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The Problem of Tuning Modern
Systems



The Problem – Configuring Modern Systems

Figure 1: Visualization of a modern system’s configuration space
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Existing Approaches

• Getting rid of configurations:
• Generic System should serve a variety of workloads, which are very
different in nature

• Allow users to achieve a maximum of performance, if necessary
• Manual (”white-box”) tuning:

• Require a lot of experience and deep knowledge of the underlying
system

• Black-Box tuner (such as OpenTuner [1], traditional Bayesian
Optimization, ...):

• Require too many evaluations, which are expensive
• Fail in large configuration spaces

Idea
Try to find a middle ground between ”knowing the system deeply”
and ”not knowing anything at all”.
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Gaussian Processes and Bayesian
Optimization



Primer in Gaussian Processes

Gaussian Processes are just generalization of normal distributions
over functions f : S → R:

• Mean function: µ : S → R, such that µ(x) is the mean of f(x)
• Covariance function: k : S × S → R, such that k(x1, x2) is the
covariance of f(x1) and f(x2)

→ Update belief over the functions, given some some observation
(x, f(x) (using Bayes’ rule)
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Gaussian Processes – Example

Figure 2: Example of function and it’s Gaussian Process approximation.
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Bayesian Optimization (BO)

Idea: Just model the objective function using a GP:

• Use the GP model to choose the most promising configuration
to evaluate next

• Update the GP using the newest evaluation

Figure 3: Flow chart of Bayesian optimization.
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Bayesian Optimization in Practise

1. BO converges much quicker than other auto-tuners, such as
OpenTuner [1]

2. BO fails to converge in configuration spaces with dimensions
> 10 [3]

Hypothesis
By making BO aware of the structure and interdependencies of the
configuration space, one can

• drastically reduce the number of iterations
• find better configurations
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Solution: Structured Bayesian
Optimization



Structured Bayesian Optimization

Idea: Replace the GP model by a user-defined structured
probabilistic model:

This allows to induce knowledge of the system’s structure and
dynamics into the optimization.
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Example: Structured Probabilistic Model for a Web Server

Figure 4: Example for a structured probabilistic model for a web server’s
latency

8



The BOAT Framework

The BOAT (BespOke Auto-Tuner) framework for SBO-based auto
tuning, by allowing for:

• Defining a configuration space
• Defining a objective function
• Defining structured probabilistic models

→ runs optimization, given the optimizer definitions
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Defining Probabilistic Models in BOAT

A probabilistic model in BOAT consists of independent components
with the following properties:

• predict a single observable value
• semi-parametric

Those components are then implicitly combined in a Directed Acyclic
Graph
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Parametric vs Non-Parametric Models

Problem: Parametric models usually underfit, non-parametric
models usually overfit to the data

0 1000 2000
Vector size

0

1

2

3

4

Ti
m

e
(µ

s)

(a) Parametric (Linear regression)

0 1000 2000
Vector size

0

1

2

3

4

Ti
m

e
(µ

s)

(b) Non-parametric (Gaussian process)

0 1000 2000
Vector size

0

1

2

3

4

Ti
m

e
(µ

s)

Ground Truth
Model Observation
Predicted Time

(c) Semi-parametric (Combination)

Figure 4: Three models predicting the time to insert an element into a sorted vector after five observations.

Application users provide two types of arguments specific
to their application. First, the configuration space proper-
ties. These have an influence on the set of valid configu-
rations. In a scheduling problem, this could be the list of
available machines. Second, their preferences. These define
system performance metrics. For example, a user could spec-
ify to optimize throughput, tail latency, or set the workload
with which the system should be evaluated.

To create a bespoke auto-tuner, a system developer takes
these as input to provide three types of information to BOAT:

1) Configuration space: The domain of the optimization.

2) Objective function & runtime measurements: This
specifies how to evaluate a given configuration. For ex-
ample, this can involve writing configuration values to a
configuration file and starting a distributed system along
with a benchmark. When a BOAT optimization termi-
nates, it returns the configuration that yielded the best
objective function value.

3) Probabilistic model of system behavior: The con-
textual information which allows BOAT to discard re-
gions of low performance and quickly converge.

The first two items are common to all auto-tuners and we
do not discuss them further. The next section discusses the
design of probabilistic models in the context of BOAT.

5. PROBABILISTIC MODELS IN BOAT
Developers build bespoke auto-tuners in BOAT by declar-

ing a probabilistic model of the system’s behavior via BOAT’s
probabilistic programming framework. A probabilistic pro-
gram is similar to a simulator. The programmer implements
code mimicking the behavior of the process being modeled.
The advantage of probabilistic programming is that, in the
presence of empirical data, they can perform inference to
make the simulator’s behavior match the observed one. We
refer the reader to [12] for a review of probabilistic program-
ming and the details of BOAT’s algorithms for probabilistic
inference. This section discusses the design and implemen-
tation of models in BOAT.

There are two key techniques to building useful models.
First, models should be compartmentalized. A model should
consist of a combination of independent components with
each component predicting a single observable value. For
example, the garbage collection model, presented in Sec-
tion 3.3, contains three independent components predicting
the rate and duration of collections and the 99th percentile
latency. This makes models easy to debug. One can com-
pare each component’s predictions with observed values and

diagnose which parts of the model fail to converge. Fur-
thermore, this independence can be exploited by the prob-
abilistic framework. This allows the construction of large
probabilistic model without the need to pay an exponential
inference cost. Section 5.2 shows how such models can be
expressed in BOAT. Second, users should make each compo-
nent a semi-parametric model. We discuss semi-parametric
models, their benefits and their implementation in BOAT in
the next subsection.

5.1 Semi-parametric models
There are two desirable properties a model should have in

the context of SBO:

• It should understand the general trend of the objective
function to avoid exploring low performance regions.

• It should have high precision in the region of the optimum,
to find the point with highest performance.

Semi-parametric models, which we now describe, can ful-
fill both properties. They are a combination of parametric
models and non-parametric models. As a running example,
we model the average time needed to insert an element into
a sorted vector as a function of its length. This has complex-
ity O(n) but implementations will have runtimes a↵ected by
cache e↵ects and other hardware properties. Figure 4 com-
pares the predictions of a parametric, non-parametric and
semi-parametric model after observing five points from the
dataset. The data was obtained using the boost::flat_set
data structure and averaged over a million runs.
Parametric models learn a fixed number of parameters.

For example, simple linear regression typically learns two
parameters, the slope and y-intercept. Parametric models
allow developers to specify the expected behavior of the sys-
tem. In our example, this means specifying that the re-
lationship between length and time is linear and not, for
example, quadratic. They however cannot fit subtleties in
the data. We fit a linear regression to five data points from
the sorted-vector data in Figure 4a. Although the general
trend is correct, the model fails to fit all of the data points
as they are not strictly linear.
On the other hand, non-parametric models learn an un-

bounded number of parameters that grows with the training
data. For example, in the k-nearest neighbor algorithm each
training example is memorized so it can be used for pre-
diction. Non-parametric models provide no direct way to
specify a general trend. Traditional Bayesian optimization
uses Gaussian processes which are non-parametric models.
We fit a GP to the same five points from the sorted-vector
data in Figure 4b. It succeeds at fitting all of the data
points, but fails to grasp the overall trend. In the context of

Figure 5: Parametric vs Non-parametric models for vector insertion time,
taken from [2]
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Semi-Parametric Model

Solution: Semi-parametric models:

• Fit a parametric model to the data
• Fit a non-parametric model to the residual of the parametric
model
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Application users provide two types of arguments specific
to their application. First, the configuration space proper-
ties. These have an influence on the set of valid configu-
rations. In a scheduling problem, this could be the list of
available machines. Second, their preferences. These define
system performance metrics. For example, a user could spec-
ify to optimize throughput, tail latency, or set the workload
with which the system should be evaluated.

To create a bespoke auto-tuner, a system developer takes
these as input to provide three types of information to BOAT:

1) Configuration space: The domain of the optimization.

2) Objective function & runtime measurements: This
specifies how to evaluate a given configuration. For ex-
ample, this can involve writing configuration values to a
configuration file and starting a distributed system along
with a benchmark. When a BOAT optimization termi-
nates, it returns the configuration that yielded the best
objective function value.

3) Probabilistic model of system behavior: The con-
textual information which allows BOAT to discard re-
gions of low performance and quickly converge.

The first two items are common to all auto-tuners and we
do not discuss them further. The next section discusses the
design of probabilistic models in the context of BOAT.

5. PROBABILISTIC MODELS IN BOAT
Developers build bespoke auto-tuners in BOAT by declar-

ing a probabilistic model of the system’s behavior via BOAT’s
probabilistic programming framework. A probabilistic pro-
gram is similar to a simulator. The programmer implements
code mimicking the behavior of the process being modeled.
The advantage of probabilistic programming is that, in the
presence of empirical data, they can perform inference to
make the simulator’s behavior match the observed one. We
refer the reader to [12] for a review of probabilistic program-
ming and the details of BOAT’s algorithms for probabilistic
inference. This section discusses the design and implemen-
tation of models in BOAT.

There are two key techniques to building useful models.
First, models should be compartmentalized. A model should
consist of a combination of independent components with
each component predicting a single observable value. For
example, the garbage collection model, presented in Sec-
tion 3.3, contains three independent components predicting
the rate and duration of collections and the 99th percentile
latency. This makes models easy to debug. One can com-
pare each component’s predictions with observed values and

diagnose which parts of the model fail to converge. Fur-
thermore, this independence can be exploited by the prob-
abilistic framework. This allows the construction of large
probabilistic model without the need to pay an exponential
inference cost. Section 5.2 shows how such models can be
expressed in BOAT. Second, users should make each compo-
nent a semi-parametric model. We discuss semi-parametric
models, their benefits and their implementation in BOAT in
the next subsection.

5.1 Semi-parametric models
There are two desirable properties a model should have in

the context of SBO:

• It should understand the general trend of the objective
function to avoid exploring low performance regions.

• It should have high precision in the region of the optimum,
to find the point with highest performance.

Semi-parametric models, which we now describe, can ful-
fill both properties. They are a combination of parametric
models and non-parametric models. As a running example,
we model the average time needed to insert an element into
a sorted vector as a function of its length. This has complex-
ity O(n) but implementations will have runtimes a↵ected by
cache e↵ects and other hardware properties. Figure 4 com-
pares the predictions of a parametric, non-parametric and
semi-parametric model after observing five points from the
dataset. The data was obtained using the boost::flat_set
data structure and averaged over a million runs.
Parametric models learn a fixed number of parameters.

For example, simple linear regression typically learns two
parameters, the slope and y-intercept. Parametric models
allow developers to specify the expected behavior of the sys-
tem. In our example, this means specifying that the re-
lationship between length and time is linear and not, for
example, quadratic. They however cannot fit subtleties in
the data. We fit a linear regression to five data points from
the sorted-vector data in Figure 4a. Although the general
trend is correct, the model fails to fit all of the data points
as they are not strictly linear.
On the other hand, non-parametric models learn an un-

bounded number of parameters that grows with the training
data. For example, in the k-nearest neighbor algorithm each
training example is memorized so it can be used for pre-
diction. Non-parametric models provide no direct way to
specify a general trend. Traditional Bayesian optimization
uses Gaussian processes which are non-parametric models.
We fit a GP to the same five points from the sorted-vector
data in Figure 4b. It succeeds at fitting all of the data
points, but fails to grasp the overall trend. In the context of

Figure 6: Semi-parametric model for vector insertion time, taken from [2]
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Implementing Probabilistic Models in BOAT – 1/2

Declare a model component by extending the
SemiParametricModel class:

Figure 7: Example of a semi-parametric model component in BOAT.
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Implementing Probabilistic Models in BOAT – 2/2

Declare a structured probabilistic model by extending the
DAGModel class:

Figure 8: Example of a structured probabilistic model in BOAT.
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Evaluation Tasks

1. JVM Garbage Collection
• Task: Optimize the JVM garbage collector of a NoSQL distributed
database (Cassandra)

• Configuration space: 3 flags for the garbage collection algorithm
• Objective: Minimize the 99th percentile latency

2. Distributed Neural Network Training
• Task: Optimize the training process of a neural network, given an
architecture, batch size and a cluster setup

• Configuration space: 2 boolean and 1-2 integer parameters per
machine

• Objective: Minimize training duration of 20 SGD iterations
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Garbe Collection – Results
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Figure 5: Results for YCSB workloads A, B and D.

6. EVALUATION
We demonstrate the use of BOAT through our two case

studies: 1) the garbage collection case study in which we
tune configuration flags to minimize tail latency, and 2) the
neural network case study in which we tune the scheduling
of the training of a neural networks on a distributed sys-
tem. In both, we implemented a probabilistic model of the
underlying system behavior, and used it within BOAT to
optimize the system configuration in a range of setting. Our
evaluation focuses on quantifying two properties:

1. The benefits of auto-tuning. Showing that one-size-
fits-all configurations yield sub-optimal performances.

2. The need for a bespoke auto-tuner. Showing that
our auto-tuners reduce convergence time when compared
to o↵-the-shelf optimizers. We compare our performance
with OpenTuner [4] which dynamically adapts its op-
timization algorithm, and Spearmint [26] which imple-
ments traditional Bayesian optimization.

6.1 Garbage collection
We start by presenting the results of our garbage collec-

tion (GC) case study, as introduced in Section 2.2.
Configuration space. We tune the young generation size,
survivor ratio and max tenuring threshold flags, of the CMS
collector, which is used by default by Cassandra.
Objective function. We configured a single 8 core node to
run Cassandra [28] with a 8 GB fixed heap space to model
a medium-sized web application. We measure the latency
using the YCSB [11] cloud benchmarking framework on a
24 core machine co-located in the same network. Each ex-
periment was run for 15 minutes.
Model. Our probabilistic model, introduced in Section
3.3, is composed of three semi-parametric models: we pre-
dict the rate and average duration of minor collections and
their impact on latency. Our analysis showed that the fre-
quency at which major collections occurred was too low to
have an impact on 99th percentile latency. The GC rate
model was described in Section 3.3. We further found that
the duration of minor GCs tends to increase with the size
of the eden heap region and the max tenuring threshold pa-
rameter. The GC duration model uses this intuition in its
parametric part. The 99th percentile latency tends to be af-
fected by two properties of GCs: their average duration and
the fraction of time spent in GCs. The parametric part of
the latency model includes linear penalties for each of these
two quantities. These models are too simplistic to capture
the full underlying behavior of the computation, but they
do grasp the overall trend. This is su�cient to make the
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Figure 6: Convergence of the frameworks on workload B.

BOAT-based optimizer rapidly converge towards high per-
formance areas.
Results. We ran our bespoke auto-tuner for 10 iterations
on YCSB workloads A (50% reads, 50% updates), B (95%
reads, 5% updates) and D (95% reads, 5% inserts) (work-
load C has 100% reads and is not GC-sensitive). After each
optimization, we re-evaluated our optimized configuration
and compared its 99th percentile latency with the default
Cassandra configuration. The results are shown in Figure 5.
Error bars are too small to be displayed in the figure as stan-
dard deviations were consistently below 1 ms (all results
averaged over 3 runs). Our optimized configurations out-
performs the Cassandra default configuration by up to 63%.
Although we run the optimization for 10 iterations, each
optimization converges to within 10% of the best found per-
formance by the second iteration.
We found that the optimized configuration used large eden

size, making minor collections longer but less frequent. Af-
ter inspection we noted that this e↵ectively improved the
batching of the collection, reducing the total work. Opti-
mized configurations spent well under 1% of their time in
stop the world phases, whereas in Cassandra default config-
uration’s case this was around 4%.
Comparison with other auto-tuners. Our previous re-
sults show tuning does yield performance improvements for
our workloads. We now consider whether generic auto-tuners
would be able to yield similar performance in the same
timescale. Figure 6 compares our performance with Open-
Tuner [4] and Spearmint [26] which we ran for thirty itera-
tions. We run each optimization three times. For each iter-
ation, we report the median, min and max of the best 99th
percentile latency achieved so far. We see that within two
iterations, our auto-tuner consistently finds a high perfor-
mance configuration. In contrast, it is only at the 16th iter-
ation that one of the other framework’s median value reaches
a good performance, after four hours of optimization.

6.2 Neural networks
We now present our neural network case study. Neu-

ral networks have seen a surge of interest in recent years,
and many frameworks have been proposed to facilitate their
training. Here, we built a tuner on top of TensorFlow, a re-
cent framework for distributed machine learning [1, 2]. The
API o↵ered by TensorFlow to machine learning applications
is low-level. Users must manually set which of their available
machines should be used and how much work each should
do. TensorFlow o↵ers no automated approach to balance
workloads. This task is especially di�cult in heterogeneous
settings, where the optimal load of a machine depends on its
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6. EVALUATION
We demonstrate the use of BOAT through our two case

studies: 1) the garbage collection case study in which we
tune configuration flags to minimize tail latency, and 2) the
neural network case study in which we tune the scheduling
of the training of a neural networks on a distributed sys-
tem. In both, we implemented a probabilistic model of the
underlying system behavior, and used it within BOAT to
optimize the system configuration in a range of setting. Our
evaluation focuses on quantifying two properties:

1. The benefits of auto-tuning. Showing that one-size-
fits-all configurations yield sub-optimal performances.

2. The need for a bespoke auto-tuner. Showing that
our auto-tuners reduce convergence time when compared
to o↵-the-shelf optimizers. We compare our performance
with OpenTuner [4] which dynamically adapts its op-
timization algorithm, and Spearmint [26] which imple-
ments traditional Bayesian optimization.

6.1 Garbage collection
We start by presenting the results of our garbage collec-

tion (GC) case study, as introduced in Section 2.2.
Configuration space. We tune the young generation size,
survivor ratio and max tenuring threshold flags, of the CMS
collector, which is used by default by Cassandra.
Objective function. We configured a single 8 core node to
run Cassandra [28] with a 8 GB fixed heap space to model
a medium-sized web application. We measure the latency
using the YCSB [11] cloud benchmarking framework on a
24 core machine co-located in the same network. Each ex-
periment was run for 15 minutes.
Model. Our probabilistic model, introduced in Section
3.3, is composed of three semi-parametric models: we pre-
dict the rate and average duration of minor collections and
their impact on latency. Our analysis showed that the fre-
quency at which major collections occurred was too low to
have an impact on 99th percentile latency. The GC rate
model was described in Section 3.3. We further found that
the duration of minor GCs tends to increase with the size
of the eden heap region and the max tenuring threshold pa-
rameter. The GC duration model uses this intuition in its
parametric part. The 99th percentile latency tends to be af-
fected by two properties of GCs: their average duration and
the fraction of time spent in GCs. The parametric part of
the latency model includes linear penalties for each of these
two quantities. These models are too simplistic to capture
the full underlying behavior of the computation, but they
do grasp the overall trend. This is su�cient to make the
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BOAT-based optimizer rapidly converge towards high per-
formance areas.
Results. We ran our bespoke auto-tuner for 10 iterations
on YCSB workloads A (50% reads, 50% updates), B (95%
reads, 5% updates) and D (95% reads, 5% inserts) (work-
load C has 100% reads and is not GC-sensitive). After each
optimization, we re-evaluated our optimized configuration
and compared its 99th percentile latency with the default
Cassandra configuration. The results are shown in Figure 5.
Error bars are too small to be displayed in the figure as stan-
dard deviations were consistently below 1 ms (all results
averaged over 3 runs). Our optimized configurations out-
performs the Cassandra default configuration by up to 63%.
Although we run the optimization for 10 iterations, each
optimization converges to within 10% of the best found per-
formance by the second iteration.
We found that the optimized configuration used large eden

size, making minor collections longer but less frequent. Af-
ter inspection we noted that this e↵ectively improved the
batching of the collection, reducing the total work. Opti-
mized configurations spent well under 1% of their time in
stop the world phases, whereas in Cassandra default config-
uration’s case this was around 4%.
Comparison with other auto-tuners. Our previous re-
sults show tuning does yield performance improvements for
our workloads. We now consider whether generic auto-tuners
would be able to yield similar performance in the same
timescale. Figure 6 compares our performance with Open-
Tuner [4] and Spearmint [26] which we ran for thirty itera-
tions. We run each optimization three times. For each iter-
ation, we report the median, min and max of the best 99th
percentile latency achieved so far. We see that within two
iterations, our auto-tuner consistently finds a high perfor-
mance configuration. In contrast, it is only at the 16th iter-
ation that one of the other framework’s median value reaches
a good performance, after four hours of optimization.

6.2 Neural networks
We now present our neural network case study. Neu-

ral networks have seen a surge of interest in recent years,
and many frameworks have been proposed to facilitate their
training. Here, we built a tuner on top of TensorFlow, a re-
cent framework for distributed machine learning [1, 2]. The
API o↵ered by TensorFlow to machine learning applications
is low-level. Users must manually set which of their available
machines should be used and how much work each should
do. TensorFlow o↵ers no automated approach to balance
workloads. This task is especially di�cult in heterogeneous
settings, where the optimal load of a machine depends on its

Figure 9: Left: Performance of BOAT-optimized configuration vs default
configuration. Right: Performance of BOAT-optimization vs other
auto-tuners. [2]
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Distributed Neural Networks – Results 1/2
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Figure 7: Normalized time per input (lower is better) of simple and optimized configurations on each experiment. Within each
sub-graph, results are normalized by the best achieved time per input. This is always the one of the optimized configuration on
the largest batch size (the lower right point of each sub-graph). The normalization factor, i.e. the best time per input, is shown
at the top right of each sub-graph in milliseconds. For each optimized configuration, we report the number of workers used.

Individual machine computation time. For worker ma-
chines with multiple devices, the gradient estimates from
each device were summed locally on the CPU before being
sent to the parameter servers. We modeled the total compu-
tation time per machine as a semi-parametric model. The
parametric part returned the maximum computation time
of the machine’s devices. The non-parametric part was re-
sponsible for modeling this aggregation time. We fit one
individual machine model per type of machine (e.g. EC2
instance type).
Communication time. We modeled the communication
time as another semi-parametric model. Our parametric
model learns a connection speed parameter per type of ma-
chine. It predicts the total communication time as

max
m2machines

transfer(m)
connection speedm

where transfer(m) is the amount of data that must be trans-
fered each iteration by machinem. It is a function of whether
m is a worker, the number of other workers, and the size of
the parameters m holds as a parameter server if any. We
fit a single communication time model for the entire cluster.
Finally, we predict the total time of an SGD iteration as the
sum of the maximum predicted individual machine time and
the communication time.

Since our probabilistic model simulates individual device
and machine computation times, it benefits from real mea-
surements of these properties. We therefore also measure in
each iteration the time needed by all devices and machines
to perform their assigned workload.

6.2.4 Experiment results
Experimental Setup. We evaluated our optimizer on
Amazon EC2 using TensorFlow version v0.8. There are
three inputs to our tuning procedure. The machines avail-
able, the neural network being trained and the batch size.

We constructed three machine settings, described in Table 1,
designed to recreate heterogeneous environments. Each con-
tains 10 machines of varying computational power. Settings
B and C contain one and two GPU instances respectively.
While neural networks perform most e�ciently on GPUs, we
tried to design realistic settings where a variety of CPUs and
GPUs are available. We evaluated each of the three hard-
ware setting with the three neural networks referenced in
Table 2 using four batch sizes for a total of thirty-six exper-
iments. The four batch sizes for each network were selected
to explore the tradeo↵ with processing speed. Recall that
batch size is an algorithmic parameter equaling inputs per
iteration, and that lower batch sizes tend to improve final
result accuracy at the cost of less parallelism.
Comparison with simple configurations. To show the
importance of tuning, we compared our optimized configu-
rations with two simple configurations 1) Uniform Devices:
a load balanced equally among all devices, and 2) Uniform
GPUs: a load balanced equally among GPUs (in Settings
B and C). In both cases, we set worker machines to also be
parameter servers which tends to yield good results. Figure
7 shows the outcome of each experiment. Our optimized
configurations significantly outperform these simple config-
urations on most experiments.
Inspecting the optimized configurations and their associ-

ated models delivers a number of insights.

• Communication cost. Large networks, like AlexNet,
are often scheduled on a subset of the machines due to
their expensive communication cost. This is lessened with
larger batch sizes where there is more computation to
perform per iteration and hence the cost of using more
workers is amortized. On the other hand, the smaller
GoogleNet was always scheduled on all available machines.

• Parameter servers. Another key setting that must be
optimized, which we do not report here due to lack of
space, is the set of parameter server machines. Param-

Figure 10: Comparison of BOAT-optimized configuration vs two default
strategies. [2]
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Figure 8: Convergence of the frameworks on Setting C using
SpeechNet with a 216 batch size.

eter servers need to perform large amounts of communi-
cation and hence benefit from being placed on machines
with high network speed. In the optimized configurations,
most of the parameters were usually placed on c4.8xlarge
instances, which indeed have the largest bandwidth. In-
specting the learned communication models shows that
they had correctly inferred that the connection speed pa-
rameter of c4.8xlarge was higher than those of other
instances.

• Load balance. Comparing “Uniform Devices” configu-
rations with our optimized configurations on GoogleNet
shows the importance of load balancing, both used all
available devices but the optimized configurations are sig-
nificantly faster. Interestingly, the correct load balance
depends on the neural network architecture. AlexNet’s
optimized configurations had a higher proportion of work
assigned to GPUs than those of SpeechNet.

• Batch size tradeo↵. Recall that batch size is an algo-
rithmic parameter and lower batch sizes tend to produce
better accuracy of the final neural network at the cost of
less parallelism. Each sub-graph of Figure 7 shows the
tradeo↵ between processing rate and batch size. With
our auto-tuner, users can find optimized configurations for
di↵erent batch sizes and easily explore this Pareto-front,
hiding the details of the configuration used.

These observations confirm the intuition that “one size fits
all” approaches are not appropriate, as optimized configura-
tions are influenced by hardware, workload and batch size.
Comparison with traditional Bayesian optimization.

We now consider whether the benefits of auto-tuning could
have been achieved with an o↵-the-shelf optimization tool.
Figure 8 compares the performance of our bespoke auto-
tuner with OpenTuner [4] and Spearmint [26], which were
each ran for thirty iterations. Each optimization was run
three times, we report for every iteration the median, min
and max performance of the best configuration found so far.
Our bespoke auto-tuner significantly outperforms generic
auto-tuners. The median best configuration achieved by
OpenTuner is 8.71s per SGD iteration, more than twice
slower than our median time (4.31s), and not much faster
than the Uniform GPUs configuration (9.82s). The rea-
son this tuning task is di�cult is because the space of ef-
ficient configurations is extremely narrow, assigning one of
the workers too much work creates a bottleneck, yielding
poor performance.

All of our experiments finished the ten iterations within
two hours. As neural networks training typically lasts over
a week, the performance gains largely outweigh the tuning

overhead, making our auto-tuner practical in realistic set-
tings. Our largest experiments involved 32 dimensions, we
expect our auto-tuner would scale well to larger settings as
there would be a proportional increase in the number of
measurements.

7. RELATED WORK
System performance modeling. Predicting the perfor-
mance of workloads has received significant interest. Most
of the time, this is used online as part of a scheduler to
best execute an incoming workload. Ernest [29] uses para-
metric probabilistic models to predict the performance of
distributed analytics jobs by first running them on small
samples of the data. Quasar[15], Paragon [14] and Pro-
teusTM [16] profile the early stages of workloads to find
similar previously-scheduled workloads. They use this to
suggest appropriate configurations. These frameworks use
generic probabilistic models to predict performance. They
work well when few parameters are being tuned but have
di�culty scaling to large configuration spaces due to the
curse of dimensionality [21]. BOAT tackles this by using be-
spoke models which are engineered to resemble the system’s
behavior and can leverage high rates of measurements.

Many fined-grained performance predictors have been built
for MapReduce workloads [18]. In comparison, probabilistic
programming allows to build simple models, requiring little
programmer e↵ort, and leverage empirical data to accurately
predict performance. Databases use performance models to
predict the behavior of queries [7]. These perform an op-
timization over a complex configuration space, but rely on
the constrained scope of queries, which only use relational
operators, to make accurate predictions.
System auto-tuning. Auto-tuning is often used to adapt
numerical libraries to their underlying hardware, ATLAS [30]
does this in the context of BLAS libraries. OpenTuner [4]
is a generic auto-tuner which combines multiple optimiza-
tion algorithms. In these works, evaluating a configuration
can be done quickly, and hence the objective function can
be evaluated many times. BOAT makes auto-tuning appli-
cable to new domains where this isn’t the case. Spearmint
[26] and Yelp’s MOE [10] are optimizers implementing tra-
ditional Bayesian optimization. BOAT builds upon them by
allowing the use of bespoke models.

8. CONCLUSION
In this paper we presented BOAT, a framework to build

bespoke auto-tuners in environments where black box opti-
mizers fail. We introduced Structured Bayesian Optimiza-
tion, which enables developers to inject domain knowledge
about the structure of their systems into the optimization
procedure. Evaluation results show how optimizers built
with BOAT can significantly outperform traditional auto-
tuners in complex tuning problems. BOAT is open source
and available at https://github.com/VDalibard/BOAT.
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Figure 11: Performance of BOAT-optimization vs other auto-tuners. [2]
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Opinions

Strengths:

• Novel ”grey-box” model: Smartly bootstraps expert knowledge
of system structure

• Superior Performance: Finds better configurations up to 3x
faster than SOTA tuners

• Simple, Powerful Abstraction: Hides complexities Bayesian
Optimization from developer

Limitations:

• Requires Domain Knowledge: Still needs an expert to manually
and accurately define the system’s structure

• Robustness unclear: How does it perform if the expert’s
structural ”beliefs” are wrong?

• Tuner Fine-Tuning: The model’s structure and hypertuning
requires excessive fine-tuning

• C++ Only API: Restricts adoption in other ecosystems
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TLDR;

The paper ...

• introduced Structured Bayesian Optimization by replacing the
GP model by a user-defined structured model

• presented BOAT as a framework for implementing structured
models and running SBO

• demonstrated the performance improvement over default
configurations & existing auto-tuners
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Questions?
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