PetaBricks: A Language and Compiler for

Algorithmic Choice [1]

Authors: Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski,
Qin Zhao, Alan Edelman, Saman Amarasinghe.
MIT CSAIL

Presented by Umer Hasan (suh25)

Michelmas 2025

UNIVERSITY OF
CAMBRIDGE

Umer Hasan Petabricks, 2009 Michelmas 2025



ion and Background

It’s a programming language and a compiler (Petabricks -> C++) and
a run-time library implemented in C++.

UNIVERSITY OF
CAMBRIDGE

Umer Hasan Petabricks, 2009 Michelmas 2025



Motivation and Background

It’s a programming language and a compiler (Petabricks -> C++) and
a run-time library implemented in C++.

Why do we need it?

We need algorithmic choice: for a given task e.g. sorting, no single
algorithm is optimal across all contexts (e.g. std::sort has fixed cutoff
merge -> insertion sort).

OF
WP CAMBRIDGE

Umer Hasan Petabricks, 2009 Michelmas 2025



Motivation and Background

It’s a programming language and a compiler (Petabricks -> C++) and
a run-time library implemented in C++.

Why do we need it?

We need algorithmic choice: for a given task e.g. sorting, no single
algorithm is optimal across all contexts (e.g. std::sort has fixed cutoff
merge -> insertion sort).
We need simplicity:
e Handle switching algorithms based on params and input data
(avoids obfuscated code and manual tuning). Replace ATLAS [5] /
FFTW [4] (C tuning libraries).

_OF
W CAMBRIDGE

Umer Hasan Petabricks, 2009 Michelmas 2025



Motivation and Background

It’s a programming language and a compiler (Petabricks -> C++) and
a run-time library implemented in C++.

Why do we need it?

We need algorithmic choice: for a given task e.g. sorting, no single
algorithm is optimal across all contexts (e.g. std::sort has fixed cutoff
merge -> insertion sort).

We need simplicity:

e Handle switching algorithms based on params and input data
(avoids obfuscated code and manual tuning). Replace ATLAS [5] /
FFTW [4] (C tuning libraries).

e 1 optimal implementation ported to different machines by
re-compiling and autotuning (x86 vs Sun Niagara).

_OF
W CAMBRIDGE

Umer Hasan Petabricks, 2009 Michelmas 2025



through 1 transform with multiple rules.

@ Algorithmic choice

Figure 1: MatrixMultiply

( PetaBricks Source Code )
1
l PetaBricks Compiler J

2
UEotuning Binary

Parallel
Runl
Choice
Dependency
Graph

Compiled User Code

< Dependency

Parallel Runtime

|Compiled User Code
w/ static choices

Choice Configuration File

Figure 2: Interactions between compiler and output binaries.

PetaBricks source code

UNIVERSITY OF
CAMBRIDGE

Michelm




Features

@ Algorithmic choice through 1 transform with multiple rules.

e The compilation uses a Choice Dependency Graph (CDG), nodes
= transforms/rules, edges = (data) dependencies.

( PetaBricks Source Code )
1y
l PetaBricks Compiler J
Zi lab
‘Autotuning Binary Static Binary
parallel Dependency Graph >
Runl EpeL Grapl
Choice
Dependency
Graph

Compiled User Code

Parallel Runtime

|Compiled User Code
w/ static choices

Choice Configuration File

Figure 1: MatrixMultiply . . . . . .
PetaBricks source code Figure 2: Interactions between compiler and output binaries.

UNIVERSITY OF

CAMBRIDGE

Petabri Michelmas




Features

@ Algorithmic choice through 1 transform with multiple rules.

e The compilation uses a Choice Dependency Graph (CDG), nodes
= transforms/rules, edges = (data) dependencies.

@ Accuracy choice with iterative and recursive methods.

Figure 1: MatrixMultiply
PetaBricks source code

( PetaBricks Source Code )

1

l PetaBricks Compiler

2] L —

AUtotuning Binary

Parallel
Runl
Choice
Dependency
Graph

Compiled User Code

Choice Configuration File

Static Binary

Dependency Graph >

Parallel Runtime

|Compiled User Code
w/ static choices

Figure 2: Interactions between compiler and output binaries.

UNIVERSITY OF
CAMBRIDGE

Petabr



Features

@ Algorithmic choice through 1 transform with multiple rules.

e The compilation uses a Choice Dependency Graph (CDG), nodes
= transforms/rules, edges = (data) dependencies.

@ Accuracy choice with iterative and recursive methods.

o How does the autotuner select the best rule?

( PetaBricks Source Code )

1

Figure 1: MatrixMultiply
PetaBricks source code

l PetaBricks Compiler

2] L —

AUtotuning Binary

Parallel
Runl
Choice
Dependency
Graph

Compiled User Code

Choice Configuration File

Static Binary

Dependency Graph >

Parallel Runtime

|Compiled User Code
w/ static choices

Figure 2: Interactions between compiler and output binaries.

Petabr

UNIVERSITY OF
CAMBRIDGE




How does this relate to search space optimisation?

@ The autotuner is a bottom-up genetic algo which uses dynamic
programming to prune the search space.

UNIVERSITY OF
CAMBRIDGE

Umer Hasan Petabricks, 2009 Michelmas 2025



How does this relate to search space optimisation?

@ The autotuner is a bottom-up genetic algo which uses dynamic
programming to prune the search space.

e Bottom-up finds the optimal solution for the smallest subproblem.

UNIVERSITY OF
CAMBRIDGE

Umer Hasan Petabricks, 2009 Michelmas 2025



How does this relate to search space optimisation?

@ The autotuner is a bottom-up genetic algo which uses dynamic
programming to prune the search space.

e Bottom-up finds the optimal solution for the smallest subproblem.

o Tracks an optimal family.

UNIVERSITY OF
CAMBRIDGE

Umer Hasan Petabricks, 2009 Michelmas 2025



How does this relate to search space optimisation?

The autotuner is a bottom-up genetic algo which uses dynamic
programming to prune the search space.

Bottom-up finds the optimal solution for the smallest subproblem.

Tracks an optimal family.

Large problems solutions built from smaller problem solutions.

UNIVERSITY OF
CAMBRIDGE

Umer Hasan Petabricks, 2009 Michelmas 2025



How does this relate to search space optimisation?

@ The autotuner is a bottom-up genetic algo which uses dynamic
programming to prune the search space.

e Bottom-up finds the optimal solution for the smallest subproblem.
o Tracks an optimal family.
e Large problems solutions built from smaller problem solutions.

o Evolutionary strategy: candidate -> measure runtime -> random
mutation (stochastic search) -> select new ’'parents’.

UNIVERSITY OF
CAMBRIDGE

Umer Hasan Petabricks, 2009 Michelmas 2025



How does this relate to search space optimisation?

@ The autotuner is a bottom-up genetic algo which uses dynamic
programming to prune the search space.

e Bottom-up finds the optimal solution for the smallest subproblem.
o Tracks an optimal family.
e Large problems solutions built from smaller problem solutions.

o Evolutionary strategy: candidate -> measure runtime -> random
mutation (stochastic search) -> select new ’'parents’.

e Tracks performance vs accuracy (error and convergence rate).

UNIVERSITY OF
CAMBRIDGE

Umer Hasan Petabricks, 2009 Michelmas 2025



How does this relate to search space optimisation?

@ The autotuner is a bottom-up genetic algo which uses dynamic
programming to prune the search space.

e Bottom-up finds the optimal solution for the smallest subproblem.
o Tracks an optimal family.
e Large problems solutions built from smaller problem solutions.

o Evolutionary strategy: candidate -> measure runtime -> random
mutation (stochastic search) -> select new ’'parents’.

e Tracks performance vs accuracy (error and convergence rate).

e Concretely, insertion sort is introduced at N = 68 instead of
N = 15. Merge sort with 4 splits instead of 2.

UNIVERSITY OF
CAMBRIDGE

Umer Hasan Petabricks, 2009 Michelmas 2025



Results

10000

e
0 Busson » T Aouned Bt
0 o002 Aoty ¥ 6
. 1 ¢ P
T o g °O® X 3
£ h : ] g,
o0t z ; - 3
o0 000t : W@M .
0.0001 . s i &-vv'ﬂf’
Pk
. 00005 . B 2
1606 il -
1 10 100 1000 10000 o " ! 2 3 & 5 5 7 s
ot size o a0 &0 70 1000 10 100 1750 Number of Trreads
nput Sze
Figure 3: Matrix Multiply on . Figure 5: Parallel scalability on
g 3 ply 8 Figure 4: Sort on 8 cores. & Y
cores. x86.

UNIVERSITY OF
CAMBRIDGE

Petal 2009




My Thoughts

e Maybe it can be a C++ library now (lower adoption barrier).

UNIVERSITY OF
CAMBRIDGE

Petabr



houghts

e Maybe it can be a C++ library now (lower adoption barrier).

e Compilation takes hours on a 'good?’ machine. Empirically finding
parameters is time consuming.

UNIVERSITY OF
CAMBRIDGE

Petab



My Thoughts

e Maybe it can be a C++ library now (lower adoption barrier).

e Compilation takes hours on a 'good?’ machine. Empirically finding
parameters is time consuming.

@ Let’s see how the autotuner really performs on data structures that
aren’t matrices.

UNIVERSITY OF
CAMBRIDGE

Umer Hasan Petabricks, 2009 Michelmas 2025



Thoughts

Maybe it can be a C++ library now (lower adoption barrier).

Compilation takes hours on a ’good?’ machine. Empirically finding
parameters is time consuming.

Let’s see how the autotuner really performs on data structures that
aren’t matrices.

Should we optimise for energy consumption? final binary size?
robustness (average runtime on different input data)? [2]

UNIVERSITY OF
CAMBRIDGE

Umer Hasan Petabricks, 2009 Michelmas 2025



Thoughts

Maybe it can be a C++ library now (lower adoption barrier).

Compilation takes hours on a ’good?’ machine. Empirically finding
parameters is time consuming.

Let’s see how the autotuner really performs on data structures that
aren’t matrices.

Should we optimise for energy consumption? final binary size?
robustness (average runtime on different input data)? [2]

The core assumption is the ’Optimal Substructure Principle’ [3].

UNIVERSITY OF
CAMBRIDGE

Umer Hasan Petabricks, 2009 Michelmas 2025



Thoughts

Maybe it can be a C++ library now (lower adoption barrier).

Compilation takes hours on a ’good?’ machine. Empirically finding
parameters is time consuming.

Let’s see how the autotuner really performs on data structures that
aren’t matrices.

Should we optimise for energy consumption? final binary size?
robustness (average runtime on different input data)? [2]

The core assumption is the ’Optimal Substructure Principle’ [3].

My personal bias is against general frameworks (80/20 rule).

UNIVERSITY OF
CAMBRIDGE

Umer Hasan Petabricks, 2009 Michelmas 2025



References I

[@ J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao,
A. Edelman, and S. Amarasinghe.
Petabricks: a language and compiler for algorithmic choice.
In Proceedings of the 30th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 09,
page 3849, New York, NY, USA, 2009. Association for Computing
Machinery.

[§ J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley,
J. Bosboom, U.-M. O’Reilly, and S. Amarasinghe.
Opentuner: an extensible framework for program autotuning.
In Proceedings of the 25rd International Conference on Parallel
Architectures and Compilation, PACT 14, page 303-316, New
York, NY, USA, 2014. Association for Computing Machinery.

UNIVERSITY OF
CAMBRIDGE

Umer Hasan Petabricks, 2009 Michelmas 2025



References 11

[@ T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms, Third Edition.
The MIT Press, 3rd edition, 2009.

[ M. Frigo and S. G. Johnson.
The fastest fourier transform in the west.
Technical report, USA, 1997.

[§ R. C. Whaley and J. J. Dongarra.
Automatically tuned linear algebra software.
In Proceedings of the 1998 ACM/IEEE Conference on
Supercomputing, SC 98, page 1-27, USA, 1998. IEEE Computer
Society.

UNIVERSITY OF
CAMBRIDGE

Umer Hasan Petabricks, 2009 Michelmas 2025



Q& A

UNIVERSITY OF
CAMBRIDGE

Petab Michelm



	References

