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The Problem of Tuning Modern
Systems
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Figure 1: Visualization of a modern system’s configuration space



The Problem - Configuring Modern Systems

vca | ADsREG ADSR €6

Q@’ \’O\O\OOQ
Se0e ooooo

00

’0\0)0
/“@@@@ ve0e O &
\ ¢ ® 000

Figure 1: Visualization of a modern system’s configuration space



Existing Approaches

- Getting rid of configurations:
- Generic System should serve a variety of workloads, which are very
different in nature
- Allow users to achieve a maximum of performance, if necessary
- Manual ("white-box”) tuning:
- Require a lot of experience and deep knowledge of the underlying
system
- Black-Box tuner (such as OpenTuner [1], traditional Bayesian
Optimization, ...):
- Require too many evaluations, which are expensive
- Fail in large configuration spaces

Idea
Try to find a middle ground between "knowing the system deeply”

and "not knowing anything at all”.



Gaussian Processes and Bayesian
Optimization



Primer in Gaussian Processes

Gaussian Processes are just generalization of normal distributions
over functionsf: S — R:

- Mean function: u: § — R, such that u(x) is the mean of f(x)

- Covariance function: k: 8§ x § — R, such that R(xq, xy) is the

covariance of f(x;) and f(x,)

— Update belief over the functions, given some some observation
(x, f(x) (using Bayes' rule)



Gaussian Processes — Example
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Figure 2: Example of function and it's Gaussian Process approximation.



Bayesian Optimization (BO)

Idea: Just model the objective function using a GP:

- Use the GP model to choose the most promising configuration
to evaluate next
- Update the GP using the newest evaluation
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Figure 3: Flow chart of Bayesian optimization.



Bayesian Optimization in Practise

1. BO converges much quicker than other auto-tuners, such as
OpenTuner [1]

2. BO fails to converge in configuration spaces with dimensions
> 10 [3]

Hypothesis . .
By making BO aware of the structure and interdependencies of the

configuration space, one can

- drastically reduce the number of iterations
- find better configurations



Solution: Structured Bayesian
Optimization



Structured Bayesian Optimization

Idea: Replace the GP model by a user-defined structured
probabilistic model:
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This allows to induce knowledge of the system’s structure and
dynamics into the optimization.



Example: Structured Probabilistic Model for a Web Server
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Figure 4: Example for a structured probabilistic model for a web server’s
latency



The BOAT Framework

The BOAT (BespOke Auto-Tuner) framework for SBO-based auto
tuning, by allowing for:

- Defining a configuration space
- Defining a objective function

- Defining structured probabilistic models

— runs optimization, given the optimizer definitions
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Defining Probabilistic Models in BOAT

A probabilistic model in BOAT consists of independent components
with the following properties:

- predict a single observable value

- semi-parametric

Those components are then implicitly combined in a Directed Acyclic
Graph



Parametric vs Non-Parametric Models

Problem: Parametric models usually underfit, non-parametric

models usually overfit to the data
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Figure 5: Parametric vs Non-parametric models for vector insertion time,

taken from [2]
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Semi-Parametric Model

Solution: Semi-parametric models:

- Fit a parametric model to the data

- Fit a non-parametric model to the residual of the parametric
model
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Figure 6: Semi-parametric model for vector insertion time, taken from [2]



Implementing Probabilistic Models in BOAT — 1/2

Declare a model component by extending the
SemiParametricModel class:

struct LatencyModel : public SemiParametricModel<Late

doub.
double

double parameter(dou double memor age) const {
double

+ (cpu_load * ght) + (memory age * mem_weight);

Figure 7: Example of a semi-parametric model component in BOAT.



Implementing Probabilistic Models in BOAT - 2/2

Declare a structured probabilistic model by extending the
DAGModel class:

struct : public DAGMode

ProbEngine<CPULoadModel> cpu
<MemoryUsageModel>
ProbEngine<LatencyModel> 1

void model(int e_mb, int th

double cp

double memo

double la

Figure 8: Example of a structured probabilistic model in BOAT.
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Evaluation Tasks

1. JVM Garbage Collection
- Task: Optimize the JVM garbage collector of a NoSQL distributed
database (Cassandra)
- Configuration space: 3 flags for the garbage collection algorithm
- Objective: Minimize the 99th percentile latency
2. Distributed Neural Network Training
- Task: Optimize the training process of a neural network, given an
architecture, batch size and a cluster setup
- Configuration space: 2 boolean and 1-2 integer parameters per
machine
- Objective: Minimize training duration of 20 SGD iterations



Garbe Collection - Results
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Figure 9: Left: Performance of BOAT-optimized configuration vs default
configuration. Right: Performance of BOAT-optimization vs other

auto-tuners. [2]
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Distributed Neural Networks — Results 1/2
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Figure 10: Comparison of BOAT-optimized configuration vs two default
strategies. [2]



Distributed Neural Networks — Results 2/2
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Figure 11: Performance of BOAT-optimization vs other auto-tuners. [2]



Conclusion




Strengths:

- Novel "grey-box” model: Smartly bootstraps expert knowledge
of system structure

- Superior Performance: Finds better configurations up to 3x
faster than SOTA tuners

- Simple, Powerful Abstraction: Hides complexities Bayesian
Optimization from developer

19



Strengths:

- Novel "grey-box” model: Smartly bootstraps expert knowledge
of system structure

- Superior Performance: Finds better configurations up to 3x
faster than SOTA tuners

- Simple, Powerful Abstraction: Hides complexities Bayesian
Optimization from developer

Limitations:

- Requires Domain Knowledge: Still needs an expert to manually
and accurately define the system'’s structure

- Robustness unclear: How does it perform if the expert's
structural "beliefs” are wrong?

- Tuner Fine-Tuning: The model’s structure and hypertuning
requires excessive fine-tuning

- C++ Only API: Restricts adoption in other ecosystems
19



TLDR;

The paper ...
- introduced Structured Bayesian Optimization by replacing the
GP model by a user-defined structured model

- presented BOAT as a framework for implementing structured
models and running SBO

- demonstrated the performance improvement over default
configurations & existing auto-tuners
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Questions?
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