
World Models
AUTHORS: DAVID HA, JÜRGEN SCHMIDHUBER

PRESENTED BY: OGNEN PENDAROVSKI

1

Motivation

• Key ideas:
• Every action we take is based on a learned model of the world

• Model-free RL is computationally expensive to simulate

• Can we train an agent with “observations” sampled from a learned
world model, rather than a costly simulation?

2

Background

• Model-free methods were popular at the time: DQN for Atari
games, A3C and PPO for robotics.

• Model-based methods were rare because of difficulty of making
environments but had occasional successes.

• Synthesis: build imperfect but good enough model to sample
instead of simulations.

3

Problem

• To train large neural network-based general agents, two main
problems must be solved:
• Credit assignment: difficult to update millions of weights with sparse reward
signals – need smaller model to effectively iterate.

• High dimensionality: the space of possible images is vast – need strong
compression.

• Solution: use separate models.

4

V-M-C architecture

5

Vision component
• The vision component (V) of the architecture is
a variational autoencoder (VAE).

• The encoder consists of four convolutional
layers which compress the input image into two
low-dimensional latent vectors: 𝜇 and 𝜎.

• The encoder output 𝑧 is sampled from the
Gaussian distribution 𝑁(𝜇, 𝜎𝐼).

• For training purposes, 𝑧 is passed through a
symmetrical set of deconvolution layers to
reconstruct the image.

6

Memory component
• The memory module (M) is represented by an RNN (specifically
LSTM) with a Mixture Density Network (MDN) at the output layer.

• The memory component takes in latent vector 𝑧𝑡, action 𝑎𝑡, hidden
state ℎ𝑡.

• At the output, the memory component gives a probability density
function of the next latent vector 𝑧𝑡+1, modified by 𝜏.

7

Controller component
• The controller component (C) is a very simple single layer
perceptron.

• Because the vision and memory components contain all of the
complexity, the controller can be tiny, allowing for easy credit
assignment and policy switching.

𝑎𝑡 = 𝑊𝑐 𝑧𝑡ℎ𝑡 + 𝑏𝑐

• Because the model is so small, backpropagation is not needed.
The authors used Covariance Matrix Adaptation Evolution Strategy
(CMA-ES).

8

Architecture flow diagram

9

Evaluation – car racing
• Randomly generated tracks,
reward given for visiting most
in shortest time.

• Actions: steering,
acceleration, braking.

10

Evaluation - car racing
• Procedure:
1. Collect 10,000 rollouts from

random policy.

2. Train VAE to encode frames in
𝑧 ∈ ℝ64.

3. Train MDN-RNN to model
𝑃(𝑧𝑡+1|𝑎𝑡 , 𝑧𝑡 , ℎ𝑡).

4. Define controller as 𝑎𝑡 =
𝑊𝑐 𝑧𝑡ℎ𝑡 + 𝑏𝑐.

5. Use CMA-ES to solve for 𝑊𝑐
and 𝑏𝑐 that maximize the
cumulative expected reward.

• The policy trained in the
real environment works in
the “dream” environment.

11

Evaluation - VizDoom
• Why not do the inverse – train an
agent in a low fidelity dream and
transfer it to the real world?

• Agent must avoid fireballs shot
by monsters – no explicit
rewards, only number of survival
timesteps (max 2100, win
criterion > 750).

12

Evaluation - VizDoom
• With sufficiently accurate world
model, it can act as the
environment.

• The agents trains only on the
latent representations of the
images.

• The real environment and the
“dream” have the same interface
– agents trained for the latter
can directly operate in the
former.

• This works, but the model is
imperfect, and the agent can
utilize these glitches for
reward hacking – mitigate with 𝜏.

13

Impact
• PlaNet (2019) - used RSSM instead of VAE + RNN and used planning
rather than perceptron, solved control tasks in learned latent
space, reducing data vs model free methods.

• MuZero (2020) – combines tree-search with learned models,
superhuman performance in various games without prior knowledge.

• Dreamer model series (2020, 2022, 2024) – learned actor-critic
policy in latent space, learns long-horizon behaviours and
strong continuous control, first human-level Atari performance
across 55 tasks, and first algorithm to collect diamonds in
Minecraft.

14

Opinion
• Strengths:
• Highly abstractable

• SOTA performance for many tasks

• Potential for lower computational overhead vs model-free methods

• Weaknesses:
• More detailed comparisons needed for sample efficiency – makes sense in theory
but empirical backing could be provided

• Potential for vastly incorrect/biased world models to be created – could
exacerbate reward hacking and induce errors

15

References
• Ha, D., Schmidhuber, J. (2018). World Models. arXiv preprint,
arXiv:1803.10122.

• Hafner, D. et al. (2019). Learning Latent Dynamics for Planning from
Pixels. arXiv preprint, arXiv:1811.04551.

• Schrittwieser, J., Antonoglou, I., Hubert, T., Silver, D. et al. (2020).
Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model.
arXiv preprint, arXiv:1911.08265.

• Hafner, D. et al. (2020). Dream to Control: Learning Behaviors by Latent
Imagination. arXiv preprint, arXiv:1912.01603.

• Hafner, D. et al. (2022). Mastering Atari with Discrete World Models.
arXiv preprint, arXiv:2010.02193.

• Hafner, D. et al. (2024). Mastering Diverse Domains through World
Models. arXiv preprint, arXiv:2301.04104.

16

	Slide 1: World Models
	Slide 2: Motivation
	Slide 3: Background
	Slide 4: Problem
	Slide 5: V-M-C architecture
	Slide 6: Vision component
	Slide 7: Memory component
	Slide 8: Controller component
	Slide 9: Architecture flow diagram
	Slide 10: Evaluation – car racing
	Slide 11: Evaluation - car racing
	Slide 12: Evaluation - VizDoom
	Slide 13: Evaluation - VizDoom
	Slide 14: Impact
	Slide 15: Opinion
	Slide 16: References

