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The next 25 minutes

1. Key Takeaway (1 min)

o If you remember one thing from today...

2. Background (5 min)
o  What is the distributed graph-parallel paradigm?
o  Why does this paradigm exist?
3. Context (5 min)
o What does existing work here look like? Pregel, GraphLab
o What are the issues with these existing ideas?
4. PowerGraph (10 min)
o  What is this paper’s main argument?
o Do the experimental results presented prove the argument?

5. Opinion + Discussion (4 min)



Key Takeaway
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PowerGraph argues: '/ b
If your distributed graph contains very - l\.
high-degree vertices, vertex-cuts are more
performant than edge-cuts o Ay
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Figure adapted from Figure 1: Turab et al., “Existence of solutions for a

class of non-boundary...”, Advances in Differential Equations, 2021



Background: Breaking down the paper title
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Distributed Graph-Parallel Computation on Natural Graphs

Distributed?



Distributed Graph-Parallel Computation on Natural Graphs

Distributed? Around 2010, graphs got too big to fit on one machine — billions of
vertices, trillions of edges — so needed to represent graphs across a cluster

With any distributed representation, you inevitably raise new questions
o Storage: how do you store adjacency information on each node?
o Communication: how do you manage state updates across multiple nodes?
o Computation: can you parallelise program execution across the cluster?



Distributed Graph-Parallel Computation on Natural Graphs

Graph-Parallel?



Distributed Graph-Parallel Computation on Natural Graphs

Graph-Parallel? Paradigm that supports

parallelism across a distributed graph _ Data-Parallel  + Graph-Parallel
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Spark® : Preeel Grapniab' iR
Write code from the perspective of a e l
vertex; receive updates from your :
neighbours -> do something -> update i
neighbours with new state ﬁ :
i

Figure from Apache Spark GraphX Programming Guide (v1.0.1)
https://downloads.apache.org/spark/docs/1.0.1/graphx-progr: in



https://downloads.apache.org/spark/docs/1.0.1/graphx-programming-guide.html

Why are graph-parallel paradigms necessary?

Data-parallel engines do not provide a natural idiom
to express iterative workflows

For example, how would you express PageRank
using Apache Spark?

o
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Shuffle-join every vertice with its neighbours
Map a function to run over every vertex
Reduce for every vertex over neighbours
Materialize results

Repeat...

Inefficient; ignores inherent structure of the data;
unnatural programming model

Page Rank of the nodes at start
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Figure from Dey, S. "Google Page Rank and the impact of the Second EigenValue..." 2017
https://sandipanweb.wordpress.com/2017/01/02/page-rank-and-power-iteration/
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https://sandipanweb.wordpress.com/2017/01/02/page-rank-and-power-iteration/

Why are graph-parallel paradigms necessary?

PageRank Runtime | |V| | |E| | System
Hadoop [22] 198s — 1.1B | 50x8
Spark [37] 97.4s 40M | 1.5B| 50x2
Twister [15] 36s 50M | 1.4B | 64x4
PowerGraph (Sync) ||3.6s 40M | 1.5B | 64x8
Triangle Count Runtime | |V| | |E| | System
Hadoop [36] 423m 40M | 14B | 1636x?
PowerGraph (Sync) | 1.5m 40M | 1.4B | 64x16
LDA Tok/sec Topics System
Smola et al. [34] 150M 1000 100x8
PowerGraph (Async) | 110M 1000 64x16

Table 2: Gonzalez et al., "PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs", OSDI 2012
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Distributed Graph-Parallel Computation on Natural Graphs

Natural Graphs?
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Distributed Graph-Parallel Computation on Natural Graphs

Natural Graphs? PowerGraph argues:
Real graphs often have ‘power-law’ NG ’
degree distributions
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Figure 1: Gonzalez et al., "PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs", OSDI 2012

A small number of vertices are adjacent
to a large fraction of edges, resulting in
a star-like motif
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Context: Existing edge-cut ideas and their
problems



Pregel: BSP model with Message Passing (2010)

Bulk: all vertices process messages at the =~ Message combiner (Message ml, Message m2)

. return Message (ml.value() + m2.value());
same time \\‘__*void PregelPageRank (Message msq)
. . float total = msg.value();
Message Passing: neighbours vertex.val = 0.15 + 0.85xtotal;
communicate state updates by sending foreach (nbr in out_neighbors)

T SendMsqg (nbr, vertex.val/num_out_nbrs)

user-defined messages

’

Synchronous: every vertex waits for
everyone else to send messages before
progressing (superstep); global barriers
ensures serializability

Section 2.1: Gonzalez et al., "PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs", OSDI 2012;
Figure from: Gonzalez et al., "PowerGraph" presentation slides, OSDI 2012
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez
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https://www.cl.cam.ac.uk/~ey204/teaching/ACS/R244_2025_2026/papers/malewicz_sigmod_2010.pdf
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez

Pregel: BSP model with Message Passing (2010)

Bulk: all vertices process messages at the =~ Message combiner (Message ml, Message m2)
return Message (ml.value() + m2.value());

same time; wastes available resources \ void PregelPageRank (Message msg)
float total = msg.value();

Message Passing: neighbours vertex.val = 0.15 + 0.85«total;
communicate state updates by sending — foreach (nbr in out_neighbors)
user-defined messages; potentially lots of SendMsg (nbr, vertex.val/num out nbrs);

unnecessary messages; places onus on
user to manage state updates

Synchronous: every vertex waits for
everyone else to send messages before
progressing; global barriers ensures
serializability; everyone waits for slowest

Section 2.1: Gonzalez et al., "PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs", OSDI 2012;
Figure from: Gonzalez et al., "PowerGraph" presentation slides, OSDI 2012
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez 17



https://www.cl.cam.ac.uk/~ey204/teaching/ACS/R244_2025_2026/papers/malewicz_sigmod_2010.pdf
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez

GraphLab: Asynchronous shared-memory model (2012)

. . . void GraphLabPageRank|(Scope scope)| g
Shared-Memory Abstraction: vertices I —

access locally cached state (ghost) for foreach (nbr in scope.in_nbrs)

scope; cache updates are abstracted from accum += nbr.val / nbr.nout_nbrs();
: .val = 0.15 + 0.85 ;

user, so no message passing needed EEEEESwe T oaccum

Asynchronous: no global barrier to
vertex-program execution; users opt in to
levels of serializability via scope locks

Section 2.2: Gonzalez et al., "PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs", OSDI 2012;
Figure from: Gonzalez et al., "PowerGraph" presentation slides, OSDI 2012
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez
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Unsolved problem: High degree in natural graphs

Imagine a vertex with 1MM neighbours,
randomly partitioned across 1000 machines

Figure adapted from Figure 1: Turab et al., “Existence of solutions for a class of
non-boundary...”, Advances in Difference Equations 2021

f
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Unsolved problem: High degree in natural graphs

Storage: Machine 1 has to store vO + 1TMM other ghosts

Communication: Vertex-program will need to acquire locks + broadcast updates
+ release locks across 1000 nodes to update vO ghosts

Computation: No parallelism of vertex-program; sequential execution on single
machine
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Unsolved problem: High degree in natural graphs

When vertices have very high degree,
GraphLab exhibits issues, because

1. edges are very likely to be cut,
leading to ghost replication

2. performance drops linearly in number
of replicas

For p=100 nodes, 99% chance edge cut

Theorem 5.1. If vertices are randomly assigned to p
machines then the expected fraction of edges cut is:

Edges Cut, 1
e e

For a power-law graph with exponent o, the expected
number of edges cut per-vertex is:

\4 hy ()

(5.2)

p
vi-1

stant of the power-law Zipf distribution.

signed to different machines. The probability that both
vertices are assigned to different machinesis 1 —1/p. O

E [|Edges Cut|] _ (1 _ %) E[Dp]] = (1 ~ l) hyi(a—1)

where the hyy| (&) =Y, d~% is the normalizing con-

Proof. An edge is cut if both vertices are randomly as-

Theorem 5.1: Gonzalez et al., "PowerGraph: Distributed Graph-Parallel Computation on
Natural Graphs", OSDI 2012
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Unsolved problem: High degree in natural graphs

“In order to address the challenges of natural graphs, the PowerGraph abstraction
requires the size of the accumulator and the complexity of the apply function to be
sub-linear in the degree. However, directly executing GraphLab and Pregel
vertex-programs within the apply function leads the size of the accumulator and
the complexity of the apply function to be linear in the degree eliminating many of
the benefits on natural graphs.”

Section 4.4: Gonzalez et al., "PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs", OSDI 2012
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PowerGraph: make performance sublinear in
degree

23



ldea 1: Vertex-cut reduces effective replication

Assign edges to machines, allow
vertices to span machines, with master
<> read-replica pattern

Figure adapted from Figure 1: Turab et al., “Existence of solutions for a class of
non-boundary...”, Advances in Difference Equations 2021
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ldea 1: Vertex-cut reduces effective replication

Replication grows much slower than

with edge-cuts, especially for small a ) g%
S a=1. Q
(dense, hub-heavy graphs) ; a=17 gfgg&
5 a=181 a 50 o=1.65
. = £ =17
A(v) << |E|, independent of |V| $ as2 | fgkzm
. o 3 L‘E 5 \\‘*\—rrr\,,\,, _ a=2
Storage overhead scales with smaller O NiBoor dWachi O Nulsber o Machis
(a) V-Sep. Bound (b) V-Sep. Improvement
A(v), not |E]
o Don’t need to store |E| g hosts Figure 6: (a) Expected replication factor for different power-
. . . law constants. (b) The ratio of the expected communication and
@) Need tO malntaln A(V) repllcas storage cost of random edge cuts to random vertex cuts as a

function of the number machines. This graph assumes that edge
data and vertex data are the same size.

Figure 6 from Gonzalez et al., "PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs" 2012



Proof: Why is A(v) << |E|?

Theorem 5.1. If vertices are randomly assigned to p
machines then the expected fraction of edges cut is:

Edges Cut 1

For a power-law graph with exponent Q., the expected
number of edges cut per-vertex is:

5.2)

where the hyy| (@) = ):W' 4= is the normalizing con-
stant of the power-law Zzpf distribution.

Proof. An edge is cut if both vertices are randomly as-
signed to different machines. The probability that both
vertices are assigned to different machinesis 1—1/p. O

Theorem 5.1: Gonzalez et al., "PowerGraph: Distributed Graph-Parallel
Computation on Natural Graphs", OSDI 2012

For p=100, 99% chance of edge cut
=> all edges need ghosts

Theorem 5.2 (Randomized Vertex Cuts). A random
vertex-cut on p machines has an expected replication:

1 D[v]
| 3 L A0 } |V|vev<1‘(“> ) 63

where D[v] denotes the degree of vertex v. For a power-
law graph the expected replication (Fig. 6a) is determined
entirely by the power-law constant o.:

)4 M p—1 4 o
AW)|| =p— -,
| L A ] P mw(a)d)::l( )
(5.6)

where hy| (a) = LVZ‘II d~% is the normalizing constant
of the power-law Zipf distribution.

Theorem 5.2: Gonzalez et al., "PowerGraph: Distributed Graph-Parallel
Computation on Natural Graphs", OSDI 2012

Something much less...
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ldea 2: Vertex-cut localises data and compute

interface GASVertexProgram(u) {
// Run on gather_nbrs (u)
gather (D,, D(,, Dy) — Accum
sum (Accum left, Accum right) — Accum
apply (D,, Accum) — D,"
// Run on scatter_nbrs (u)

scatter(D{}eW,D(u,v),Dv) — (D?f“’f), Accum)

Figure 3: Gonzalez et al., "PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs", OSDI 2012



ldea 2: Vertex-cut localises data and compute

Computation is parallelisable

O

@)

Gather and Scatter can be performed
locally on local subgraphs

And in parallel across vertex-replicas
containing different subgraphs

Communication overhead scales with
smaller A(v), not |E]

O

Cross-node communication only
during Apply, to issue from master to
mirrors; scales with A(v)

(1) Gather

Accumulator
(Partial Sum)

(3) Apply

Updated
Vertex Data

(5) Scatter

Gather

Scatter,

Machine 1 Machine 2

Figure 5: The communication pattern of the PowerGraph ab-
straction when using a vertex-cut. Gather function runs locally
on each machine and then one accumulators is sent from each
mirror to the master. The master runs the apply function and
then sends the updated vertex data to all mirrors. Finally the
scatter phase is run in parallel on mirrors.

Figure 5: Gonzalez et al., "PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs", OSDI 2012
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Implementation details

Programming model

interface GASVertexProgram(u) {
// Run on gather_nbrs (u)
gather (D,, D(u’v), D,) — Accum
sum (Accum left, Accum right) — Accum
apply (Dy, Accum) — D"
// Run on scatter_nbrs (u)

scatter(Dﬂew,D(uﬁv),Dv) — (D?;“’)’), Accum)

Serializability vs concurrency modes

Bulk Synchronous (Sync): A fully synchronous implementa-
tion of PowerGraph as described in Sec. 4.3.1. [600 lines]

Asynchronous (Async): An asynchronous implementation of
PowerGraph which allows arbitrary interleaving of vertex-
programs Sec. 4.3.2. [900 lines]

Asynchronous Serializable (Async+S): An asynchronous im-
plementation of PowerGraph which guarantees serializabil-
ity of all vertex-programs (equivalent to “edge consistency”
in GraphLab). [1600 lines]

Clockwise: Section 2.2; Figure 7; Section 7; Section 4.2: Gonzalez et al., "PowerGraph:
Distributed Graph-Parallel Computation on Natural Graphs", OSDI 2012

Algorithms to optimise vertex cutting

IMRandom
[ Oblivious
[[ICoordinated

MRand.
MObliv.
[CJCoord.

N
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©
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Replication Factor
Runtime Relative to Random
o
>

4]
[
N

0 7
O Twitter HWood ~ UK LJournal Amazon Coloring SSSP ALS PageRank

(a) Actual Replication (b) Effect of Partitioning

Algorithms to minimise communication

4.2 Delta Caching

In many cases a vertex-program will be triggered in re-
sponse to a change in a few of its neighbors. The gather
operation is then repeatedly invoked on all neighbors,
many of which remain unchanged, thereby wasting com-
putation cycles. For many algorithms [2] it is possible to
dynamically maintain the result of the gather phase a,
and skip the gather on subsequent iterations.
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Comparison with graph-parallel systems: Synthetic data

Communication volume and Runtime: 5-6x
improvements; note the similarity in the patterns

Worker Imbalance: PowerGraph worker
performance is stable independent of degree

50) 10, 10,
30 ;
é - __—GraphLab Fan-in é w0 Pregel(Piccolo) Fan-out g 8| R g 8 Pregel (Piccolo)
5 ) A B = = Graphlab
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8 3 GraphLab Fan-out < PowerGraph o
815 PowerGraph Fan-in 8 & 4 3 4
E E£20 PowerGraph Fan-ou E E
210 X< S S
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18 19 2 2.1 22 18 19 2 2.1 22 fs 19 2 2.1 22 s 1.9 4 21 22
a a
(a) Power-law Fan-In Balance (b) Power-law Fan-Out Balance (c) Power-law Fan-In Comm. (d) Power-law Fan-Out Comm.

On synthetic data, the results follow the theory!
PowerGraph performs much better for low-a

25 Graphlab
Pregel (Piccolo)

PowerGraph (Random)

n
o

One iter runtime(seconds)

30

Pregel (Piccolo)
Graphlab
PowerGraph (Random)

NN
o u

One iter runtime(seconds)

graphs than other graph-parallel systems. ¥ o) 2% A
5 |
fs 15 2 21 22 98 18 2 21 22

Clockwise: Figure 9a; Figure 9b; Figure 10: Gonzalez et al., "PowerGraph: Distributed
Graph-Parallel Computation on Natural Graphs", OSDI 2012
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(a) Power-law Fan-In Runtime

a

(b) Power-law Fan-Out Runtime
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Opinion + Discussion
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Elegant solution, but should you always use it?

PowerGraph proposes an elegant solution to the
power-law problem it poses; the tradeoffs (e.g. vertex
read-replicas) appear inevitable for a vertex-cut
Do you truly have a power-law graph? /
o  Diminishing returns if not
Is the startup of an optimal vertex-cut worth it?
Is your graph dynamic?

o New vertex-replicas for new edges?

Is storage a problem today?
o Vertical scaling is cheap

However, as a user, you may have to decide
1.

-
o

=

S o=1.65 &
o 200
o 8 _ £
B a="17 gmoK
5 6 a=18] & 50 a=1.65
B E a=1.7
£ 4 a=2 |5 20 a=18
o) / ‘g 100
c 2 w 5 ) e =2

0 0 50 100 150

50 100 150
Number of Machines
(a) V-Sep. Bound

Number of Machines
(b) V-Sep. Improvement

Predicted—, . ©

%o
Random_—*

<
2|

8 16 32

#Machines
(a) Replication Factor (Twitter)

48 64

machines for random, obliviou

8 16 32 48 64
#Machines
(b) Ingress time (Twitter)

Figure 8: (a,b) Replication factor and runtime of graph ingress
for the Twitter follower network as a function of the number of

s, and coordinated vertex-cuts.

Figure 6; Figure 8: Gonzalez et al., "PowerGraph: Distributed
Graph-Parallel Computation on Natural Graphs", OSDI 2012
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