Unity

Unity: Accelerating DNN Training Through Joint Optimization of Algebraic
Transformations and Parallelization

Unger et al., 2022

Jan Pytel

University of Cambridge
November 19, 2025



Introduction & Motivation

* Unity’s Goal: optimise DNN training

* Two main areas of DNN optimisation
* algebraic transformations

* parallelisation
* (can be done separately with existing systems)

* Unity
* first system that optimises these jointly

* key novel concepts

* parallel computation graph IR
* (expresses computation, parallelisation, communication of distributed DNN training)

* generation of optimisations in form of graph substitutions
* hierarchical search algorithm to find optimal combination of substitutions



Algebraic Transformations & Parallelisation

* Algebraic Transformations
* exploit operator identities to optimise underlying computations

* examples
* operator fusion (merging two operators into a single equivalent)
* operator reordering (when associativity or commutativity allows)

* Parallelisation
* distribute operators over multiple devices
* partition-n-reduce
* split operator’s input across devices

* compute partial results independently on each device (same operator)
* reduce partial results

* parallelism dimensions
* data, model, spatial, reduction, pipeline, ...



Parallelism Dimensions

e Data

* replicate the model onto devices
* split training data into subsets and distribute across devices

* Model

* split model into disjoint sub-models
* train each sub-model on a separate device

* Spatial
* divide spatial dimensions (e.g. height, width) of a tensor into partitions
* assign each partition to a specific device

* Reduction
* exploit linearity of tensor algebra operations

* (e.g. split matrices across columns or rows for matrix multiplication)
* Pipeline
* divide model into stages and run on different devices in a pipelined sequence



Joint vs Sequential Optimisation

* Previous automated optimisation systems
* algebraic transformations: MetaFlow, TASO, PET
* parallelism: FlexFlow, automap, Tofu, Whale

* Can apply these sequentially
* algebraic transformations (1st)

* parallelism (2nd)
* e.g. TASO + FlexFlow

* Issue: can miss significant optimisation opportunities



Output

Channels (c,)

Batch
(b)

—

«[l Output

-

MatMul +
RelLU

MatMul + |

'
-

Hidden Welght 2 s athlul + e
Rep. BLEUION™ . ke
\.} Hidden 0 pprees NN
Bat(c;)l; {. == Dim(@) ] AllReduce
_____ Output GPU 1 ¢ Reqlu:red ¢, GPU 2

Hidden Channels (c,)
Dimension (h) (a) Sequential optimization.

Batch{ Input

(b) - Channels (c;)

— .
Input Input . Weight1 | = |l =

P channels Hidden g
(c)) Dimension T |g: | IR

Figure 1: Computation graph for a 2-layer MLP.

(h)

e communication cost

a) 2(c;h + hco) ﬂ
ampte: MNIST image classification Lo 2|2 & 2
?/_2, GPU 2

* example: MNIST image classification
* (b) reduces communication cost by 6x

(b) Joint optimization.

Figure 2: Comparing joint and sequential optimizations.



Graph Representation: Prior Work

* Represent DNN as computation graph
* node: mathematical tensor operation
* edge: tensor passed between operations

* Algebraic transformation - iteratively applied graph substitutions
* Parallelisation — parallelism annotations for each node

* Limitations
* restricted joint optimisation
* communication costs of parallelism not expressed



Unity’s Parallel Computation Graph (PCG)

* Unity: both algebraic transformations and parallelisation as graph
substitutions

* Needs a unified graph representation
* to express computation, parallelism and communication

* PCG
* graph
* nodes: also capture parallelisation through parallelization operators
* edges: also capture distributed movement of tensor data

* tensor representation

* Unity models tensors as sets of data dimensions

* each dimension:
* size
* degree (hnumber of partitions the tensor has been divided into along that dimension)

* encodes parallelism, not just shape

* eachtensor

* replica dimension (hnumber of replicas of that tensor’s data)

* machine mapping: maps operators onto devices to be executed on



PCG: Parallelisation Operators

lPartition CombineT lRepIicate ReduceT a) Partition: Split a dimenSion
Y e I Into equal-sized partitions;
E’ E’ ’ ’ ’ Combine: inverse op
(a) Partition/Combine. (b) Replicate/Reduce. .
o ’ b) Replicate/Reduce: copy/sum
lRepIicate | ReéuceT te n S O rS
| petine | aenf | Paruton “ «weel ) Pipeline: split a dimension
ﬁ ' ' i e Into equal-sized partitions
(c) Pipeline/Batch. N (d)’Hybrid Parallelization. and pI’OCeSS one at a tl me;

Batch: aggregate tensors
across iterations

Figure 8: Parallelization operators in Unity.



Computation Graph vs PCG: Example

Reduce

Model

Parallelism MatMul
Replicate

Data
Parallelism

(a) Computation graph. (b) Parallel computation graph.

10



Parallelisation Strategies with PCG

Combine

(dim = 5) Reduce

Batch MM Batch MM Batch MM

Partition Reoli Partition Partition Pipeline
(dim=s) Al (dim =) (dim =) (dim=s)

(a) Data/Sample. (b) Reduction. (c) Pipeline.

11



Graph Substitutions

* Goal: represent algebraic transformations and parallelisation
* Challenge

* need a set of graph substitutions
* number of substitutions increases exponentially with size

* Unity
* use compositions of small PCG substitutions
* Substitution generation
1. enumerate all possible PCGs up to a fixed size

2. usefingerprinting to create an initial set of candidate substitutions
3. formally verify the substitutions using Z3 (automated theorem prover)

12



Substitution Generation: Examples

F"artition 0utput
(dim = row) Replicate
Replicate
s L
Combine
aim = row Cnput

spatial parallelism is valid for ReLU hybrid algebraic-parallel transformation
(Add > Concat + Reduce)

13



Joint Optimisation

* Input
* PCG (DNN representation)
* set of operator-level machine mappings
* set of PCG substitutions

* Output
* sequence of PCG substitutions & machine mapping for that PCG
that minimise per-iteration training time
* Challenge: exponentially larger search space

* Solution: three-level hierarchical search algorithm
* splits input PCG into subgraphs
* finds optimum sequence of substitutions for each subgraph
* combines them

14



Unity’s Hierarchical Search

o Machine
Optimized .
Input PCG Mapping

PCG | o e
=) _,um
:.’:",» g\%e—»—n-n—» + {. . ';}

@s\%@l

Graph Splitti 5.3
:‘ *\» raph Splitting (5.3) e .

o o Jew iz
+ {o—_»::} + T:

5 Substitution Substitution

4 Selection (5.1) Selection (5.1) &y

- e .<: ' 0>E—>0 >0 —

\:7' §:>‘+ *30 {o_’.;}
Machine Machine Machine Machine 5

Mapping LN Mapping Mapping Lkl Mapping
Selection Selection Selection Selection

(5.2) (5.2) (5.2) (5.2)

15



Evaluation

Task Architecture Dataset

Image ResNeXt-50 [60] ImageNet [46]
Classification Inception-v3 [51] ImageNet [46]
Language Models =~ BERT-Large [14]  WikiText-2 [35]
Recommendation DLRM [41] Criteo Kaggle [4]
Systems XDL [28] Criteo Kaggle [4]
Precision Medicine CANDLE-Uno [3] Dose response data [1]
Regression MLP [17] Synthetic data

Table 1: Overview of the seven DNNSs evaluated.

16



Evaluation

o
~

Overall Throughput
(samples/second)
N »
~ ~

—A— Data Parallelism
~- TASO+FlexFlow
—@- Unity

0
6(1)

12(2)  24(4)

(a) ResNeXt-50.

Overall Throughput
(samples/second)

48(8)
Number of GPUs (Number of nodes)

16K

=
N
~

«©
~

N
~

1200 1200K 400K
—&— DeepSpeed —A— Expert-Designed —A— Expert-Designed
‘5_.5. - TASO+FlexFlow ‘5%. ~l- TASO+FlexFlow '5_.5. ~- TASO+FlexFlow
&€ 900y —— Megatron 8¢ 900K _@— ynity 22 300K] _@ unity
o 0 ) 20 o9
3 b —@- Unity 3 g 3 g
n 0 wn
£& 600 £ 600K E & 200K
o 9 -9
=a =0 =5
o g u 5 8 5
gﬂ 300 g& 300K gﬂ 100K
(=] o o
0 0 0
96(16) 192(32) 6(1) 12(2) 24(4) 48(8) 96(16) 192(32) 6(1) 12(2) 24(4) 48(8) 96(16) 192(32) 6(1) 12(2) 24(4) 48(8) 96(16) 192(32)
Number of GPUs (Number of nodes) Number of GPUs (Number of nodes) Number of GPUs (Number of nodes)
(b) BERT-Large. (c) DLRM. (d) CANDLE-Uno.
200K 900K

0155
6(1)

—A— Data Parallelism
~- TASO+FlexFlow
—@— Unity

12(2)
Number of GPUs (Number of nodes)

24(4) 48(8)

(e) Inception-v3.

96(16) 192(32)

=
w
o
~

Overall Throughput
(samples/second)
w 5
o o
~ ~

—A— Data Parallelism
~- TASO+FlexFlow
—@— Unity

2 6(1) 12(2) 24(4) 48(8) 96(16) 192(32)
Number of GPUs (Number of nodes)
(f) MLP.

—&— Data Parallelism
~- TASO+FlexFlow
—@— Unity

(=)}
o
o
~

Overall Throughput
(samples/second)
I
o
~

0
6(1) 12(2) 24(4) 48(8) 96(16) 192(32)
Number of GPUs (Number of nodes)

(g) XDL.

Figure 14: Training throughput comparison among existing frameworks and Unity. The experiments were performed on the
Summit supercomputer [2] with 6 GPUs per node. All numbers were measured by averaging 1,000 training iterations.

17



Evaluation

Data & Model Parallelism

+ Reduction Parallelism

+ Attention-Head Parallelism
+ Pipeline Parallelism

800

()]
o
o

N
o
o

1.3x

Overall Throughput
(samples/second)
D
o
o

24(4)

1.3x

48(8)

1.4x

96(16)
Number of GPUs (Number of nodes)

Impact of Parallelism Dimension

600K

Overall Throughput
(samples/second)

mmm Sequential Optimization

B joint Optimization

I
o
o
~

N
o
o
A

MLP  CANDLE-Uno

1.3x

XDL

1.4x

DLRM

Joint > Sequential Optimisation

18



Summary & Discussion

* Strengths
* clear problem and motivation
* elegant IR
* correctness guarantees (Z3 verification)
* good results (performance & generalisation)
* influential direction

* Limitations
* limited practicality and integration (custom IR)

* simplified cost and hardware model
* assumes homogeneous devices and uniform communication costs

* N0 Memory awareness
* search pruning

19



