X-Stream

Edge-centric Graph Processing using Streaming Partitions

Roy et al., EPFL, 2018

Jan Pytel

University of Cambridge
November 5, 2025

X-Stream: Introduction & Motivation

* Graph processing system for:
* in-memory graphs
* out-of-core graphs

* Single, shared-memory machine
* Implements Scatter-Gather programming model

* Novelty

* edge-centric (vertex-centric approach most common)

* streaming unordered edge list

* from RAM (in-memory graphs)
* from disk (out-of-core graphs)

* Motivation: sequential access > random access bandwidth

Scatter-Gather

* Graph (vertices & edges)
e state stored in vertices

* |terative computation:
1. scatter vertex state to neighbours
2. gather updates from neighbours and recompute vertex state

* Vertex-Centric implementation
* iterates over vertices
* issue: random access for edges

* Edge-Centric implementation
* iterates over edges
* benefit: sequential access to edge list

Random vs Sequential Access

* Read bandwidth comparison (sequential vs random)
* disk: 500x faster
* SSD: 30x faster
* RAM:

* 4.6x faster (single core)
» 1.8x faster (16 cores)
* due to hardware prefetching

* X-Stream: exploit sequential access

Streams

* Scatter phase
* takes: stream of edges
* produces: stream of updates

* X-Stream: stream edge list from slow storage

* In-memory graphs

* Fast Storage: cache
* Slow Storage: RAM

* Qut-of-core graphs
* Fast Storage: RAM
* Slow Storage: SSD/disk

Streams

1. Edge Centric Scatter

Edges (sequential read)

\ 1A\ | 4\ 4] °°°
\ VAV
4 AV N
\ i
~_— Vertices (random read/write)
\ 1A\ | 4\ 4] °°°
\ VAV AN/

Updates (sequential write)

2. Edge Centric Gather

Updates (sequential read)

1A [o[4f°°°
\VAVAV
Y S R
\ A

Vertices (random read/write)

Figure 3: Streaming Memory Access

Streaming Partitions

e Goal: avoid random access to vertices

* Typical graph: |edge set| > |vertex set|
e still want to avoid random access to vertices

* Large graphs: vertex set may not fit into Fast Storage

* Solution: Streaming Partitions

* idea: split vertex set into subsets that fit into Fast Storage

e consists of
* vertex set - subset of vertices
* edge list — edges whose source vertex is in the partition’s vertex set

* update list — updates whose destination vertex is in partition’s vertex set
* recomputed before each gather phase

Scatter-Gather w/ Streaming Partitions

* Scatter & Gather phases

* iterate over streaming partitions

(not edges)
* Shuffle phase (new)

* recompute update list

scatter phase:
for each streaming partition p
read in vertex set of p
for each edge e in edge list of p
edge_scatter (e) : append update to Uout

shuffle phase:
for each update u in Uout
let p = partition containing target of u
append u to Uin(p)
destroy Uout

gather phase:
for each streaming partition p
read in vertex set of p
for each update u in Uin(p)
edge_gather (u)
destroy Uin (p)

Figure 4: Edge-Centric Scatter-Gather with Stream-

ing Partitions

Size and Number of Partitions

e Goal

* fast random access to vertices: fit all vertices into Fast Memory
* maximise sequential access to Slow Storage: minimal num of partitions

* Solution
* vertex sets of equal size

» vertex sets fills up Fast Storage
* (allowing for buffers and additional data structures)

Out-of-core Streaming Engine

* Input: file with unordered edge list

* 3 files for each streaming partition
* 1forvertices
* 1 foredges
* 1 forupdates

* Challenge: achieve sequential access for shuffle phase
* random |/0O if tried to write updates to files as they come

* solution: “fold” shuffle phase into scatter phase

* in-memory buffer storing updates
* run in-memory shuffle when full

10

Stream Buffer

e Statically sized, statically allocated

* 5 stream buffers:
* 2input and 2 output buffers (to support prefetching)
* 1 for shuffling

Index Array (K entries)

Chunk Array

Figure 5: Stream Buffer (K: number of partitions)

11

Out-of-core Streaming Engine: Operation

* Pre-process: partition input edge lists into streaming partitions

® Main lOOp merged| scatter/shuffle |phase:
for each streaming partition s
while edges left in s
load next chunk of edges into input buffer
for each edge e in memory
edge_scatter (e) appending to output buffer
if output buffer is full or no more edges
in-memory shuffle output buffer
for each streaming partition p
append chunk p to update file for p

gather phase:
for each streaming partition p

read in vertex set of p

while updates left in p
load next chunk of updates into input buffer
for each update u in input buffer

edge_gather (u)
write vertex set of p

Figure 6: Disk Streaming Loop B

In-memory Streaming Engine

* Concerns
* parallelism: need all cores for peak streaming bandwidth to memory

* larger number of partitions (aim: fit vertex set in CPU cache)

* 3 stream buffers
* Input (edges), output (updates), shuffling

* Operation
* load edges into input stream buffer
* shuffle edges into chunk of edges for each partition
* append all updates to a single output buffer
* shuffle updates into chunks of updates for each partition

13

In-memory Streaming Engine: Parallelism

* Parallel Scatter-Gather
* streaming operations done independently for separate partitions
* challenge: workload imbalance if num of edges differs per partition
* solution: “work stealing” (threads ”stealing” partitions from each other)

* Parallel Multistage Shuffler
* issue: shuffling into large number of partitions inefficient
* (loss of sequential access)

* idea: group partitions into tree hierarchy and shuffle more efficiently
» shuffles K partitions in [logy K| steps

* multithreading — stream buffer slices, thread per slice

14

In-memory Streaming Engine: Parallelism

|
Thread 1} Thread 2

> | °
write | fReadlwrite) fRead

Thread P

o

/ |
I
12...|<}12...|<
I

<~ NN

00O

~

1 2 ..K

>\

I
I
I
I
I
|
Write| T Read
write| §
I
I
I
I
|
I
|

|
_ Slice1ll Slice?2

; Slice U

Figure 7: Slicing a Streaming Buffer

15

X-Stream Layering

* In-memory engine above out-of-core engine

* For each iteration of the disk streaming loop
* loaded input chunk processed by in-memory engine

* Maximises main memory bandwidth usage and computational
resources with the out-of-core engine

16

Evaluation

Name Vertices Edges Type
In-memory
amazon0601 [2] 403,394 3,387,388 Directed
cit-Patents [3] 3,774,768 16,518,948 Directed
soc-livejournal [4] 4,847,571 68,993,773 Directed
dimacs-usa [5] 23,947,347 58,333,344 Directed
Out-of-core
Twitter [36] 41.7 million 1.4 billion Directed
Friendster [6] 65.6 million 1.8 billion Undir.
sk-2005 [7] 50.6 million 1.9 billion Directed
yahoo-web [8] 1.4 billion 6.6 billion Directed
Netflix [55] 0.5 million 0.1 billion Bipartite

Figure 10: Datasets

17

Evaluation

Figure 12: Different Algorithms on Real World Graphs: (a) Runtimes; (b) Number of scatter-gather iterations,

ratio of runtime to streaming time, and percentage of wasted edges for WCC.

WCC SCC SSSP MCST MIS Cond. SpMV Pagerank BP # iters ratio wasted %
memory memory

amazon(0601 0.61s 1.12s 0.83s| 0.37s 3.31s| 0.07s| 0.09s 0.25s 1.38s amazon0601 19 [2.58 63
cit-Patents 2.98s 0.69s 0.29s| 2.35s 3.72s| 0.19s[0.19s 0.74s 6.32s cit-Patents 21 (2.20 50
soc-livejournal 7.22s 11.12s 9.60s| 7.66s 15.54s| 0.78s| 0.74s 2.90s Im 21s soc-livejournal| 13 |2.13 57
dimacs-usa 6m 12s 9m 54s| 38m 32s| 4.68s 9.60s| 0.26s| 0.65s 2.58s 12.01s dimacs-usa | 6263 |1.94 98

ssd ssd
Friendster 38m 38s| 1h 8m 12s{1h 57m 52s{19m 13s|1h 16m 29s| 2m 3s| 3m4l1s 15m 31s| 52m 24s Friendster 24 11.06 63
sk-2005 44m 3s|{1h 56m 58s| 2h 13m 5s|19m 30s({3h 21m 18s| 2m 14s| 1m 59s 8m 9s| 56m 29s sk-2005 25 [1.04 67
Twitter 19m 19s| 35m 23s| 32m 25s|10m 17s| 47m 43s| 1m 40s| 1m 29s 6m 12s| 42m 52s Twitter 16 |1.04 55

disk disk
Friendster |1h 17m 18s|2h 29m 39s|3h 53m 44s|43m 19s|2h 39m 16s| 4m 25s| 7m42s| 32m 16s|1h 57m 36s Friendster 24 (1.04 63
sk-2005 1h 30m 3s|4h 40m 49s|4h 41m 26s|39m 12s| 7h 1m 21s| 4m 45s| 4m 12s| 17m 22s|2h 24m 28s sk-2005 25 |1.04 67
Twitter 39m 47s| 1h 39m 9s|1h 10m 12s| 29m 8s|1h 42m 14s| 3m 38s| 3m 13s 13m 21s| 2h 8m 13s Twitter 16 |1.04 55
yahoo-web — — — — — 16m 32s{14m 40s|1h 21m 14s| 8h 2m 58s yahoo-web — | — —

(a) (b)

Scalability

Processing time (s)

RMAT scale 25 graph

256 4 WCC —+—
.......... Pagerank ->¢--
128 BFS - ¥
4. e SpMV —H]
| P
32 F W T e -
B ey T
16 SR
gl b .
4 —
1 2 4 8 16
Threads

Figure 14: Strong Scaling

Runtime normalized to one disk

Figure 15: I/0 Parallelism

262144

65536 |
16384 |
4096 |
1024 |

256 |

Runtime (s)

Figure 16: Scaling Across Devices

26
Scale

19

X-Stream vs GraphChi (Out-of-Core)

| XSweam GraphChi

Model edge-centric vertex-centric

Key Idea eliminate random I/O by streaming reduce random I/O by sorting edges into
edges and updates shards per vertex

1/0 Strategy sequential access streaming of “parallel sliding windows” to reduce
unsorted edge list amount of random access to disk

Pre-Processing none pre-sorting graph into shards

Access Pattern fully sequential semi-sequential (multiple shards

accessed per iteration)
Primary Limitation limited random access to vertices pre-processing can dominate runtime
Scalability scales linearly with graph size, I/0O- works well on large graphs, however costly

bound, not CPU-bound pre-processing

20

X-Stream vs GraphChi

Pre-Sort (s) Runtime (s) Re-sort (s)
Twitter pagerank
X-Stream (1) none 397.57+1.83 -
Graphchi (32) 752.324+9.07 1175.12+25.62 969.99
Netflix ALS
X-Stream (1) none 76.74 £0.16 -
Graphchi (14) 123.73 £4.06 138.68 +26.13 45.02
RMAT27 WCC
X-Stream (1) none 867.59 £2.35 -
Graphchi (24) 2149.38 +41.35 2823.99 +704.99 1727.01
Twitter belief prop.

X-Stream (1) none 2665.64 +6.90 -
Graphchi (17) 742.42+13.50 4589.52 +£322.28 1717.50

Figure 22: Comparison with Graphchi on SSD with 99 %
Confidence Intervals. Numbers in brackets indicate X-
Stream streaming partitions/Graphchi shards (Note: re-
sorting is included in Graphchi runtime.)

21

Summary

* OQutperforms existing graph processing systems

* Key performance factors
* sequential access
* no pre-processing cost (e.g. sorting & indexing)
* higher count of instruction per cycle (lower memory resolution latency)

* Scalability — scales well across
* number of cores; number of I/0 devices; different storage devices

* Discussion
* |/O centric design philosophy
* Simplicity/semantic tradeoff
* Pre-processing tradeoff
* High-diameter graphs and “wasted edges”
* Single-machine assumption

22

