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Motivation — Challenges in Deploying Deep Learning
• Deep learning models are deployed on a wide variety of environments (cloud servers, mobile

devices, CPUs, GPUs, etc.)
• Deep learning models are diverse (video understanding, natural language understanding,

recommendation systems, etc.)
• Optimization becomes important (selecting among equivalent tensor programs with different

characteristics to achieve maximum performance)
• Diverse models and hardwares constitute a huge search space
• Manual optimization has become a bottleneck; Automated optimization is needed
• Efficient search algorithm is needed to find the optimal tensor program in the search space
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Motivation — Search Space Definition
• The search space definition contains a set of equivalent tensor programs
• Tensor programs in the search space have different characteristics, such as threading

patterns, vectorization, memory access, hardware acceleration, etc
• Needs to find the optimal tensor program for the deployment environment
• Most previous work used pre-defined search spaces to encode domain knowledge once
• Most previous work focused on developing efficient search algorithms
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Motivation — Search Space Definition
What is the problem here?
• The pre-defined search spaces limit the best possible search results
• Expanding the search space for new tensor programs and new hardware

primitives is difficult
• Changes to the search space construction require surgical modifications

to the automated program optimization framework
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MetaSchedule — Probabilistic Programming
• A domain-specific probabilistic programming language abstraction to construct a rich

search space of tensor programs
• Parameterizing tensor programs with the initial program and sequence of transformations

(with different characteristics or structures)
• Program transformation based on random variables (stochastic transformations)
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MetaSchedule — Modular Search Space Composition
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• The constructed search space can be modularized into transformation modules (including
stochastic transformations, analysis, etc) and reused by other workloads

• Transformation modules are implemented by practitioners of prior domain knowledge
• By combining hardware-specific modules and generic modules, the search space for any

tensor program can be generated



MetaSchedule — Learning-driven Search
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• Objective formalization: Assign a higher probability to the programs that perform well
• Execution tracing: Sample the program condition on the execution sequence
• End-to-end search: Using an evolutionary search algorithm based on the proxy cost model

(continuously updated)
• Trace validation: Eliminate invalid traces chosen by random variables (e.g., beyond physical

hardware limits)



Evaluation
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• Expressiveness (a diverse set of operators and subgraphs)
• The performance of MetaSchedule is comparable to or even better than TVM, and in

most cases, it outperforms PyTorch by a significant margin
• End-to-End Deep Learning Models Optimization (BERT-Base, ResNet-50, MobileNet-v2)

• The performance of MetaSchedule is comparable to TVM, and in all cases, it
outperforms PyTorch

• Ablation Study for Transformation Modules Composition
• Hardware-specific module Use-Tensor-Core
• MetaSchedule with Use-Tensor-Core delivers 48% speedup compared with TVM



Conclusion & Key Contributions
• Proposed MetaSchedule, abstracting the program transformation search space using

probabilistic programming language
• Proposed a learning-driven algorithm to explore search space
• Decoupled the search space definition and the search algorithm
• Made the search space expandable and customizable, and modular
• Evaluated MetaSchedule and compared it with advanced optimization frameworks
• Achieved performance improvements for workloads
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Agree & Strength
• Optimization in deep learning model deployment is an important topic and this paper is a

timely research
• Decoupling the search space construction and the search algorithm is a great idea. It makes

expanding the search space and modularization easier
• Abstracting the tensor program search space into a probabilistic programming language is

novel idea
• The idea of   abstracting, programmable, and modularizing the search space influenced

subsequent research
• The performance improvements in the evaluation are encouraging 9/17



Disagree & Weaknesses
• Search space definition still depends on the expertise of domain experts (not fully automatic)
• No evaluation for learning costs of probabilistic programming languages. Is the learning curve

steep? How much time would an inexperienced engineer need?
• Only evaluated the performance improvement of the workload, but did not evaluate the cost of

the search. Is learning-driven search time-consuming?
• No diverse hardware was evaluated (all CPU experiments on Intel Xeon Platinum 8124M, and all

GPU experiments on GeForce RTX 3070). Can performance be improved on other hardwares?
• No comparison of cost-effectiveness with other optimization methods. Would other methods cost

less? Is using MetaSchedule worthwhile?
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Related Research
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• This paper was influenced by previous works:
• Tensor Program Transformations: Halide [7], TVM [4], etc. (no search space abstraction)
• Automatic Tensor Program Optimization: Metatune [8], Tenset [12], etc. (orthogonal contributions)
• Probabilistic Programming Language: Church [5], Stan [2], etc. (new scenario)
• ...

• This paper influenced subsequent works (programmable and composable search space):
• SparseTIR [11] (composable abstractions for sparse compilation)
• Allo [3] (programming model for composable accelerator design)
• Relax [6] (composable abstractions for end-to-end dynamic machine learning)
• ...



Impact & Possible Impact
• Impact:

• This paper was accepted by NeurIPS 2022 [9]
• MetaSchedule was discussed in the TVM community [1]
• MetaSchedule integrated into TVM as an alternative to AutoTVM and AutoScheduler [10]

• Possible Impact:
• Other fields may adopt probabilistic programming abstractions (such as traditional compilers)
• Search space modules may be packaged as third-party libraries (module sharing community)
• Hardware primitives from different manufacturers may be standardized (in order to be

integrated into probabilistic programming abstractions)
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Possible Discussion Questions
• Besides equivalent tensor program selection, is probabilistic programming suitable for other

scenarios? (e.g., traditional compilers, OS configurations, etc.)
• When using learning-driven search, how do we balance search time, generality, and

validation costs?
• What are the risks of using learning-driven search? (reproducibility? debuggability?)
• What other aspects do we need to optimize when deploying deep learning models?
• How to balance development costs, human resource costs, and hardware costs? (Would

buying more hardware be less costly than training employees or adopting new optimization
methods?)
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Thanks

Thank you for listening
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