PetaBricks: A Language and Compiler for Algorithmic Choice [1]

Authors: Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao, Alan Edelman, Saman Amarasinghe. MIT CSAIL

Presented by Umer Hasan (suh25)

Michelmas 2025

What is it?

It's a programming language and a compiler (Petabricks -> C++) and a run-time library implemented in C++.

What is it?

It's a programming language and a compiler (Petabricks -> C++) and a run-time library implemented in C++.

Why do we need it?

We need **algorithmic choice**: for a given task e.g. sorting, no single algorithm is optimal across all contexts (e.g. **std::sort** has fixed cutoff merge -> insertion sort).

What is it?

It's a programming language and a compiler (Petabricks -> C++) and a run-time library implemented in C++.

Why do we need it?

We need **algorithmic choice**: for a given task e.g. sorting, no single algorithm is optimal across all contexts (e.g. **std::sort** has fixed cutoff merge -> insertion sort).

We need **simplicity**:

• Handle switching algorithms based on params and input data (avoids obfuscated code and manual tuning). Replace ATLAS [5] / FFTW [4] (C tuning libraries).

Umer Hasan Petabricks, 2009 Michelmas 2025 2/9

What is it?

It's a programming language and a compiler (Petabricks -> C++) and a run-time library implemented in C++.

Why do we need it?

We need **algorithmic choice**: for a given task e.g. sorting, no single algorithm is optimal across all contexts (e.g. **std::sort** has fixed cutoff merge -> insertion sort).

We need **simplicity**:

- Handle switching algorithms based on params and input data (avoids obfuscated code and manual tuning). Replace ATLAS [5] / FFTW [4] (C tuning libraries).
- 1 optimal implementation ported to different machines by re-compiling and autotuning (x86 vs Sun Niagara).

• Algorithmic choice through 1 transform with multiple rules.

```
1 transform Matrix Multiply
      from A[c,h], B[w,c]
     2 to AB(w, h)
           // Base case, compute a single element
        from (A.row(y) n. B.column(x) b) {
   out = dot(a,b);
}
   11 // Recursively decompose in c
         In (AB ab)

    from (A. region (0, 0, c/2, h) al.,

          | A region(0, 0, 0, 0/2, 0 ) a1, | A region(c/2, 0, c, b ) a2, | B region(0, 0, w, c/2) b1, | B region(0, c/2, w, c ) b2) { | ab = MatrixAdd (MatrixMultiply (a1, b1), | MatrixMultiply (a2, b2)); | |
   21 // Recursively decompose in w
   22 to(AB.region(0, 0, w/2, h ) abl.
23 AB.region(w/2, 0, w, h ) ab2)
a from (A a, ..., ..., ..., a y ab2)

25 B. region (0, ..., 0, w/2, c ) b1, 
26 B. region (w/2, 0, w, c ) b2) {

27 ab1 = Matrix Multiply (a, b1); 
28 ab2 = Matrix Multiply (a, b2); 
29 }
 // Recarsively decompose in h
12 to (AB. region (0, 0, w, b/2) abl.,
13 AB. region (0, b/2, w, b / ab2)
14 from (A. region (0, 0, c, b/2) al.,
              A. region (0, h/2, c, h/2) a1,
B b) (
            abl=MatrixMultiply(al, b);
            ab2=MatrixMultiply(a2, b);
```

Figure 1: MatrixMultiply PetaBricks source code

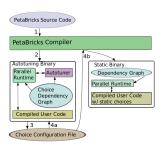


Figure 2: Interactions between compiler and output binaries.

- Algorithmic choice through 1 transform with multiple rules.
- The compilation uses a Choice Dependency Graph (CDG), nodes = transforms/rules, edges = (data) dependencies.

```
1 transform Matrix Multiply
  from A[c,h], B[w,c]
     // Base case, compute a single element
     to(AB.cell(x.y) out)
     from (A.row(y) a, B.column(x) b) [
   out = dot(a,b);
11 // Recursively decompose in c

    from (A. region (0, 0, c/2, h) al.

     21 // Recursively decompose in w
22 to(AB.region(0, 0, w/2, h ) abl.
23 AB.region(w/2, 0, w, h ) ab2)
     B.region(0, 0, w/2, c ) b1,
B.region(w/2, 0, w, c ) b2) {
ab1 = MatrixMultiply(a, b1);
ab2 = MatrixMultiply(a, b2);
31 // Recursively decompose in h
12 to(AB.region(0, 0, w, h/2) abl,
3) AB.region(0, h/2, w, h ) ab2)
34 from(A.region(0, 0, c, h/2) al,
          A.region(0, h/2, c, h ) a2,
B b) (
       abl=MatrixMultiply(al. b);
       ab2=MatrixMultiply(a2, b);
```

Figure 1: MatrixMultiply PetaBricks source code

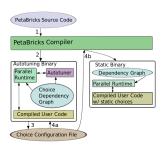


Figure 2: Interactions between compiler and output binaries.

- Algorithmic choice through 1 transform with multiple rules.
- The compilation uses a Choice Dependency Graph (CDG), nodes = transforms/rules, edges = (data) dependencies.
- Accuracy choice with iterative and recursive methods.

```
I transform Matrix Multiply
   from A[c,h], B[w,c]
       // Base case, compute a single element
      to(AB.cell(x.y) out)
      from (A. row(y) a, B. column(x) b) [
     out = dot(a,b);
11 // Recursively decompose in c
     In(AR ab)

    from (A. region (0, 0, c/2, h) al.

      | A region(0, 0, c/2, b ) a1, | A region(c/2, 0, c, b ) a2, | B region(0, 0, w, c/2) b1, | B region(0, c/2, w, c ) b2) | ab = MatrixAdd (MatrixMultiply(a1, b1)); | MatrixMultiply(a2, b2));
21 // Recursively decompose in w
22 to(AB.region(0, 0, w/2, h ) abl.
23 AB.region(w/2, 0, w, h ) ab2)
       B.region(0, 0, w/2, c ) b1,
B.region(w/2, 0, w, c ) b2) {
ab1 = MatrixMultiply(a, b1);
ab2 = MatrixMultiply(a, b2);
31 // Recursively decompose in h
12 to(AB.region(0, 0, w, h/2) abl,
3) AB.region(0, h/2, w, h ) ab2)
34 from(A.region(0, 0, c, h/2) al,
             A.region(0, h/2, c, h ) a2,
B b) (
          abl=MatrixMultiply(al. b);
          ab2=MatrixMultiply(a2, b);
```

Figure 1: MatrixMultiply PetaBricks source code

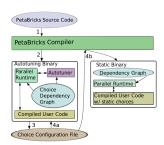


Figure 2: Interactions between compiler and output binaries.

- Algorithmic choice through 1 transform with multiple rules.
- The compilation uses a Choice Dependency Graph (CDG), nodes = transforms/rules, edges = (data) dependencies.
- Accuracy choice with iterative and recursive methods.
- How does the autotuner select the best rule?

```
I transform MatrixMultiply
   from A[c,h], B[w,c]
       // Base case, compute a single element
      to(AB.cell(x.y) out)
      from (A. row(y) a, B. column(x) b) [
     out = dot(a,b);
11 // Recursively decompose in c
     In(AR ab)

    from (A. region (0, 0, c/2, h) al.

      | A region(0, 0, c/2, b ) a1, | A region(c/2, 0, c, b ) a2, | B region(0, 0, w, c/2) b1, | B region(0, c/2, w, c ) b2) | ab = MatrixAdd (MatrixMultiply(a1, b1)); | MatrixMultiply(a2, b2));
21 // Recursively decompose in w
22 to(AB region(0, 0, w/2, h ) abl.
23 AB region(w/2, 0, w, h ) ab2)
       B.region(0, 0, w/2, c ) b1,
B.region(w/2, 0, w, c ) b2) {
ab1 = MatrixMultiply(a, b1);
ab2 = MatrixMultiply(a, b2);
31 // Recursively decompose in h
32 to(AB.region(0, 0, w, h/2) abl.

33 AB.region(0, h/2, w, h ) ab2)

34 from(A.region(0, 0, c, h/2) al
             A.region(0, h/2, c, h ) a2,
B b) (
          abl=MatrixMultiply(al. b);
          ab2=MatrixMultiply(a2, b);
```

Figure 1: MatrixMultiply PetaBricks source code

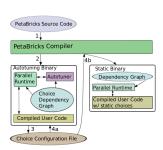


Figure 2: Interactions between compiler and output binaries.

• The autotuner is a bottom-up genetic algo which uses dynamic programming to prune the search space.

- The autotuner is a bottom-up genetic algo which uses dynamic programming to prune the search space.
- Bottom-up finds the optimal solution for the smallest subproblem.

- The autotuner is a bottom-up genetic algo which uses dynamic programming to prune the search space.
- Bottom-up finds the optimal solution for the smallest subproblem.
- Tracks an optimal family.

- The autotuner is a bottom-up genetic algo which uses dynamic programming to prune the search space.
- Bottom-up finds the optimal solution for the smallest subproblem.
- Tracks an optimal family.
- Large problems solutions built from smaller problem solutions.

- The autotuner is a bottom-up genetic algo which uses dynamic programming to prune the search space.
- Bottom-up finds the optimal solution for the smallest subproblem.
- Tracks an optimal family.
- Large problems solutions built from smaller problem solutions.
- Evolutionary strategy: candidate -> measure runtime -> random mutation (stochastic search) -> select new 'parents'.

- The autotuner is a bottom-up genetic algo which uses dynamic programming to prune the search space.
- Bottom-up finds the optimal solution for the smallest subproblem.
- Tracks an optimal family.
- Large problems solutions built from smaller problem solutions.
- Evolutionary strategy: candidate -> measure runtime -> random mutation (stochastic search) -> select new 'parents'.
- Tracks performance vs accuracy (error and convergence rate).

- The autotuner is a bottom-up genetic algo which uses dynamic programming to prune the search space.
- Bottom-up finds the optimal solution for the smallest subproblem.
- Tracks an optimal family.
- Large problems solutions built from smaller problem solutions.
- Evolutionary strategy: candidate -> measure runtime -> random mutation (stochastic search) -> select new 'parents'.
- Tracks performance vs accuracy (error and convergence rate).
- Concretely, insertion sort is introduced at N = 68 instead of N = 15. Merge sort with 4 splits instead of 2.

Results

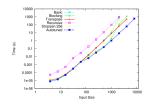


Figure 3: Matrix Multiply on 8 cores.

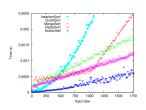


Figure 4: Sort on 8 cores.

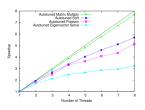


Figure 5: Parallel scalability on x86.

• Maybe it can be a C++ library now (lower adoption barrier).

- Maybe it can be a C++ library now (lower adoption barrier).
- Compilation takes hours on a 'good?' machine. Empirically finding parameters is time consuming.

6/9

- Maybe it can be a C++ library now (lower adoption barrier).
- Compilation takes hours on a 'good?' machine. Empirically finding parameters is time consuming.
- Let's see how the autotuner really performs on data structures that aren't matrices.

- Maybe it can be a C++ library now (lower adoption barrier).
- Compilation takes hours on a 'good?' machine. Empirically finding parameters is time consuming.
- Let's see how the autotuner really performs on data structures that aren't matrices.
- Should we optimise for energy consumption? final binary size? robustness (average runtime on different input data)? [2]

- Maybe it can be a C++ library now (lower adoption barrier).
- Compilation takes hours on a 'good?' machine. Empirically finding parameters is time consuming.
- Let's see how the autotuner really performs on data structures that aren't matrices.
- Should we optimise for energy consumption? final binary size? robustness (average runtime on different input data)? [2]
- The core assumption is the 'Optimal Substructure Principle' [3].

- Maybe it can be a C++ library now (lower adoption barrier).
- Compilation takes hours on a 'good?' machine. Empirically finding parameters is time consuming.
- Let's see how the autotuner really performs on data structures that aren't matrices.
- Should we optimise for energy consumption? final binary size? robustness (average runtime on different input data)? [2]
- The core assumption is the 'Optimal Substructure Principle' [3].
- \bullet My personal bias is against general frameworks (80/20 rule).

References I

J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman, and S. Amarasinghe.

Petabricks: a language and compiler for algorithmic choice. In *Proceedings of the 30th ACM SIGPLAN Conference on Programming Language Design and Implementation*, PLDI '09, page 38–49, New York, NY, USA, 2009. Association for Computing Machinery.

J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley,

J. Bosboom, U.-M. O'Reilly, and S. Amarasinghe.

Opentuner: an extensible framework for program autotuning. In *Proceedings of the 23rd International Conference on Parallel Architectures and Compilation*, PACT '14, page 303–316, New York, NY, USA, 2014. Association for Computing Machinery.

References II

- T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. *Introduction to Algorithms, Third Edition*. The MIT Press, 3rd edition, 2009.
 - M. Frigo and S. G. Johnson.

 The fastest fourier transform in the west.

 Technical report, USA, 1997.
 - R. C. Whaley and J. J. Dongarra.

 Automatically tuned linear algebra software.

 In *Proceedings of the 1998 ACM/IEEE Conference on Supercomputing*, SC '98, page 1–27, USA, 1998. IEEE Computer Society.

Q & A

9/9