
PowerGraph: Distributed
Graph-Parallel Computation on

Natural Graphs (2012)
J. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin

1

https://www.cl.cam.ac.uk/%7Eey204/teaching/ACS/R244_2020_2021/papers/gonzalez_OSDI_2012.pdf

The next 25 minutes

1. Key Takeaway (1 min)
○ If you remember one thing from today…

2. Background (5 min)
○ What is the distributed graph-parallel paradigm?
○ Why does this paradigm exist?

3. Context (5 min)
○ What does existing work here look like? Pregel, GraphLab
○ What are the issues with these existing ideas?

4. PowerGraph (10 min)
○ What is this paper’s main argument?
○ Do the experimental results presented prove the argument?

5. Opinion + Discussion (4 min)

2

Key Takeaway

3

Vertex-cuts >> Edge-cuts

PowerGraph argues:

If your distributed graph contains very
high-degree vertices, vertex-cuts are more
performant than edge-cuts

4

Figure adapted from Figure 1: Turab et al., “Existence of solutions for a
class of non-boundary…”, Advances in Differential Equations, 2021

Background: Breaking down the paper title

5

Distributed Graph-Parallel Computation on Natural Graphs

6

Distributed Graph-Parallel Computation on Natural Graphs

Distributed?

7

Distributed Graph-Parallel Computation on Natural Graphs

Distributed? Around 2010, graphs got too big to fit on one machine – billions of
vertices, trillions of edges – so needed to represent graphs across a cluster

With any distributed representation, you inevitably raise new questions
○ Storage: how do you store adjacency information on each node?
○ Communication: how do you manage state updates across multiple nodes?
○ Computation: can you parallelise program execution across the cluster?

8

Distributed Graph-Parallel Computation on Natural Graphs

Graph-Parallel?

9

Distributed Graph-Parallel Computation on Natural Graphs

Graph-Parallel? Paradigm that supports
parallelism across a distributed graph

Write code from the perspective of a
vertex; receive updates from your
neighbours -> do something -> update
neighbours with new state

10

Figure from Apache Spark GraphX Programming Guide (v1.0.1)
https://downloads.apache.org/spark/docs/1.0.1/graphx-programming-guide.html

https://downloads.apache.org/spark/docs/1.0.1/graphx-programming-guide.html

Why are graph-parallel paradigms necessary?

Data-parallel engines do not provide a natural idiom
to express iterative workflows

For example, how would you express PageRank
using Apache Spark?

○ Shuffle-join every vertice with its neighbours
○ Map a function to run over every vertex
○ Reduce for every vertex over neighbours
○ Materialize results
○ Repeat…

Inefficient; ignores inherent structure of the data;
unnatural programming model

11

Figure from Dey, S. "Google Page Rank and the impact of the Second EigenValue..." 2017
https://sandipanweb.wordpress.com/2017/01/02/page-rank-and-power-iteration/

https://sandipanweb.wordpress.com/2017/01/02/page-rank-and-power-iteration/

Why are graph-parallel paradigms necessary?

12

Table 2: Gonzalez et al., "PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs", OSDI 2012

Distributed Graph-Parallel Computation on Natural Graphs

Natural Graphs?

13

Distributed Graph-Parallel Computation on Natural Graphs

Natural Graphs? PowerGraph argues:
Real graphs often have ‘power-law’
degree distributions

A small number of vertices have very,
very high degree: P(d) ∝ d -ɑ

A small number of vertices are adjacent
to a large fraction of edges, resulting in
a star-like motif

14

Figure 1: Gonzalez et al., "PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs", OSDI 2012

Context: Existing edge-cut ideas and their
problems

15

Pregel: BSP model with Message Passing (2010)

Bulk: all vertices process messages at the
same time

Message Passing: neighbours
communicate state updates by sending
user-defined messages

Synchronous: every vertex waits for
everyone else to send messages before
progressing (superstep); global barriers
ensures serializability

16

Section 2.1: Gonzalez et al., "PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs", OSDI 2012;
Figure from: Gonzalez et al., "PowerGraph" presentation slides, OSDI 2012
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez

https://www.cl.cam.ac.uk/~ey204/teaching/ACS/R244_2025_2026/papers/malewicz_sigmod_2010.pdf
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez

Pregel: BSP model with Message Passing (2010)

Bulk: all vertices process messages at the
same time; wastes available resources

Message Passing: neighbours
communicate state updates by sending
user-defined messages; potentially lots of
unnecessary messages; places onus on
user to manage state updates

Synchronous: every vertex waits for
everyone else to send messages before
progressing; global barriers ensures
serializability; everyone waits for slowest

17

Section 2.1: Gonzalez et al., "PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs", OSDI 2012;
Figure from: Gonzalez et al., "PowerGraph" presentation slides, OSDI 2012
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez

https://www.cl.cam.ac.uk/~ey204/teaching/ACS/R244_2025_2026/papers/malewicz_sigmod_2010.pdf
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez

GraphLab: Asynchronous shared-memory model (2012)

Shared-Memory Abstraction: vertices
access locally cached state (ghost) for
scope; cache updates are abstracted from
user, so no message passing needed

Asynchronous: no global barrier to
vertex-program execution; users opt in to
levels of serializability via scope locks

18

Section 2.2: Gonzalez et al., "PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs", OSDI 2012;
Figure from: Gonzalez et al., "PowerGraph" presentation slides, OSDI 2012
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez

https://vldb.org/pvldb/vol5/p716_yuchenglow_vldb2012.pdf
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez

Unsolved problem: High degree in natural graphs

Imagine a vertex with 1MM neighbours,
randomly partitioned across 1000 machines

19

Figure adapted from Figure 1: Turab et al., “Existence of solutions for a class of
non-boundary…”, Advances in Difference Equations 2021

Unsolved problem: High degree in natural graphs

Storage: Machine 1 has to store v0 + 1MM other ghosts

Communication: Vertex-program will need to acquire locks + broadcast updates
+ release locks across 1000 nodes to update v0 ghosts

Computation: No parallelism of vertex-program; sequential execution on single
machine

20

Unsolved problem: High degree in natural graphs

When vertices have very high degree,
GraphLab exhibits issues, because

1. edges are very likely to be cut,
leading to ghost replication

2. performance drops linearly in number
of replicas

For p=100 nodes, 99% chance edge cut

21

Theorem 5.1: Gonzalez et al., "PowerGraph: Distributed Graph-Parallel Computation on
Natural Graphs", OSDI 2012

Unsolved problem: High degree in natural graphs

“In order to address the challenges of natural graphs, the PowerGraph abstraction
requires the size of the accumulator and the complexity of the apply function to be
sub-linear in the degree. However, directly executing GraphLab and Pregel
vertex-programs within the apply function leads the size of the accumulator and
the complexity of the apply function to be linear in the degree eliminating many of
the benefits on natural graphs.”

22

Section 4.4: Gonzalez et al., "PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs", OSDI 2012

PowerGraph: make performance sublinear in
degree

23

Idea 1: Vertex-cut reduces effective replication

Assign edges to machines, allow
vertices to span machines, with master
<> read-replica pattern

24

Figure adapted from Figure 1: Turab et al., “Existence of solutions for a class of
non-boundary…”, Advances in Difference Equations 2021

Idea 1: Vertex-cut reduces effective replication

Replication grows much slower than
with edge-cuts, especially for small α
(dense, hub-heavy graphs)

A(v) << |E|, independent of |V|

Storage overhead scales with smaller
A(v), not |E|
○ Don’t need to store |E| ghosts
○ Need to maintain A(v) replicas

25

Figure 6 from Gonzalez et al., "PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs" 2012

Proof: Why is A(v) << |E|?

26

For p=100, 99% chance of edge cut
=> all edges need ghosts

Something much less…

Theorem 5.1: Gonzalez et al., "PowerGraph: Distributed Graph-Parallel
Computation on Natural Graphs", OSDI 2012

Theorem 5.2: Gonzalez et al., "PowerGraph: Distributed Graph-Parallel
Computation on Natural Graphs", OSDI 2012

Idea 2: Vertex-cut localises data and compute

27

Figure 3: Gonzalez et al., "PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs", OSDI 2012

Idea 2: Vertex-cut localises data and compute

Computation is parallelisable
○ Gather and Scatter can be performed

locally on local subgraphs
○ And in parallel across vertex-replicas

containing different subgraphs

Communication overhead scales with
smaller A(v), not |E|
○ Cross-node communication only

during Apply, to issue from master to
mirrors; scales with A(v)

28

Figure 5: Gonzalez et al., "PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs", OSDI 2012

Implementation details

Programming model

Serializability vs concurrency modes

Algorithms to optimise vertex cutting

Algorithms to minimise communication

29Clockwise: Section 2.2; Figure 7; Section 7; Section 4.2: Gonzalez et al., "PowerGraph:
Distributed Graph-Parallel Computation on Natural Graphs", OSDI 2012

Worker Imbalance: PowerGraph worker
performance is stable independent of degree

On synthetic data, the results follow the theory!
PowerGraph performs much better for low-ɑ
graphs than other graph-parallel systems.

Comparison with graph-parallel systems: Synthetic data

Communication volume and Runtime: 5-6x
improvements; note the similarity in the patterns

30
Clockwise: Figure 9a; Figure 9b; Figure 10: Gonzalez et al., "PowerGraph: Distributed
Graph-Parallel Computation on Natural Graphs", OSDI 2012

Opinion + Discussion

31

Elegant solution, but should you always use it?

PowerGraph proposes an elegant solution to the
power-law problem it poses; the tradeoffs (e.g. vertex
read-replicas) appear inevitable for a vertex-cut

However, as a user, you may have to decide:

1. Do you truly have a power-law graph?
○ Diminishing returns if not

2. Is the startup of an optimal vertex-cut worth it?
3. Is your graph dynamic?

○ New vertex-replicas for new edges?
4. Is storage a problem today?

○ Vertical scaling is cheap

32

Figure 6; Figure 8: Gonzalez et al., "PowerGraph: Distributed
Graph-Parallel Computation on Natural Graphs", OSDI 2012

References

33

34

[1] A. Turab, Z. D. Mitrović, and A. Savić, "Existence of solutions for a class of nonlinear boundary value problems on the hexasilinane
graph," Adv. Differ. Equ., vol. 2021, no. 494, Nov. 2021, doi: 10.1186/s13662-021-03653-w.

[2] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, "PowerGraph: Distributed graph-parallel computation on natural
graphs," in Proc. 10th USENIX Conf. Operating Systems Design and Implementation (OSDI), Hollywood, CA, USA, 2012, pp. 17–30.

[3] Apache Software Foundation, "GraphX programming guide," Apache Spark Documentation, Version 1.0.1, 2014. [Online]. Available:
https://downloads.apache.org/spark/docs/1.0.1/graphx-programming-guide.html. [Accessed: Nov. 5, 2025].

[4] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein, "Distributed GraphLab: A framework for machine
learning and data mining in the cloud," Proc. VLDB Endowment, vol. 5, no. 8, pp. 716–727, Apr. 2012, doi:
10.14778/2212351.2212354.

[5] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, "PowerGraph: Distributed graph-parallel computation on natural
graphs," presented at the 10th USENIX Conf. Operating Systems Design and Implementation (OSDI), Hollywood, CA, USA, Oct. 2012.
[Online]. Available: https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez. [Accessed: Nov. 5, 2025].

[6] S. Dey, "Page rank and power iteration," Sandipan's Machine Learning Blog, Jan. 2, 2017. [Online]. Available:
https://sandipanweb.wordpress.com/2017/01/02/page-rank-and-power-iteration/. [Accessed: Nov. 5, 2025].

