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Abstract

Optimization of high-dimensional black-box
functions is an extremely challenging problem.
While Bayesian optimization has emerged as
a popular approach for optimizing black-box
functions, its applicability has been limited to
low-dimensional problems due to its compu-
tational and statistical challenges arising from
high-dimensional settings. In this paper, we pro-
pose to tackle these challenges by (1) assuming
a latent additive structure in the function and in-
k'mnb it properly for more efficient and effec
e BO, and (2) performing multiple evaluation:
in pmud 10 reduce the number of iterations re-
quired by the method. Our novel approach learns
the latent structure with Gibbs sampling and con-
structs batched queries using determinantal point
processes. Experimental validations on both syn-
thetic and real-world functions demonstrate that

effective for convex optimization problems defined over
continuous domains, the same cannot be stated for non-
convex optimization, which has generally been dominated

ochastic techniques. During the last decade, Bayesian
optimization has emerged as a popular approach for opti-
‘mizing black-box functions. However, its applicabi
limited to low-dimensional problems because of computa-
tional and statistical challenges that arise from optimization
in high-dimensional settings.

In the past, these two problems have been addressed by
assuming a simpler underlying structure of the black-box
stance, Djolonga et al. (2013) assume that

the function being optimized has a low-dimensional effec-
tive lbs;m. and learn this subspace via low.rank matrix
2015) assume ad-

ditive »mlclure of lhe function where different constituent
functions operate on disjoint low-dimensional subspaces.
‘The subspace decomposition can be partially optimized by
searching possible decompositions and choosing the one
with the highest GP marginal likelihood (reating the de_
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Motivation: Bayesian Optimization
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Figure: lllustration of Bayesian optimization in 1D
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elerences BO struggles in high-dimensional settings due to:

» Computational challenges (scaling of GP)
« Statistical challenges (sample-inefficient exploration)
Florian Klein (University of Cambrid,
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Motivation: High-Dimensional Bayesian Optimization
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High-dimensional black-box optimization
f : RP — R (expensive evaluations)
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Approach

:::5 Bayesian st Computational challenge } [  Statistical challenge
Optimization andard GP BO scales poorly in high D Sample-inefficient exploration in high D
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Background: Bayesian Optimization in High Dimensions

Problem
We aim to optimize an expensive black-box function

f*=maxf(x), f:XCRP SR,

xeX
where each evaluation of f(x) is expensive (e.g. experiment, simulation).

Bayesian Optimization
BO places a Gaussian Process prior

f~ GP(u(x), k(x, ")),

and selects query points iteratively by maximizing an acquisition function

xen = argmaxa), @) = () + 5 o(x)
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Background: Bayesian Optimization in High Dimensions

Challenge: High Dimensionality.
» GP inference is O(n®) in number of observations n.

» Posterior variance grows exponentially with D (curse of dimensionality).

However:
Most high-dimensional objectives have low-dimensional structure:

M
FX)~ Y fm(xa,),  ANA =0
m=1

11 November 2025

7/25



Intuition

Introduction

Motivation

Approach

Structural Kernel
Learning

Batched Bayesian
Optimization

Results

Discussion
Methodology
Impact

Future Work
Conclusion

References

- Robot Control with Low-dimensional Structure

Walking Speed ~ 7‘:corso(xh X2) + farms(X37 X4) + ﬁegs(X57 ..

Batched High-dimensional Bayesian Optimization
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Background: Low-Dimensional Additive Structure
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f(x) = fi(x1, %2, x3) + f2(xa, x5) + (x5, X7, x8) + fa(x0, x10)
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Background: Prior Approaches to High-Dimensional BO

# Additive structure assumption

» Function decomposed as
f(x) = Z fm(xa,), Am disjoint subsets of features

(Kandasamy et al. [3])
» But assumes the decomposition is known or uses heuristic search

#2 Low-dimensional embeddings

» Random embeddings (Wang et al. [6])
» Subspace learning (Djolonga et al. [2])

& Batch-parallel Bayesian Optimization

« Multiple queries per iteration using diversity-promoting methods such as:
» Determinantal Point Processes (Kathuria et al. [4])

» Still computationally expensive in high dimensions
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Gap Addressed and Proposed Solution

Introduction

Motivation

» Main Gap:

Approach . . . ..
szi:um Kol No existing method learns the additive structure automatically and supports efficient
Learning parallel (batched) evaluations.
Batched Bayesian
Optimization
Recult » This Paper:
esults

» Structural Kernel Learning (SKL):
Ii:si”:sl'on Automatically derive additive groups {Am} within the GP kernel via Gibbs sampling,
| « Otoogy no need for prior knowledge of structure:
mpaci
Future Work i
Conclusion f(X = Z fm XA,,, AN Aj =10

m=1

References

« Batched Bayesian Optimization:

Uses group-wise Determinantal Point Processes (DPPs) to select query points in
parallel, reducing total iterations.
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Structural Kernel Learning (SKL): Learning Additive Structure

» Model assumption:

M
FX) = fm(xa,)s o~ GP(0,K™),  ANA =10
m=1

The subsets A, (feature groups) are unknown.

» Latent decomposition as random variable:
Each input dimension j is assigned to a group via

z; ~ Categorical(9), 6 ~ Dirichlet(a)
giving A = {j : z; = m}.
* Inference via Gibbs sampling (MCMC method):
Sample each z; conditional on all others:
p(zj = m | z-j, Dn) < p(Dy | 2) (|Am| + ctm)

where p(D, | z) is the GP marginal likelihood for decomposition z.
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Structural Kernel Learning: Learning Additive Structure

input dimensions

E Gibbs sampling over z;:
assignments e 2 - (z5)
ZD—1

p(z; = m| z-;, Dy)
o< p(Dn | 2) (|Am| + am)

feature| groups

o] () :

\

FO) = D00 fnlxar)

What does this mean?
» Posterior over z measures uncertainty in structure.

The best decomposition is selected by sampling.
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Batched Bayesian Optimization via Structured Kernels

Key idea.

Use the learned additive structure
M
F) = fnlxa,),  fm ~ GP(0, k™),
m=1

each component f,, gives diverse candidates in its low-dimensional subspace.

Group-wise Diversity.
For each group m:

X DPP(Kt('")) K™ x) = K (x, X,

Combining subspaces.

Full-dimensional batch points are formed by combining samples across groups:

(O (M))

Xt,b:(Xb s Xp Ly ey Xp b=1,...,B.

Scales as O(M) DPPs in subspaces instead of one exponential DPP in RP.

11 November 2025

14 /25



Introduction

Motivation

Approach

Structural Kernel
Learning

Batched Bayesian
Optimization

Results

Discussion
Methodology
Impact

Future Work
Conclusion

References

Overview: Empirical Evaluation

» Goal: Test if Structural Kernel Learning (SKL)
= (1) correctly infers additive structure
= (2) improves high-dimensional BO performance.

» Benchmarks:

« Synthetic additive functions (D = 2—100)
» Real-world robotics tasks (Box2D pushing, Biped Walker)

» Comparisons:

» Known / No / Fully / Partially learned decompositions
» Existing batch BO methods: PE, DPP, Random
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Example: Empirical Evaluation
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Figure: Simple regret of tuning the 14 parameters for a robot pushing task. Learning
decompositions with Gibbs is more effective than partial learning (PL-1, PL-2), no partitions

(NP), or fully partitioned (FP). Learning decompositions with Gibbs helps BO to find a better
point for this tuning task. [5]
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Discussion

# Strength: Strong combination of two research directions
— structure learning in Gaussian Processes and batched BO.

# But: Evaluation remains mostly empirical.
No formal convergence or regret guarantees for the batched variant.
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Discussion: Methodological Gaps

# Limited theoretical analysis

+ The Gibbs-sampling—based structure learning lacks convergence proofs.

» No theoretical bounds for SKL or group-wise DPP batching.
# Scalability constraints

« Experiments reach D = 100; unclear performance in even higher dimensions or

continuous large-scale domains.
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Discussion

Introduction

Motivation

Approach

Structural Kernel
Learning

Batched Bayesian What did the paper do well and contribute?

Optimization # Structure discovery in high dimensions
Results » First Bayesian method to learn additive kernel structure automatically via Gibbs

Discussion sampling.

Methodology # Scalable batched optimization
:::ka « Introduced group-wise DPP sampling — exponential speed-up compared to full DPPs.
Conclusion & Empirical validation across synthetic and robotic tasks
« Consistently lowest regret vs. state-of-the-art baselines.
References
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Future Work

It might be interesting to explore:

# Theoretical regret guarantees for learned additive structures and batch selection.

2 Continuous and non-additive latent structures.

& Applications to real-world AutoML tasks (e.g., hyperparameter tuning, neural

architecture search).
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Conclusion
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Results

Discussion To summarize:

Methodology » Structural Kernel Learning to get additive structure in high-dimensional BO.
e * Group-wise DPP batching for efficient parallel exploration.

Conclusion » Empirically achieves state-of-the-art performance!
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Thank you for your attention!

Batched H

Any questions?

ional Bayesian Optimization
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