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Motivation — Challenges in Deploying Deep Learning

Deep learning models are deployed on a wide variety of environments (cloud servers, mobile
devices, CPUs, GPUs, etc.)

Deep learning models are diverse (video understanding, natural language understanding,
recommendation systems, etc.)

Optimization becomes important (selecting among equivalent tensor programs with different
characteristics to achieve maximum performance)

Diverse models and hardwares constitute a huge search space

Manual optimization has become a bottleneck; Automated optimization is needed

Efficient search algorithm is needed to find the optimal tensor program in the search space
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Motivation — Search Space Definition

The search space definition contains a set of equivalent tensor programs

Tensor programs in the search space have different characteristics, such as threading
patterns, vectorization, memory access, hardware acceleration, etc

Needs to find the optimal tensor program for the deployment environment

Most previous work used pre-defined search spaces to encode domain knowledge once

Most previous work focused on developing efficient search algorithms
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Motivation — Search Space Definition

* The _
What is the problem here?
* Ter . - .
» The pre-defined search spaces limit the best possible search results
at
P « Expanding the search space for new tensor programs and new hardware
* Neg

primitives is difficult
« Changes to the search space construction require surgical modifications

to the automated program optimization framework
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MetaSchedule — Probabilistic Programming

» A domain-specific probabilistic programming language abstraction to construct a rich

search space of tensor programs

« Parameterizing tensor programs with the initial program and sequence of transformations

(with different characteristics or structures)

* Program transformation based on random variables (stochastic transformations)

Buydues

Probabilistic Program
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MetaSchedule — Modular Search Space Composition

* The constructed search space can be modularized into transformation modules (including
stochastic transformations, analysis, etc) and reused by other workloads

» Transformation modules are implemented by practitioners of prior domain knowledge

« By combining hardware-specific modules and generic modules, the search space for any

tensor program can be generated

Transformation Module . Example: Execution of the Transformation Module
def Multi-Level-Tiling(loop_nest: List[Loopl):
tiles: ListlList[Loopl]l = [list() for _ in range(5)] i Transformed program
def tile_loop(loop: Loop, tile_ids: List[int]): ! for is, jo in grid(8,, 03):
(6} = Sample-Tile(loop, parts=len(tile_ids)) Original tensor program fors 155 oy dm geid(85; Ba):
rtlled |_loops = Split(loop, {6}) : E for i in range(512): for ke in range(8g):
/i or i, tile in zip(tile_ids, tiled_loops): i for j in range(256): === > for i, j, in grid(6,, 6s):
/ tiles[il.append(tile) : i for k in range(16): for ky in range(8,):
stochastic analysis :
; for i in loop_nest: : Cl...] += ... o3 (] 1 S
transformations | r-------------"--------oo-ooooooo-oooooooooo, '
if is_spatial_loop(i): tile_loop(i, [@, 1, 3]1) !

\ i 1if is_reduction loop(l) tile_loop(i, [2, 411)!

_______________________
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MetaSchedule — Learning-driven Search

* Objective formalization: Assign a higher probability to the programs that perform well

« Execution tracing: Sample the program condition on the execution sequence

 End-to-end search: Using an evolutionary search algorithm based on the proxy cost model
(continuously updated)

» Trace validation: Eliminate invalid traces chosen by random variables (e.g., beyond physical

hardware limits)

Learning-driven search
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Evaluation

» Expressiveness (a diverse set of operators and subgraphs)
» The performance of MetaSchedule is comparable to or even better than TVM, and in
most cases, it outperforms PyTorch by a significant margin
« End-to-End Deep Learning Models Optimization (BERT-Base, ResNet-50, MobileNet-v2)
» The performance of MetaSchedule is comparable to TVM, and in all cases, it
outperforms PyTorch
« Ablation Study for Transformation Modules Composition
» Hardware-specific module Use-Tensor-Core

» MetaSchedule with Use-Tensor-Core delivers 48% speedup compared with TVM
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Conclusion & Key Contributions

Proposed MetaSchedule, abstracting the program transformation search space using
probabilistic programming language

Proposed a learning-driven algorithm to explore search space

Decoupled the search space definition and the search algorithm

Made the search space expandable and customizable, and modular

Evaluated MetaSchedule and compared it with advanced optimization frameworks

Achieved performance improvements for workloads

Search Space S(e;) ——————> Search Algorithm Optimal Program e*

Initial Tensor Program e,

Examples
id(64, 8)
for i in range(1024): g e prac }7‘ or iy, j grid(4, 3
for j in range(1024): E "T ll'Kah ‘l“’jlnj‘;iil“ for ko in range(64):
for k in range(1024): - b 2 £ ‘nr;ﬂ':, - TWV iz, jz i ‘J‘r»“j 4):
CIi, j1 += ALi, kI % BIj, kI | I s % [k‘ ‘]” SR
cl.
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Agree & Strength

Optimization in deep learning model deployment is an important topic and this paper is a
timely research

Decoupling the search space construction and the search algorithm is a great idea. It makes
expanding the search space and modularization easier

Abstracting the tensor program search space into a probabilistic programming language is
novel idea

The idea of abstracting, programmable, and modularizing the search space influenced
subsequent research

The performance improvements in the evaluation are encouraging
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Disagree & \Weaknesses

Search space definition still depends on the expertise of domain experts (not fully automatic)

No evaluation for learning costs of probabilistic programming languages. Is the learning curve
steep? How much time would an inexperienced engineer need?

Only evaluated the performance improvement of the workload, but did not evaluate the cost of
the search. Is learning-driven search time-consuming?

No diverse hardware was evaluated (all CPU experiments on Intel Xeon Platinum 8124M, and all
GPU experiments on GeForce RTX 3070). Can performance be improved on other hardwares?
No comparison of cost-effectiveness with other optimization methods. Would other methods cost

less? Is using MetaSchedule worthwhile?
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Related Research

« This paper was influenced by previous works:
« Tensor Program Transformations: Halide [7], TVM [4], etc. (no search space abstraction)
« Automatic Tensor Program Optimization: Metatune [8], Tenset [12], etc. (orthogonal contributions)
* Probabilistic Programming Language: Church [5], Stan [2], etc. (new scenario)
« This paper influenced subsequent works (programmable and composable search space):
« SparseTIR [11] (composable abstractions for sparse compilation)
 Allo [3] (programming model for composable accelerator design)

« Relax [6] (composable abstractions for end-to-end dynamic machine learning)
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Impact & Possible Impact

* Impact:

« This paper was accepted by NeurlPS 2022 [9]

MetaSchedule was discussed in the TVM community [1]

MetaSchedule integrated into TVM as an alternative to AutoTVM and AutoScheduler [10]

* Possible Impact:

Other fields may adopt probabilistic programming abstractions (such as traditional compilers)
Search space modules may be packaged as third-party libraries (module sharing community)
Hardware primitives from different manufacturers may be standardized (in order to be

integrated into probabilistic programming abstractions)
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Possible Discussion Questions

» Besides equivalent tensor program selection, is probabilistic programming suitable for other
scenarios? (e.g., traditional compilers, OS configurations, etc.)

* When using learning-driven search, how do we balance search time, generality, and
validation costs?

« What are the risks of using learning-driven search? (reproducibility? debuggability?)

« What other aspects do we need to optimize when deploying deep learning models?

 How to balance development costs, human resource costs, and hardware costs? (Would
buying more hardware be less costly than training employees or adopting new optimization

methods?)
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Thanks

Thank you for listening
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