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Motivation

• Key ideas:
• Every action we take is based on a learned model of the world

• Model-free RL is computationally expensive to simulate

• Can we train an agent with “observations” sampled from a learned 
world model, rather than a costly simulation?
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Background

• Model-free methods were popular at the time: DQN for Atari 
games, A3C and PPO for robotics.

• Model-based methods were rare because of difficulty of making 
environments but had occasional successes.

• Synthesis: build imperfect but good enough model to sample 
instead of simulations.
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Problem

• To train large neural network-based general agents, two main 
problems must be solved:
• Credit assignment: difficult to update millions of weights with sparse reward 
signals – need smaller model to effectively iterate.

• High dimensionality: the space of possible images is vast – need strong 
compression.

• Solution: use separate models.
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V-M-C architecture
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Vision component
• The vision component (V) of the architecture is 
a variational autoencoder (VAE).

• The encoder consists of four convolutional 
layers which compress the input image into two 
low-dimensional latent vectors: 𝜇 and 𝜎.

• The encoder output 𝑧 is sampled from the 
Gaussian distribution 𝑁(𝜇, 𝜎𝐼).

• For training purposes, 𝑧 is passed through a 
symmetrical set of deconvolution layers to 
reconstruct the image.
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Memory component
• The memory module (M) is represented by an RNN (specifically 
LSTM) with a Mixture Density Network (MDN) at the output layer.

• The memory component takes in latent vector 𝑧𝑡, action 𝑎𝑡, hidden 
state ℎ𝑡.

• At the output, the memory component gives a probability density 
function of the next latent vector 𝑧𝑡+1, modified by 𝜏.
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Controller component
• The controller component (C) is a very simple single layer 
perceptron.

• Because the vision and memory components contain all of the 
complexity, the controller can be tiny, allowing for easy credit 
assignment and policy switching.

𝑎𝑡 = 𝑊𝑐 𝑧𝑡ℎ𝑡 + 𝑏𝑐

• Because the model is so small, backpropagation is not needed. 
The authors used Covariance Matrix Adaptation Evolution Strategy 
(CMA-ES).
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Architecture flow diagram
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Evaluation – car racing
• Randomly generated tracks, 
reward given for visiting most 
in shortest time.

• Actions: steering, 
acceleration, braking.
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Evaluation -  car racing
• Procedure:
1. Collect 10,000 rollouts from 

random policy.

2. Train VAE to encode frames in 
𝑧 ∈ ℝ64.

3. Train MDN-RNN to model 
𝑃(𝑧𝑡+1|𝑎𝑡 , 𝑧𝑡 , ℎ𝑡).

4. Define controller as 𝑎𝑡 =
𝑊𝑐 𝑧𝑡ℎ𝑡 + 𝑏𝑐.

5. Use CMA-ES to solve for 𝑊𝑐 
and 𝑏𝑐 that maximize the 
cumulative expected reward.

• The policy trained in the 
real environment works in 
the “dream” environment.
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Evaluation - VizDoom
• Why not do the inverse – train an 
agent in a low fidelity dream and 
transfer it to the real world?

• Agent must avoid fireballs shot 
by monsters – no explicit 
rewards, only number of survival 
timesteps (max 2100, win 
criterion > 750).
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Evaluation - VizDoom
• With sufficiently accurate world 
model, it can act as the 
environment.

• The agents trains only on the 
latent representations of the 
images.

• The real environment and the 
“dream” have the same interface 
– agents trained for the latter 
can directly operate in the 
former.

• This works, but the model is 
imperfect, and the agent can 
utilize these glitches for 
reward hacking – mitigate with 𝜏.
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Impact
• PlaNet (2019) - used RSSM instead of VAE + RNN and used planning 
rather than perceptron, solved control tasks in learned latent 
space, reducing data vs model free methods.

• MuZero (2020) – combines tree-search with learned models, 
superhuman performance in various games without prior knowledge.

• Dreamer model series (2020, 2022, 2024) – learned actor-critic 
policy in latent space, learns long-horizon behaviours and 
strong continuous control, first human-level Atari performance 
across 55 tasks, and first algorithm to collect diamonds in 
Minecraft.

14



Opinion
• Strengths:
• Highly abstractable

• SOTA performance for many tasks

• Potential for lower computational overhead vs model-free methods

• Weaknesses:
• More detailed comparisons needed for sample efficiency – makes sense in theory 
but empirical backing could be provided

• Potential for vastly incorrect/biased world models to be created – could 
exacerbate reward hacking and induce errors
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