World Models

AUTHORS: DAVID HA, JÜRGEN SCHMIDHUBER

PRESENTED BY: OGNEN PENDAROVSKI

Motivation

- Key ideas:
 - Every action we take is based on a learned model of the world
 - Model-free RL is computationally expensive to simulate
- Can we train an agent with "observations" sampled from a learned world model, rather than a costly simulation?

Background

- Model-free methods were popular at the time: DQN for Atari games, A3C and PPO for robotics.
- Model-based methods were rare because of difficulty of making environments but had occasional successes.
- Synthesis: build imperfect but good enough model to sample instead of simulations.

Problem

- To train large neural network-based general agents, two main problems must be solved:
 - Credit assignment: difficult to update millions of weights with sparse reward signals - need smaller model to effectively iterate.
 - High dimensionality: the space of possible images is vast need strong compression.
- Solution: use separate models.

V-M-C architecture

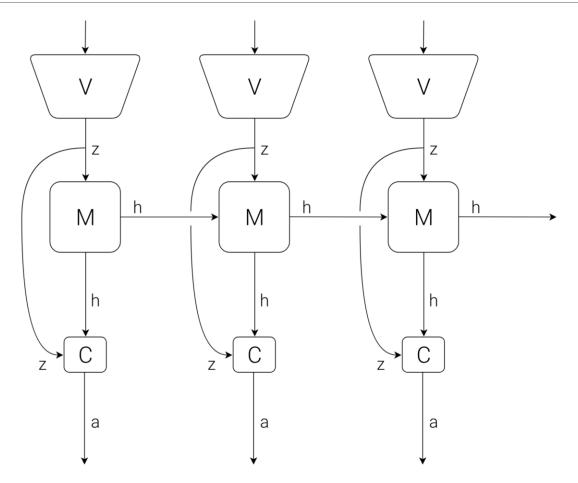
World Model

The **Vision Model (V)** encodes the high-dimensional observation into a low-dimensional latent vector.

The Memory RNN (M) integrates the historical codes to create a representation that can predict future states.

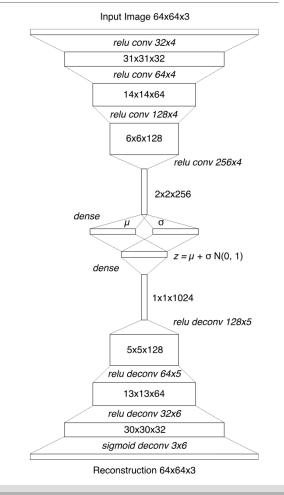
A small **Controller (C)** uses the representations from both **V** and **M** to select good actions.

The agent performs **actions** that go back and affect the environment.



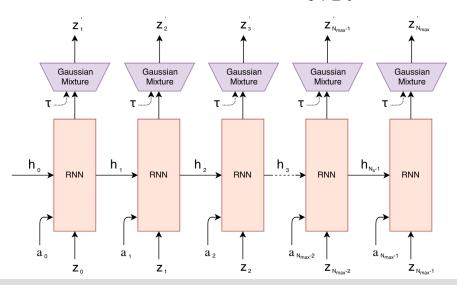
Vision component

- The vision component (V) of the architecture is a variational autoencoder (VAE).
- The encoder consists of four convolutional layers which compress the input image into two low-dimensional latent vectors: μ and σ .
- The encoder output z is sampled from the Gaussian distribution $N(\mu, \sigma I)$.
- For training purposes, z is passed through a symmetrical set of deconvolution layers to reconstruct the image.



Memory component

- The memory module (M) is represented by an RNN (specifically LSTM) with a Mixture Density Network (MDN) at the output layer.
- The memory component takes in latent vector z_t , action a_t , hidden state h_t .
- At the output, the memory component gives a probability density function of the next latent vector z_{t+1} , modified by τ .



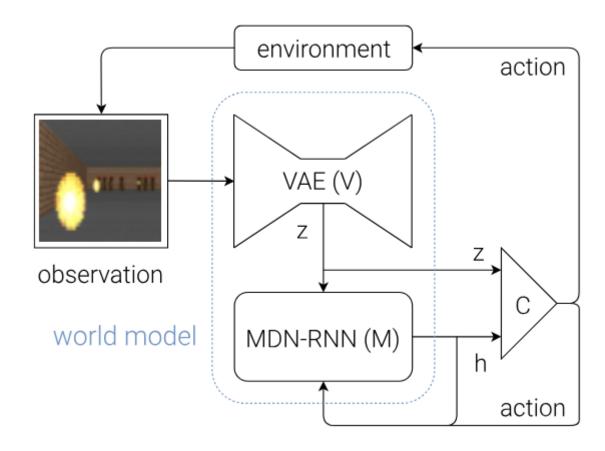
Controller component

- The controller component (C) is a very simple single layer perceptron.
- Because the vision and memory components contain all of the complexity, the controller can be tiny, allowing for easy credit assignment and policy switching.

$$a_t = W_c[z_t h_t] + b_c$$

Because the model is so small, backpropagation is not needed.
 The authors used Covariance Matrix Adaptation Evolution Strategy (CMA-ES).

Architecture flow diagram



Evaluation - car racing

- Randomly generated tracks, reward given for visiting most in shortest time.
- Actions: steering, acceleration, braking.

MODEL	PARAMETER COUNT	
VAE	4,348,547	
MDN-RNN	422,368	
Controller	867	

Evaluation - car racing

• Procedure:

- 1. Collect 10,000 rollouts from random policy.
- 2. Train VAE to encode frames in $z \in \mathbb{R}^{64}$.
- 3. Train MDN-RNN to model $P(z_{t+1}|a_t,z_t,h_t)$.
- 4. Define controller as $a_t = W_c[z_t h_t] + b_c$.
- 5. Use CMA-ES to solve for W_c and b_c that maximize the cumulative expected reward.
- The policy trained in the real environment works in the "dream" environment.

Метнор	Avg. Score
DQN (PRIEUR, 2017)	343 ± 18
A3C (CONTINUOUS) (JANG ET AL., 2017)	591 ± 45
A3C (DISCRETE) (KHAN & ELIBOL, 2016)	652 ± 10
CEOBILLIONAIRE (GYM LEADERBOARD)	838 ± 11
V MODEL	632 ± 251
V MODEL WITH HIDDEN LAYER	788 ± 141
FULL WORLD MODEL	$\textbf{906} \pm \textbf{21}$

Evaluation - VizDoom

- Why not do the inverse train an agent in a low fidelity dream and transfer it to the real world?
- Agent must avoid fireballs shot by monsters - no explicit rewards, only number of survival timesteps (max 2100, win criterion > 750).

MODEL	PARAMETER COUNT	
VAE	4,446,915	
MDN-RNN	1,678,785	
Controller	1,088	



Evaluation - VizDoom

- With sufficiently accurate world model, it can act as the environment.
- The agents trains only on the latent representations of the images.
- The real environment and the "dream" have the same interface - agents trained for the latter can directly operate in the former.
- This works, but the model is imperfect, and the agent can utilize these glitches for reward hacking mitigate with τ .

Temperature $ au$	VIRTUAL SCORE	ACTUAL SCORE
0.10 0.50 1.00 1.15 1.30	2086 ± 140 2060 ± 277 1145 ± 690 918 ± 546 732 ± 269	193 ± 58 196 ± 50 868 ± 511 1092 ± 556 753 ± 139
RANDOM POLICY GYM LEADER	N/A N/A	210 ± 108 820 ± 58

Impact

- PlaNet (2019) used RSSM instead of VAE + RNN and used planning rather than perceptron, solved control tasks in learned latent space, reducing data vs model free methods.
- MuZero (2020) combines tree-search with learned models, superhuman performance in various games without prior knowledge.
- Dreamer model series (2020, 2022, 2024) learned actor-critic policy in latent space, learns long-horizon behaviours and strong continuous control, first human-level Atari performance across 55 tasks, and first algorithm to collect diamonds in Minecraft.

Opinion

• Strengths:

- Highly abstractable
- SOTA performance for many tasks
- Potential for lower computational overhead vs model-free methods

• Weaknesses:

- More detailed comparisons needed for sample efficiency makes sense in theory but empirical backing could be provided
- Potential for vastly incorrect/biased world models to be created could exacerbate reward hacking and induce errors

References

- Ha, D., Schmidhuber, J. (2018). World Models. arXiv preprint, arXiv:1803.10122.
- Hafner, D. et al. (2019). Learning Latent Dynamics for Planning from Pixels. arXiv preprint, arXiv:1811.04551.
- Schrittwieser, J., Antonoglou, I., Hubert, T., Silver, D. et al. (2020).
 Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model.
 arXiv preprint, arXiv:1911.08265.
- Hafner, D. et al. (2020). Dream to Control: Learning Behaviors by Latent Imagination. arXiv preprint, arXiv:1912.01603.
- Hafner, D. et al. (2022). Mastering Atari with Discrete World Models. arXiv preprint, arXiv:2010.02193.
- Hafner, D. et al. (2024). Mastering Diverse Domains through World Models. arXiv preprint, arXiv:2301.04104.