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The next 25 minutes

1. Key Takeaway (1 min)
○ If you remember one thing from today…

2. Background (5 min)
○ What is the distributed graph-parallel paradigm?
○ Why does this paradigm exist?

3. Context (5 min)
○ What does existing work here look like? Pregel, GraphLab
○ What are the issues with these existing ideas?

4. PowerGraph (10 min)
○ What is this paper’s main argument?
○ Do the experimental results presented prove the argument?

5. Opinion + Discussion (4 min)
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Key Takeaway
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Vertex-cuts >> Edge-cuts

PowerGraph argues:

If your distributed graph contains very 
high-degree vertices, vertex-cuts are more 
performant than edge-cuts
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Figure adapted from Figure 1: Turab et al., “Existence of solutions for a 
class of non-boundary…”, Advances in Differential Equations, 2021



Background: Breaking down the paper title
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Distributed Graph-Parallel Computation on Natural Graphs
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Distributed Graph-Parallel Computation on Natural Graphs

Distributed?
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Distributed Graph-Parallel Computation on Natural Graphs

Distributed? Around 2010, graphs got too big to fit on one machine – billions of 
vertices, trillions of edges – so needed to represent graphs across a cluster

With any distributed representation, you inevitably raise new questions
○ Storage: how do you store adjacency information on each node?
○ Communication: how do you manage state updates across multiple nodes?
○ Computation: can you parallelise program execution across the cluster?
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Distributed Graph-Parallel Computation on Natural Graphs

Graph-Parallel?
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Distributed Graph-Parallel Computation on Natural Graphs

Graph-Parallel? Paradigm that supports 
parallelism across a distributed graph

Write code from the perspective of a 
vertex; receive updates from your 
neighbours -> do something -> update 
neighbours with new state
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Figure from Apache Spark GraphX Programming Guide (v1.0.1) 
https://downloads.apache.org/spark/docs/1.0.1/graphx-programming-guide.html 

https://downloads.apache.org/spark/docs/1.0.1/graphx-programming-guide.html


Why are graph-parallel paradigms necessary?

Data-parallel engines do not provide a natural idiom 
to express iterative workflows

For example, how would you express PageRank 
using Apache Spark?

○ Shuffle-join every vertice with its neighbours
○ Map a function to run over every vertex
○ Reduce for every vertex over neighbours
○ Materialize results
○ Repeat…

Inefficient; ignores inherent structure of the data; 
unnatural programming model
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Figure from Dey, S. "Google Page Rank and the impact of the Second EigenValue..." 2017
https://sandipanweb.wordpress.com/2017/01/02/page-rank-and-power-iteration/

https://sandipanweb.wordpress.com/2017/01/02/page-rank-and-power-iteration/


Why are graph-parallel paradigms necessary?
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Table 2: Gonzalez et al., "PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs", OSDI 2012



Distributed Graph-Parallel Computation on Natural Graphs

Natural Graphs?
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Distributed Graph-Parallel Computation on Natural Graphs

Natural Graphs? PowerGraph argues: 
Real graphs often have ‘power-law’ 
degree distributions

A small number of vertices have very, 
very high degree: P(d) ∝ d -ɑ

A small number of vertices are adjacent 
to a large fraction of edges, resulting in 
a star-like motif
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Figure 1: Gonzalez et al., "PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs", OSDI 2012



Context: Existing edge-cut ideas and their 
problems
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Pregel: BSP model with Message Passing (2010)

Bulk: all vertices process messages at the 
same time

Message Passing: neighbours 
communicate state updates by sending 
user-defined messages

Synchronous: every vertex waits for 
everyone else to send messages before 
progressing (superstep); global barriers 
ensures serializability
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Section 2.1: Gonzalez et al., "PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs", OSDI 2012;
Figure from: Gonzalez et al., "PowerGraph" presentation slides, OSDI 2012
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez

https://www.cl.cam.ac.uk/~ey204/teaching/ACS/R244_2025_2026/papers/malewicz_sigmod_2010.pdf
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez


Pregel: BSP model with Message Passing (2010)

Bulk: all vertices process messages at the 
same time; wastes available resources

Message Passing: neighbours 
communicate state updates by sending 
user-defined messages; potentially lots of 
unnecessary messages; places onus on 
user to manage state updates

Synchronous: every vertex waits for 
everyone else to send messages before 
progressing; global barriers ensures 
serializability; everyone waits for slowest
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Section 2.1: Gonzalez et al., "PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs", OSDI 2012;
Figure from: Gonzalez et al., "PowerGraph" presentation slides, OSDI 2012
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez

https://www.cl.cam.ac.uk/~ey204/teaching/ACS/R244_2025_2026/papers/malewicz_sigmod_2010.pdf
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez


GraphLab: Asynchronous shared-memory model (2012)

Shared-Memory Abstraction: vertices 
access locally cached state (ghost) for 
scope; cache updates are abstracted from 
user, so no message passing needed

Asynchronous: no global barrier to 
vertex-program execution; users opt in to 
levels of serializability via scope locks
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Section 2.2: Gonzalez et al., "PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs", OSDI 2012;
Figure from: Gonzalez et al., "PowerGraph" presentation slides, OSDI 2012
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez

https://vldb.org/pvldb/vol5/p716_yuchenglow_vldb2012.pdf
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez


Unsolved problem: High degree in natural graphs

Imagine a vertex with 1MM neighbours, 
randomly partitioned across 1000 machines
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Figure adapted from Figure 1: Turab et al., “Existence of solutions for a class of 
non-boundary…”, Advances in Difference Equations 2021



Unsolved problem: High degree in natural graphs

Storage: Machine 1 has to store v0 + 1MM other ghosts

Communication: Vertex-program will need to acquire locks + broadcast updates 
+ release locks across 1000 nodes to update v0 ghosts

Computation: No parallelism of vertex-program; sequential execution on single 
machine
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Unsolved problem: High degree in natural graphs

When vertices have very high degree, 
GraphLab exhibits issues, because 

1. edges are very likely to be cut, 
leading to ghost replication

2. performance drops linearly in number 
of replicas

For p=100 nodes, 99% chance edge cut
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Theorem 5.1: Gonzalez et al., "PowerGraph: Distributed Graph-Parallel Computation on 
Natural Graphs", OSDI 2012



Unsolved problem: High degree in natural graphs

“In order to address the challenges of natural graphs, the PowerGraph abstraction 
requires the size of the accumulator and the complexity of the apply function to be 
sub-linear in the degree. However, directly executing GraphLab and Pregel 
vertex-programs within the apply function leads the size of the accumulator and 
the complexity of the apply function to be linear in the degree eliminating many of 
the benefits on natural graphs.”
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Section 4.4: Gonzalez et al., "PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs", OSDI 2012



PowerGraph: make performance sublinear in 
degree
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Idea 1: Vertex-cut reduces effective replication

Assign edges to machines, allow 
vertices to span machines, with master 
<> read-replica pattern
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Figure adapted from Figure 1: Turab et al., “Existence of solutions for a class of 
non-boundary…”, Advances in Difference Equations 2021



Idea 1: Vertex-cut reduces effective replication

Replication grows much slower than 
with edge-cuts, especially for small α 
(dense, hub-heavy graphs)

A(v) << |E|, independent of |V|

Storage overhead scales with smaller 
A(v), not |E|
○ Don’t need to store |E| ghosts
○ Need to maintain A(v) replicas
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Figure 6 from Gonzalez et al., "PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs" 2012



Proof: Why is A(v) << |E|?
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For p=100, 99% chance of edge cut 
=> all edges need ghosts

Something much less…

Theorem 5.1: Gonzalez et al., "PowerGraph: Distributed Graph-Parallel 
Computation on Natural Graphs", OSDI 2012

Theorem 5.2: Gonzalez et al., "PowerGraph: Distributed Graph-Parallel 
Computation on Natural Graphs", OSDI 2012



Idea 2: Vertex-cut localises data and compute

27

Figure 3: Gonzalez et al., "PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs", OSDI 2012



Idea 2: Vertex-cut localises data and compute

Computation is parallelisable
○ Gather and Scatter can be performed 

locally on local subgraphs
○ And in parallel across vertex-replicas 

containing different subgraphs

Communication overhead scales with 
smaller A(v), not |E|
○ Cross-node communication only 

during Apply, to issue from master to 
mirrors; scales with A(v)
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Figure 5: Gonzalez et al., "PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs", OSDI 2012



Implementation details

Programming model

Serializability vs concurrency modes

Algorithms to optimise vertex cutting

Algorithms to minimise communication

29Clockwise: Section 2.2; Figure 7; Section 7; Section 4.2: Gonzalez et al., "PowerGraph: 
Distributed Graph-Parallel Computation on Natural Graphs", OSDI 2012



Worker Imbalance: PowerGraph worker 
performance is stable independent of degree

On synthetic data, the results follow the theory! 
PowerGraph performs much better for low-ɑ 
graphs than other graph-parallel systems.

Comparison with graph-parallel systems: Synthetic data

Communication volume and Runtime: 5-6x 
improvements; note the similarity in the patterns
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Clockwise: Figure 9a; Figure 9b; Figure 10: Gonzalez et al., "PowerGraph: Distributed 
Graph-Parallel Computation on Natural Graphs", OSDI 2012



Opinion + Discussion
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Elegant solution, but should you always use it?

PowerGraph proposes an elegant solution to the 
power-law problem it poses; the tradeoffs (e.g. vertex 
read-replicas) appear inevitable for a vertex-cut

However, as a user, you may have to decide:

1. Do you truly have a power-law graph?
○ Diminishing returns if not

2. Is the startup of an optimal vertex-cut worth it?
3. Is your graph dynamic?

○ New vertex-replicas for new edges?
4. Is storage a problem today?

○ Vertical scaling is cheap
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Figure 6; Figure 8: Gonzalez et al., "PowerGraph: Distributed 
Graph-Parallel Computation on Natural Graphs", OSDI 2012
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