
X-Stream
Edge-centric Graph Processing using Streaming Partitions

Roy et al., EPFL, 2018

Jan Pytel
University of Cambridge

November 5, 2025

X-Stream: Introduction & Motivation
• Graph processing system for:
• in-memory graphs
• out-of-core graphs

• Single, shared-memory machine
• Implements Scatter-Gather programming model
• Novelty
• edge-centric (vertex-centric approach most common)
• streaming unordered edge list

• from RAM (in-memory graphs)
• from disk (out-of-core graphs)

• Motivation: sequential access > random access bandwidth

2

Scatter-Gather
• Graph (vertices & edges)
• state stored in vertices

• Iterative computation:
1. scatter vertex state to neighbours
2. gather updates from neighbours and recompute vertex state

• Vertex-Centric implementation
• iterates over vertices
• issue: random access for edges

• Edge-Centric implementation
• iterates over edges
• benefit: sequential access to edge list

3

Random vs Sequential Access
• Read bandwidth comparison (sequential vs random)
• disk: 500x faster
• SSD: 30x faster
• RAM:

• 4.6x faster (single core)
• 1.8x faster (16 cores)
• due to hardware prefetching

• X-Stream: exploit sequential access

4

Streams
• Scatter phase
• takes: stream of edges
• produces: stream of updates

• X-Stream: stream edge list from slow storage
• In-memory graphs
• Fast Storage: cache
• Slow Storage: RAM

• Out-of-core graphs
• Fast Storage: RAM
• Slow Storage: SSD/disk

5

6

Streams

Streaming Partitions
• Goal: avoid random access to vertices
• Typical graph: |edge set| > |vertex set|
• still want to avoid random access to vertices

• Large graphs: vertex set may not fit into Fast Storage
• Solution: Streaming Partitions
• idea: split vertex set into subsets that fit into Fast Storage
• consists of

• vertex set – subset of vertices
• edge list – edges whose source vertex is in the partition’s vertex set
• update list – updates whose destination vertex is in partition’s vertex set

• recomputed before each gather phase

7

Scatter-Gather w/ Streaming Partitions

8

• Scatter & Gather phases
• iterate over streaming partitions

(not edges)

• Shuffle phase (new)
• recompute update list

Size and Number of Partitions

• Goal
• fast random access to vertices: fit all vertices into Fast Memory
• maximise sequential access to Slow Storage: minimal num of partitions

• Solution
• vertex sets of equal size
• vertex sets fills up Fast Storage

• (allowing for buffers and additional data structures)

9

Out-of-core Streaming Engine
• Input: file with unordered edge list
• 3 files for each streaming partition
• 1 for vertices
• 1 for edges
• 1 for updates

• Challenge: achieve sequential access for shuffle phase
• random I/O if tried to write updates to files as they come
• solution: “fold” shuffle phase into scatter phase

• in-memory buffer storing updates
• run in-memory shuffle when full

10

Stream Buffer
• Statically sized, statically allocated
• 5 stream buffers:
• 2 input and 2 output buffers (to support prefetching)
• 1 for shuffling

11

Out-of-core Streaming Engine: Operation
• Pre-process: partition input edge lists into streaming partitions
• Main loop

12

In-memory Streaming Engine
• Concerns
• parallelism: need all cores for peak streaming bandwidth to memory
• larger number of partitions (aim: fit vertex set in CPU cache)

• 3 stream buffers
• Input (edges), output (updates), shuffling

• Operation
• load edges into input stream buffer
• shuffle edges into chunk of edges for each partition
• append all updates to a single output buffer
• shuffle updates into chunks of updates for each partition

13

In-memory Streaming Engine: Parallelism
• Parallel Scatter-Gather
• streaming operations done independently for separate partitions
• challenge: workload imbalance if num of edges differs per partition
• solution: “work stealing” (threads ”stealing” partitions from each other)

• Parallel Multistage Shuffler
• issue: shuffling into large number of partitions inefficient

• (loss of sequential access)
• idea: group partitions into tree hierarchy and shuffle more efficiently

• shuffles 𝐾 partitions in log! 𝐾 steps
• multithreading – stream buffer slices, thread per slice

14

In-memory Streaming Engine: Parallelism

15

X-Stream Layering

• In-memory engine above out-of-core engine
• For each iteration of the disk streaming loop
• loaded input chunk processed by in-memory engine

• Maximises main memory bandwidth usage and computational
resources with the out-of-core engine

16

Evaluation

17

Evaluation

18

Scalability

19

X-Stream vs GraphChi (Out-of-Core)

20

X-Stream GraphChi
Model edge-centric vertex-centric

Key Idea eliminate random I/O by streaming
edges and updates

reduce random I/O by sorting edges into
shards per vertex

I/O Strategy sequential access streaming of
unsorted edge list

“parallel sliding windows” to reduce
amount of random access to disk

Pre-Processing none pre-sorting graph into shards
Access Pattern fully sequential semi-sequential (multiple shards

accessed per iteration)

Primary Limitation limited random access to vertices pre-processing can dominate runtime

Scalability scales linearly with graph size, I/O-
bound, not CPU-bound

works well on large graphs, however costly
pre-processing

X-Stream vs GraphChi

21

Summary
• Outperforms existing graph processing systems
• Key performance factors
• sequential access
• no pre-processing cost (e.g. sorting & indexing)
• higher count of instruction per cycle (lower memory resolution latency)

• Scalability – scales well across
• number of cores; number of I/O devices; different storage devices

• Discussion
• I/O centric design philosophy
• Simplicity/semantic tradeoff
• Pre-processing tradeoff
• High-diameter graphs and “wasted edges”
• Single-machine assumption

22

