Ansor to support distributed environments? How to train a learned cost model

suitable for distributed cluster environments at a low cost?
• How to extend Ansor to be aware of hardware features? How to make the learned cost model

become accurate faster by utilizing hardware information?
• How to extend Ansor to support multi-objective optimization? (Not only throughput, but also

memory consumption, program size, etc)
• Is it possible that random annotations and evolutionary search could introduce subtle, hard-to-

detect errors in tensor programs?
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Thanks

Thank you for listening
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