
Unity
Unity: Accelerating DNN Training Through Joint Optimization of Algebraic

Transformations and Parallelization

Unger et al., 2022

Jan Pytel
University of Cambridge

November 19, 2025

Introduction & Motivation
• Unity’s Goal: optimise DNN training
• Two main areas of DNN optimisation
• algebraic transformations
• parallelisation
• (can be done separately with existing systems)

• Unity
• first system that optimises these jointly
• key novel concepts

• parallel computation graph IR
• (expresses computation, parallelisation, communication of distributed DNN training)

• generation of optimisations in form of graph substitutions
• hierarchical search algorithm to find optimal combination of substitutions

2

Algebraic Transformations & Parallelisation
• Algebraic Transformations
• exploit operator identities to optimise underlying computations
• examples

• operator fusion (merging two operators into a single equivalent)
• operator reordering (when associativity or commutativity allows)

• Parallelisation
• distribute operators over multiple devices
• partition-n-reduce

• split operator’s input across devices
• compute partial results independently on each device (same operator)
• reduce partial results

• parallelism dimensions
• data, model, spatial, reduction, pipeline, …

3

Parallelism Dimensions
• Data

• replicate the model onto devices
• split training data into subsets and distribute across devices

• Model
• split model into disjoint sub-models
• train each sub-model on a separate device

• Spatial
• divide spatial dimensions (e.g. height, width) of a tensor into partitions
• assign each partition to a specific device

• Reduction
• exploit linearity of tensor algebra operations

• (e.g. split matrices across columns or rows for matrix multiplication)
• Pipeline

• divide model into stages and run on different devices in a pipelined sequence

4

Joint vs Sequential Optimisation
• Previous automated optimisation systems
• algebraic transformations: MetaFlow, TASO, PET
• parallelism: FlexFlow, automap, Tofu, Whale

• Can apply these sequentially
• algebraic transformations (1st)
• parallelism (2nd)
• e.g. TASO + FlexFlow

• Issue: can miss significant optimisation opportunities

5

• communication cost
a) 2 𝑐!ℎ + ℎ𝑐"
b) 4bh

• example: MNIST image classification
• (b) reduces communication cost by 6x

6

Graph Representation: Prior Work
• Represent DNN as computation graph

• node: mathematical tensor operation
• edge: tensor passed between operations

• Algebraic transformation – iteratively applied graph substitutions
• Parallelisation – parallelism annotations for each node
• Limitations
• restricted joint optimisation
• communication costs of parallelism not expressed

7

Unity’s Parallel Computation Graph (PCG)
• Unity: both algebraic transformations and parallelisation as graph

substitutions
• Needs a unified graph representation

• to express computation, parallelism and communication
• PCG

• graph
• nodes: also capture parallelisation through parallelization operators
• edges: also capture distributed movement of tensor data

• tensor representation
• Unity models tensors as sets of data dimensions
• each dimension:

• size
• degree (number of partitions the tensor has been divided into along that dimension)

• encodes parallelism, not just shape
• each tensor

• replica dimension (number of replicas of that tensor’s data)
• machine mapping: maps operators onto devices to be executed on

8

PCG: Parallelisation Operators

a) Partition: split a dimension
into equal-sized partitions;
Combine: inverse op

b) Replicate/Reduce: copy/sum
tensors

c) Pipeline: split a dimension
into equal-sized partitions
and process one at a time;
Batch: aggregate tensors
across iterations

9

Computation Graph vs PCG: Example

10

Parallelisation Strategies with PCG

11

Graph Substitutions
• Goal: represent algebraic transformations and parallelisation
• Challenge
• need a set of graph substitutions
• number of substitutions increases exponentially with size

• Unity
• use compositions of small PCG substitutions

• Substitution generation
1. enumerate all possible PCGs up to a fixed size
2. use fingerprinting to create an initial set of candidate substitutions
3. formally verify the substitutions using Z3 (automated theorem prover)

12

Substitution Generation: Examples

13

spatial parallelism is valid for ReLU hybrid algebraic-parallel transformation
(Add → Concat + Reduce)

Joint Optimisation
• Input
• PCG (DNN representation)
• set of operator-level machine mappings
• set of PCG substitutions

• Output
• sequence of PCG substitutions & machine mapping for that PCG

that minimise per-iteration training time

• Challenge: exponentially larger search space
• Solution: three-level hierarchical search algorithm
• splits input PCG into subgraphs
• finds optimum sequence of substitutions for each subgraph
• combines them

14

Unity’s Hierarchical Search

15

Evaluation

16

Evaluation

17

Evaluation

18

Impact of Parallelism Dimension Joint > Sequential Optimisation

Summary & Discussion
• Strengths
• clear problem and motivation
• elegant IR
• correctness guarantees (Z3 verification)
• good results (performance & generalisation)
• influential direction

• Limitations
• limited practicality and integration (custom IR)
• simplified cost and hardware model

• assumes homogeneous devices and uniform communication costs
• no memory awareness
• search pruning

19

