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Introduction & Motivation

* Unity’s Goal: optimise DNN training

* Two main areas of DNN optimisation
* algebraic transformations

* parallelisation
* (can be done separately with existing systems)

* Unity
* first system that optimises these jointly

* key novel concepts

* parallel computation graph IR
* (expresses computation, parallelisation, communication of distributed DNN training)

* generation of optimisations in form of graph substitutions
* hierarchical search algorithm to find optimal combination of substitutions



Algebraic Transformations & Parallelisation

* Algebraic Transformations
* exploit operator identities to optimise underlying computations

* examples
* operator fusion (merging two operators into a single equivalent)
* operator reordering (when associativity or commutativity allows)

* Parallelisation
* distribute operators over multiple devices
* partition-n-reduce
* split operator’s input across devices

* compute partial results independently on each device (same operator)
* reduce partial results

* parallelism dimensions
* data, model, spatial, reduction, pipeline, ...



Parallelism Dimensions

e Data

* replicate the model onto devices
* split training data into subsets and distribute across devices

* Model

* split model into disjoint sub-models
* train each sub-model on a separate device

* Spatial
* divide spatial dimensions (e.g. height, width) of a tensor into partitions
* assign each partition to a specific device

* Reduction
* exploit linearity of tensor algebra operations

* (e.g. split matrices across columns or rows for matrix multiplication)
* Pipeline
* divide model into stages and run on different devices in a pipelined sequence



Joint vs Sequential Optimisation

* Previous automated optimisation systems
* algebraic transformations: MetaFlow, TASO, PET
* parallelism: FlexFlow, automap, Tofu, Whale

* Can apply these sequentially
* algebraic transformations (1st)

* parallelism (2nd)
* e.g. TASO + FlexFlow

* Issue: can miss significant optimisation opportunities
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Graph Representation: Prior Work

* Represent DNN as computation graph
* node: mathematical tensor operation
* edge: tensor passed between operations

* Algebraic transformation - iteratively applied graph substitutions
* Parallelisation — parallelism annotations for each node

* Limitations
* restricted joint optimisation
* communication costs of parallelism not expressed



Unity’s Parallel Computation Graph (PCG)

* Unity: both algebraic transformations and parallelisation as graph
substitutions

* Needs a unified graph representation
* to express computation, parallelism and communication

* PCG
* graph
* nodes: also capture parallelisation through parallelization operators
* edges: also capture distributed movement of tensor data

* tensor representation

* Unity models tensors as sets of data dimensions

* each dimension:
* size
* degree (hnumber of partitions the tensor has been divided into along that dimension)

* encodes parallelism, not just shape

* eachtensor

* replica dimension (hnumber of replicas of that tensor’s data)

* machine mapping: maps operators onto devices to be executed on



PCG: Parallelisation Operators
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Computation Graph vs PCG: Example
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(a) Computation graph. (b) Parallel computation graph.

10



Parallelisation Strategies with PCG
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Graph Substitutions

* Goal: represent algebraic transformations and parallelisation
* Challenge

* need a set of graph substitutions
* number of substitutions increases exponentially with size

* Unity
* use compositions of small PCG substitutions
* Substitution generation
1. enumerate all possible PCGs up to a fixed size

2. usefingerprinting to create an initial set of candidate substitutions
3. formally verify the substitutions using Z3 (automated theorem prover)
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Substitution Generation: Examples
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13



Joint Optimisation

* Input
* PCG (DNN representation)
* set of operator-level machine mappings
* set of PCG substitutions

* Output
* sequence of PCG substitutions & machine mapping for that PCG
that minimise per-iteration training time
* Challenge: exponentially larger search space

* Solution: three-level hierarchical search algorithm
* splits input PCG into subgraphs
* finds optimum sequence of substitutions for each subgraph
* combines them
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Unity’s Hierarchical Search
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Evaluation

Task Architecture Dataset

Image ResNeXt-50 [60] ImageNet [46]
Classification Inception-v3 [51] ImageNet [46]
Language Models =~ BERT-Large [14]  WikiText-2 [35]
Recommendation DLRM [41] Criteo Kaggle [4]
Systems XDL [28] Criteo Kaggle [4]
Precision Medicine CANDLE-Uno [3] Dose response data [1]
Regression MLP [17] Synthetic data

Table 1: Overview of the seven DNNSs evaluated.
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Figure 14: Training throughput comparison among existing frameworks and Unity. The experiments were performed on the
Summit supercomputer [2] with 6 GPUs per node. All numbers were measured by averaging 1,000 training iterations.
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Evaluation

Data & Model Parallelism

+ Reduction Parallelism

+ Attention-Head Parallelism
+ Pipeline Parallelism
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Summary & Discussion

* Strengths
* clear problem and motivation
* elegant IR
* correctness guarantees (Z3 verification)
* good results (performance & generalisation)
* influential direction

* Limitations
* limited practicality and integration (custom IR)

* simplified cost and hardware model
* assumes homogeneous devices and uniform communication costs

* N0 Memory awareness
* search pruning
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