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Motivation: Bayesian Optimization
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Figure: Illustration of Bayesian optimization in 1D
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Motivation: Bayesian Optimization
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BO struggles in high-dimensional settings due to:
Computational challenges (scaling of GP)
Statistical challenges (sample-inefficient exploration)
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Motivation: High-Dimensional Bayesian Optimization

High-dimensional black-box optimization
f : RD → R (expensive evaluations)

Computational challenge
Standard GP BO scales poorly in high D

Statistical challenge
Sample-inefficient exploration in high D

Latent additive structure
f (x) =

∑
m fm(xAm )

⇒ groups inferred via Gibbs sampling

Parallel batch BO
Batched queries constructed with

determinantal point processes (DPPs)

Scalable high-dimensional Bayesian optimization
Fewer iterations, better performance

on synthetic and real-world tasks

This paper
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Background: Bayesian Optimization in High Dimensions

Problem
We aim to optimize an expensive black-box function

f ∗ = max
x∈X

f (x), f : X ⊂ RD → R,

where each evaluation of f (x) is expensive (e.g. experiment, simulation).

Bayesian Optimization
BO places a Gaussian Process prior

f ∼ GP(µ(x), k(x , x ′)),

and selects query points iteratively by maximizing an acquisition function

xt+1 = arg max
x∈X

at(x), at(x) = µt(x) + β
1/2
t σt(x)
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Background: Bayesian Optimization in High Dimensions

Challenge: High Dimensionality.
GP inference is O(n3) in number of observations n.
Posterior variance grows exponentially with D (curse of dimensionality).

However:
Most high-dimensional objectives have low-dimensional structure:

f (x) ≈
M∑

m=1
fm(xAm ), Ai ∩ Aj = ∅.
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Intuition: Robot Control with Low-dimensional Structure

x1 x2 x3 x4

x5 x6 x7 x8

torso

head

arm arm

leg leg

Walking speed ≈ ftorso(x1, x2) + farms(x3, x4) + flegs(x5, . . . , x8)
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Background: Low-Dimensional Additive Structure

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

A1 A2 A3 A4

f1(xA1 ) f2(xA2 ) f3(xA3 ) f4(xA4 )

f (x) =
∑4

m=1
fm(xAm )

f (x) ≈ f1(x1, x2, x3) + f2(x4, x5) + f3(x6, x7, x8) + f4(x9, x10)
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Background: Prior Approaches to High-Dimensional BO

1 Additive structure assumption
Function decomposed as

f (x) =
∑

m

fm(xAm ), Am disjoint subsets of features

(Kandasamy et al. [3])
But assumes the decomposition is known or uses heuristic search

2 Low-dimensional embeddings
Random embeddings (Wang et al. [6])
Subspace learning (Djolonga et al. [2])

3 Batch-parallel Bayesian Optimization
Multiple queries per iteration using diversity-promoting methods such as:

Determinantal Point Processes (Kathuria et al. [4])
Still computationally expensive in high dimensions
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Gap Addressed and Proposed Solution

Main Gap:
No existing method learns the additive structure automatically and supports efficient
parallel (batched) evaluations.

This Paper:
Structural Kernel Learning (SKL):
Automatically derive additive groups {Am} within the GP kernel via Gibbs sampling,
no need for prior knowledge of structure:

f (x) =
M∑

m=1

fm(xAm ), Ai ∩ Aj = ∅

Batched Bayesian Optimization:
Uses group-wise Determinantal Point Processes (DPPs) to select query points in
parallel, reducing total iterations.
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Structural Kernel Learning (SKL): Learning Additive Structure
Model assumption:

f (x) =
M∑

m=1
fm(xAm ), fm ∼ GP(0, k(m)), Ai ∩ Aj = ∅

The subsets Am (feature groups) are unknown.

Latent decomposition as random variable:
Each input dimension j is assigned to a group via

zj ∼ Categorical(θ), θ ∼ Dirichlet(α)

giving Am = {j : zj = m}.

Inference via Gibbs sampling (MCMC method):
Sample each zj conditional on all others:

p(zj = m | z¬j , Dn) ∝ p(Dn | z) (|Am| + αm)

where p(Dn | z) is the GP marginal likelihood for decomposition z .
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Structural Kernel Learning: Learning Additive Structure

x1 x2 . . . xD−1 xD

input dimensions

z1 z2
. . .

zD−1
zDassignments

A1 A2 . . . AM

feature groups

f1(xA1 ) f2(xA2 )
. . .

fM (xAM )

f (x) =
∑M

m=1
fm(xAm )

Gibbs sampling over zj :
p(zj = m | z¬j , Dn)
∝ p(Dn | z) (|Am| + αm)

What does this mean?
Posterior over z measures uncertainty in structure.
The best decomposition is selected by sampling.
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Batched Bayesian Optimization via Structured Kernels
Key idea.
Use the learned additive structure

f (x) =
M∑

m=1
fm(xAm ), fm ∼ GP(0, k(m)),

each component fm gives diverse candidates in its low-dimensional subspace.

Group-wise Diversity.
For each group m:

X (m)
t ∼ DPP

(
K (m)

t

)
, K (m)

t (x , x ′) = k(m)
t (x , x ′),

Combining subspaces.
Full-dimensional batch points are formed by combining samples across groups:

xt,b =
(
x (1)

b , x (2)
b , . . . , x (M)

b
)
, b = 1, . . . , B.

Scales as O(M) DPPs in subspaces instead of one exponential DPP in RD .
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Overview: Empirical Evaluation

Goal: Test if Structural Kernel Learning (SKL)
⇒ (1) correctly infers additive structure
⇒ (2) improves high-dimensional BO performance.

Benchmarks:
Synthetic additive functions (D = 2−100)
Real-world robotics tasks (Box2D pushing, Biped Walker)

Comparisons:
Known / No / Fully / Partially learned decompositions
Existing batch BO methods: PE, DPP, Random
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Example: Empirical Evaluation

Figure: Simple regret of tuning the 14 parameters for a robot pushing task. Learning
decompositions with Gibbs is more effective than partial learning (PL-1, PL-2), no partitions
(NP), or fully partitioned (FP). Learning decompositions with Gibbs helps BO to find a better
point for this tuning task. [5]
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Discussion

1 Strength: Strong combination of two research directions
— structure learning in Gaussian Processes and batched BO.

2 But: Evaluation remains mostly empirical.
No formal convergence or regret guarantees for the batched variant.
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Discussion: Methodological Gaps

1 Limited theoretical analysis
The Gibbs-sampling–based structure learning lacks convergence proofs.
No theoretical bounds for SKL or group-wise DPP batching.

2 Scalability constraints
Experiments reach D = 100; unclear performance in even higher dimensions or
continuous large-scale domains.
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Discussion

What did the paper do well and contribute?
1 Structure discovery in high dimensions

First Bayesian method to learn additive kernel structure automatically via Gibbs
sampling.

2 Scalable batched optimization
Introduced group-wise DPP sampling — exponential speed-up compared to full DPPs.

3 Empirical validation across synthetic and robotic tasks
Consistently lowest regret vs. state-of-the-art baselines.
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Future Work

It might be interesting to explore:
1 Theoretical regret guarantees for learned additive structures and batch selection.
2 Continuous and non-additive latent structures.
3 Applications to real-world AutoML tasks (e.g., hyperparameter tuning, neural

architecture search).
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Conclusion

To summarize:
Structural Kernel Learning to get additive structure in high-dimensional BO.
Group-wise DPP batching for efficient parallel exploration.
Empirically achieves state-of-the-art performance!
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Thank you for your attention!

Any questions?
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