ThunderServe: High-performance
and Cost-efficient LLM Serving in
Cloud Environments (2025)

Youhe Jiang, Fangcheng Fu, Xiaozhe Yao, Talyi Wang, Bin
Cui, Ana Klimovic, Eiko Yoneki

https://www.cl.cam.ac.uk/%7Eey204/teaching/ACS/R244_2025_2026/papers/youhe_MLSYS_2025.pdf

The next 20 minutes

1. Key Takeaway (1 min)
o If you remember one thing from today...
2. Background (5 min)

o What is the heterogeneous GPU cloud paradigm?
o What does LLM serving mean?

3. ThunderServe (10 min)

o What does the paper propose?
4. Opinion + Discussion (4 min)

Key Takeaway

-5 -5
75 %10 5 00 x10

3.7.5r
2:50
1295

0.00 -
3090 Ti A40 3090 Ti A40

Prefill Phase Decode Phase
3090 Ti: Memory access-efficient (comparatively)
A40: Compute-efficient (comparatively)

Figure 1. Prefill and decode prices for a single request with input
and output lengths of 5 12 and 16 on 3090Ti and A40.

equests; Figure 2 from Jiang et al., “ThunderServe...", MLSys 2025

https://huggingface.co/blog/tngtech/llm-performance-prefill-decode-concurrent-requests

Leveraging heterogeneity
Cloud systems often have heterogeneity in hardware: Different GPUs have
different memory, bandwidth, compute abilities

And LLM inference incorporates heterogeneity in its two constituent workloads:
Prefill (compute bound) and Decode (memory bound)

The paper argues: We should frame and solve an optimisation (~search) problem
to match hardware to workloads to max performance

Background: Breaking down the paper title

High-performance and Cost-efficient
LLM Serving in Cloud Environments

LLM Serving

Use a trained model to generate text. For example:
Input prompt: "The capital of France is"
Step 1 (Prefill): Process "The capital of France is" — Generate "Paris"

Step 2 (Decode): Process "The capital of France is Paris" — Generate " .

Step 3 (Decode): Process "The capital of France is Paris." — Generate <END>

LLM Serving

prefill decode
<«— time to first token —» <«— time per output token
Elapsed Time
Q Prefill phase Decode phase
S 20000 800
£ 15000 - 600 -
§_ 10000 A 400 A
'§: 5000 A 200 -
£ Pt O]
= 0 1 2 3 4 5 6 0 1 2 3 4 5 6
Batch Size Batch Size
Figure 2. Effects of batching on different phases (LLaMA-7B with
each input having a sequence length of 1024).

https://huagingface.co/blog/tnatech/lim-performance-prefill-decode-concurrent-requests; Figure 2 from Jiang et al., “ThunderServe...”, MLSys 2025

https://huggingface.co/blog/tngtech/llm-performance-prefill-decode-concurrent-requests

High-performance

Generate and stream text as quickly as possible.

Tensor Parallelism (2 GPUs)
Input Linez;: 4x4 Linealr 4x2 Output
1x4 1 1 1x2

GPU O GPU 1 GPUO GPU 1
Pipeline Parallelism (2 GPUs)

GPU O GPU 1

Input Linear 4x4 Linear 4x2 Output
1x4 1x2

https://huggingface.co/blog/huseinzol05/tensor-parallelism

Cost-efficient, Cloud Environments

Cloud environments pose unique challenges:

1. Hardware heterogeneity, with different types and different numbers of GPUs
2. Low network bandwidth, limiting data transfer speed
3. Workload variance, with request patterns changing over time

Table 1. GPU specifications and pricing

GPU Memory Access Peak Memory Price
Type Bandwidth FP16 FLOPS Limite | (per GPU)
A100 2 TB/s 312 TFLOPS 80 GB $1.753/hr
A6000 768 GB/s 38.7 TFLOPS 48 GB $0.483/hr
A5000 626.8 GB/s 27.8 TFLOPS 24 GB $0.223/hr
A40 696 GB/s 149.7 TFLOPS 48 GB $0.403/hr
40 TFLOPS 24 GB $0.307/hr

3090Ti
Table 1 from Jiang et al., “ThunderServe

1008 GB/s

Putting it all together
Can we find a good match between different GPUs and different phases of
the LLM inference workload, accounting for the constraints of the cloud?

Primarily care to optimise Service Level Objective (SLO) attainment = number of
inbound requests that can be served within the time window specified by an SLO

In my opinion, ‘cost-effective’ in the paper title is a bit of a misnomer: the paper
does not optimise for cost; rather ‘find a way to make best use of what you have’

ThunderServe

Key idea 1: Phase-splitting with heterogeneous hardware

Use high FLOPS GPUs for prefill, high bandwidth GPUs for decode

Upper-level
Group Construction & Phase Designation (§3.2)

"-tﬁiiiiiii'

Parallel Conflgurat:on Deduction (§3.3)

--|(TP-2:---:(TP—2
'"‘2’ RERCEECE

et o ti‘.’:,:',

Decode Instance Decode Instance

Prefill Instance Preflll Instance

J

Prefill & Decode Orchestratlon (3. 3)

Cluster Information

— — — o— — * — p— — — —" —

.-----A --|

Data Center 1 Data Center 2

Figure 3. Workflow of our scheduling algorithm.

https://huggingface.co/blog/huseinzol05/tensor-parallelism

How? GPU <> task mapping as two-level optimisation

Yet another ‘optimisation as search’ problem...

How? GPU <> task mapping as two-level optimisation

Upper level: Which GPUs work together and what role they play

1. Partition GPUs into groups, where each group hosts one LLM replica
2. Then, designate each group as either ‘prefill’ or ‘decode’

How? GPU <> task mapping as two-level optimisation

Upper level: Which GPUs work together and what role they play

1. Partition GPUs into groups, where each group hosts one LLM replica
2. Then, designate each group as either ‘prefill’ or ‘decode’

Lower level: How requests should flow groups

1. For each group, determine the optimal parallelism (TP x PP)
2. Then, find optimal flow of requests between P-D groups
3. Estimate SLO attainment using formula

How? GPU <> task mapping as two-level optimisation

Upper level: Which GPUs work together and what role they play => tabu search

1. Partition GPUs into groups, where each group hosts one LLM replica
2. Then, designate each group as either ‘prefill’ or ‘decode’

Lower level: How requests should flow groups => surrogate function for SLO

1. For each group, determine the optimal parallelism (TP x PP) => enumerate
2. Then, find optimal flow of requests between P-D groups == linear program
3. Estimate SLO attainment using formula

Key idea 2: KV cache quantisation to reduce network load

Between the prefill and decode clusters, we need to transfer a ‘KV cache’ = a
large matrix, which can be time-consuming on commodity cloud networks

Scenario Bandwidth

NVLink 4 (data center intra-node) 900 GB/s
InfiniBand NDR (data center inter-node) 50 GB/s
PCle 5.0 (cloud intra-node, best case) 64 GB/s
100 GbE (cloud inter-node, good) 12.5 GB/s
25 GbE (cloud inter-node, typical) 31GB/s

10 GbE (cloud inter-node, cheap) 1.25 GB/s

Claude Al generated

Relative Speed
1x (baseline)
18x slower

14x slower

72x slower
290x slower

720x% slower

Key idea 2: KV cache quantisation to reduce network load

Use 16 bit -> 4 bit quantisation only to compress data over the network; decode
replica decompresses the data for computation

Key idea 3: Lightweight rescheduling to adjust workloads
In the face of new cloud workloads, we need to quickly re-adjust hardware <> task
mapping, but existing schedulers can cause minutes of downtime

For example: coding heavy workflows are different to conversation heavy ones

The paper proposes solving a relaxed version of the optimisation problem posed
earlier to re-assign workloads: only change phase designation and orchestration

Evaluation: Does this work?

Evaluation setup

Two settings at the same price budget: USD 14/hour

Cloud setting: 32 heterogeneous GPUs from Vast.ai: A6000s, A5000s, A40s, and
3090Tis; Baseline = HexGen

In-house setting: 8 A100-80GB GPUs; Baseline = vLLM and DistServe

Workload: LLaMA-30B on coding and conversation workloads from the Azure
dataset, measuring SLO attainment and throughput

http://vast.ai

The assignment a

gorithm seems to work

—e— HexGen-E2E
o HexGen-TTPT

—e HexGen-TPOT
—e— ThunderServe-E2E

- ThunderServe-TTPT
—e- ThunderServe-TPOT

req rate 6.0
=

—_——

req rate 12.0
=

100 {7 » 100
75

req rate 18.0
==

761/

SLO Attainment (%)
@

12 23 34 46 57 8 16 23 30 38 o 2 4 6 8

req rate 9.0
S

req rate 12.0 req rate 6.0
. 5
S

SLO Attainment (%)
w

3 8 14 20 25 2 5
SLO Scale

8 11 14
SLO Scale

10 26 42 59 75
SLO Scale

Figure 7. SLO attainment results on coding (top row) and conver-
sation (bottom row) workloads.

—e— ThunderServe (cloud) e-- DistServe (in-house) * VLLM (in-house)

req rate 18.0

req rate 12.0 req rate 6.0

g
€
@
£
c
B
<
g ¢ 19 16
8 18 28 38 48 8 15 22 28 35 2 4 6 8 10
= req rate 12.0 req rate 9.0 req rate 6.0
® 100 — 100 —» 100 =
o o 2 27
L ap A P
g 80 // 7S 73 (,,i 67 o
£ » o i &
T 59 - 6 » o
el % 2 33
£ p’ »
< o o
39 19
g v ¢ 0
10 15 20 25 30 5 10 15 20 25 2 s 8 11 14
SLO Scale SLO Scale SLO Scale

Figure 8. SLO attainment results on coding (top row) and conver-
sation (bottom row) workloads.

Table 3. Model deployment discovered by ThunderServe.

Workload | GPU Configuration | Strategy Type of Replicas
8xA40 TP=2, PP=1 | 4 Prefill Replicas
4xA5000 TP=4,PP=1 | 1 Prefill Replica

E 4x A6000 TP=2, PP=1 | 2 Prefill Replicas
'-g 2xA5000+2x3090Ti | TP=2, PP=2 | 1 Prefill Replica
o] 4x3090Ti TP=2, PP=2 | 1Decode Replica
4xA6000 TP=1,PP=2 | 2 Decode Replicas
2xA5000+2x3090Ti | TP=2, PP=2 | 1 Decode Replica
6xA40 TP=2, PP=1 | 3 Prefill Replicas
g 2xA5000+2x3090Ti | TP=2, PP=2 | 1 Prefill Replica
b= 4x3090Ti TP=2,PP=2 | 1 Decode Replica
u"f; 2xA40 TP=1,PP=2 | 1Decode Replica
2 4xA5000 TP=2,PP=2 | 1 Decode Replica
8 8xA6000 TP=1, PP=2 | 4 Decode Replicas
2xA5000+2x3090Ti | TP=2, PP=2 | 1 Decode Replica

ThunderServe performs 1.3x
better than other LLM servers
on a heterogeneous cloud
cluster

Helix, Splitwise are not tested
here

Figure 7; Figure 8; Table 3 from Jiang et al., “ThunderServe...”, MLSys 2025

ThunderServe performs better
than other LLM servers on a
homogeneous cloud cluster

Paper attributes this to
ThunderServe’s ability to spin
up 3x more replicas — hence
more parallelism

Intuitively assigns the right GPU
<> phase. For coding workloads,
you would expect more prefill
replicas where possible because
larger context; vice-versa for
conversation

Other results

o KV cache compression helps
o Lightweight scheduling is quicker and does ok

Opinion + Discussion

27

Phase-splitting + heterogeneous GPU is a compelling idea

Surprising in its simplicity and reduction to known operations research problems;
but it yields good results and is a unique contribution

Presumably industry practitioners do versions of this behind closed doors

Phase-splitting + heterogeneous GPU is a compelling idea

Surprising in its simplicity — reduction to known operations research problems; but
it yields good results and is a unique contribution

Presumably industry practitioners do versions of this behind closed doors

Can we strengthen the argument?

1. TS testing is arguably limited: small scale (32 GPUs) and only one model
(LLaMa), but this is understandable

2. How does TS compare with other recent heterogeneous serving systems?
Helix, Splitwise may be good to include as baseline

Open questions

1. How close to ‘optimal’ does the tabu search heuristic get?
a. How much better or worse is this with more or less GPUs?

2. How much of the performance bottleneck is network?
a. If latency keeps changing due to network congestion, is the lightweight scheduler sufficient,
since the optimal parallelisation might change?
b. Thinking back to the Perplexity talk

3. Is there a way to more explicitly model and optimise for cost?
a. Can you frame the LP as ‘performance constrained by budget’?

4. (nit) The inner loop linear program in the paper does not appear to be
constrained, which presumably means the solution will always converge on

one flow?

References

31

Y. Jiang, F. Fu, X. Yao, T. Wang, B. Cui, A. Klimovic, and E. Yoneki, "ThunderServe: High-Performance and Cost-Efficient LLM Serving
in Cloud Environments," arXiv preprint arXiv:2502.09334, 2025.

