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The next 20 minutes

1. Key Takeaway (1 min)
○ If you remember one thing from today…

2. Background (5 min)
○ What is the heterogeneous GPU cloud paradigm?
○ What does LLM serving mean?

3. ThunderServe (10 min)
○ What does the paper propose?

4. Opinion + Discussion (4 min)
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Key Takeaway
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https://huggingface.co/blog/tngtech/llm-performance-prefill-decode-concurrent-requests; Figure 2 from Jiang et al., “ThunderServe…”, MLSys 2025

https://huggingface.co/blog/tngtech/llm-performance-prefill-decode-concurrent-requests


Leveraging heterogeneity

Cloud systems often have heterogeneity in hardware: Different GPUs have 
different memory, bandwidth, compute abilities

And LLM inference incorporates heterogeneity in its two constituent workloads: 
Prefill (compute bound) and Decode (memory bound)

The paper argues: We should frame and solve an optimisation (~search) problem 
to match hardware to workloads to max performance
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Background: Breaking down the paper title
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High-performance and Cost-efficient 
LLM Serving in Cloud Environments
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LLM Serving

Use a trained model to generate text. For example:

Input prompt: "The capital of France is"

Step 1 (Prefill): Process "The capital of France is" → Generate "Paris"

Step 2 (Decode):  Process "The capital of France is Paris" → Generate " ."

Step 3 (Decode):  Process "The capital of France is Paris." → Generate <END>
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LLM Serving

9https://huggingface.co/blog/tngtech/llm-performance-prefill-decode-concurrent-requests; Figure 2 from Jiang et al., “ThunderServe…”, MLSys 2025

https://huggingface.co/blog/tngtech/llm-performance-prefill-decode-concurrent-requests


High-performance

Generate and stream text as quickly as possible.

https://huggingface.co/blog/huseinzol05/tensor-parallelism



Cost-efficient, Cloud Environments

Cloud environments pose unique challenges:

1. Hardware heterogeneity, with different types and different numbers of GPUs
2. Low network bandwidth, limiting data transfer speed
3. Workload variance, with request patterns changing over time



Cost-efficient, Cloud Environments

Table 1 from Jiang et al., “ThunderServe…”, MLSys 2025



Putting it all together

Can we find a good match between different GPUs and different phases of 
the LLM inference workload, accounting for the constraints of the cloud?

Primarily care to optimise Service Level Objective (SLO) attainment = number of 
inbound requests that can be served within the time window specified by an SLO 

In my opinion, ‘cost-effective’ in the paper title is a bit of a misnomer: the paper 
does not optimise for cost; rather ‘find a way to make best use of what you have’



ThunderServe
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Key idea 1: Phase-splitting with heterogeneous hardware

Use high FLOPS GPUs for prefill, high bandwidth GPUs for decode 

https://huggingface.co/blog/huseinzol05/tensor-parallelism



How? GPU <> task mapping as two-level optimisation

Yet another ‘optimisation as search’ problem…



Upper level: Which GPUs work together and what role they play

1. Partition GPUs into groups, where each group hosts one LLM replica
2. Then, designate each group as either ‘prefill’ or ‘decode’

How? GPU <> task mapping as two-level optimisation



Upper level: Which GPUs work together and what role they play

1. Partition GPUs into groups, where each group hosts one LLM replica
2. Then, designate each group as either ‘prefill’ or ‘decode’

Lower level: How requests should flow groups

1. For each group, determine the optimal parallelism (TP x PP)
2. Then, find optimal flow of requests between P-D groups
3. Estimate SLO attainment using formula

How? GPU <> task mapping as two-level optimisation



Upper level: Which GPUs work together and what role they play => tabu search

1. Partition GPUs into groups, where each group hosts one LLM replica
2. Then, designate each group as either ‘prefill’ or ‘decode’

Lower level: How requests should flow groups => surrogate function for SLO

1. For each group, determine the optimal parallelism (TP x PP) => enumerate
2. Then, find optimal flow of requests between P-D groups => linear program
3. Estimate SLO attainment using formula

How? GPU <> task mapping as two-level optimisation



Key idea 2: KV cache quantisation to reduce network load

Between the prefill and decode clusters, we need to transfer a ‘KV cache’ = a 
large matrix, which can be time-consuming on commodity cloud networks

Claude AI generated



Key idea 2: KV cache quantisation to reduce network load

Use 16 bit -> 4 bit quantisation only to compress data over the network; decode 
replica decompresses the data for computation



Key idea 3: Lightweight rescheduling to adjust workloads

In the face of new cloud workloads, we need to quickly re-adjust hardware <> task 
mapping, but existing schedulers can cause minutes of downtime

For example: coding heavy workflows are different to conversation heavy ones

The paper proposes solving a relaxed version of the optimisation problem posed 
earlier to re-assign workloads: only change phase designation and orchestration



Evaluation: Does this work?
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Evaluation setup

Two settings at the same price budget: USD 14/hour

Cloud setting: 32 heterogeneous GPUs from Vast.ai: A6000s, A5000s, A40s, and 
3090Tis; Baseline = HexGen

In-house setting: 8 A100-80GB GPUs; Baseline = vLLM and DistServe

Workload: LLaMA-30B on coding and conversation workloads from the Azure 
dataset, measuring SLO attainment and throughput

http://vast.ai


The assignment algorithm seems to work

ThunderServe performs 1.3x 
better than other LLM servers 
on a heterogeneous cloud 
cluster

Helix, Splitwise are not tested 
here

Figure 7; Figure 8; Table 3 from Jiang et al., “ThunderServe…”, MLSys 2025

ThunderServe performs better 
than other LLM servers on a 
homogeneous cloud cluster

Paper attributes this to 
ThunderServe’s ability to spin 
up 3x more replicas – hence 
more parallelism

Intuitively assigns the right GPU 
<> phase. For coding workloads, 
you would expect more prefill 
replicas where possible because 
larger context; vice-versa for 
conversation



Other results

○ KV cache compression helps
○ Lightweight scheduling is quicker and does ok



Opinion + Discussion
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Phase-splitting + heterogeneous GPU is a compelling idea

Surprising in its simplicity and reduction to known operations research problems; 
but it yields good results and is a unique contribution

Presumably industry practitioners do versions of this behind closed doors



Phase-splitting + heterogeneous GPU is a compelling idea

Surprising in its simplicity – reduction to known operations research problems; but 
it yields good results and is a unique contribution

Presumably industry practitioners do versions of this behind closed doors

Can we strengthen the argument?

1. TS testing is arguably limited: small scale (32 GPUs) and only one model 
(LLaMa), but this is understandable

2. How does TS compare with other recent heterogeneous serving systems? 
Helix, Splitwise may be good to include as baseline



Open questions

1. How close to ‘optimal’ does the tabu search heuristic get?
a. How much better or worse is this with more or less GPUs?

2. How much of the performance bottleneck is network? 
a. If latency keeps changing due to network congestion, is the lightweight scheduler sufficient, 

since the optimal parallelisation might change? 
b. Thinking back to the Perplexity talk

3. Is there a way to more explicitly model and optimise for cost?
a. Can you frame the LP as ‘performance constrained by budget’?

4. (nit) The inner loop linear program in the paper does not appear to be 
constrained, which presumably means the solution will always converge on 
one flow?
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