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Motivation and Background

What is it?
It’s a programming language and a compiler (Petabricks -> C++) and
a run-time library implemented in C++.

Why do we need it?
We need algorithmic choice: for a given task e.g. sorting, no single
algorithm is optimal across all contexts (e.g. std::sort has fixed cutoff
merge -> insertion sort).

We need simplicity:
Handle switching algorithms based on params and input data
(avoids obfuscated code and manual tuning). Replace ATLAS [5] /
FFTW [4] (C tuning libraries).
1 optimal implementation ported to different machines by
re-compiling and autotuning (x86 vs Sun Niagara).

Umer Hasan Petabricks, 2009 Michelmas 2025 2 / 9



Motivation and Background

What is it?
It’s a programming language and a compiler (Petabricks -> C++) and
a run-time library implemented in C++.

Why do we need it?
We need algorithmic choice: for a given task e.g. sorting, no single
algorithm is optimal across all contexts (e.g. std::sort has fixed cutoff
merge -> insertion sort).

We need simplicity:
Handle switching algorithms based on params and input data
(avoids obfuscated code and manual tuning). Replace ATLAS [5] /
FFTW [4] (C tuning libraries).

1 optimal implementation ported to different machines by
re-compiling and autotuning (x86 vs Sun Niagara).

Umer Hasan Petabricks, 2009 Michelmas 2025 2 / 9



Motivation and Background

What is it?
It’s a programming language and a compiler (Petabricks -> C++) and
a run-time library implemented in C++.

Why do we need it?
We need algorithmic choice: for a given task e.g. sorting, no single
algorithm is optimal across all contexts (e.g. std::sort has fixed cutoff
merge -> insertion sort).
We need simplicity:

Handle switching algorithms based on params and input data
(avoids obfuscated code and manual tuning). Replace ATLAS [5] /
FFTW [4] (C tuning libraries).

1 optimal implementation ported to different machines by
re-compiling and autotuning (x86 vs Sun Niagara).

Umer Hasan Petabricks, 2009 Michelmas 2025 2 / 9



Motivation and Background

What is it?
It’s a programming language and a compiler (Petabricks -> C++) and
a run-time library implemented in C++.

Why do we need it?
We need algorithmic choice: for a given task e.g. sorting, no single
algorithm is optimal across all contexts (e.g. std::sort has fixed cutoff
merge -> insertion sort).
We need simplicity:

Handle switching algorithms based on params and input data
(avoids obfuscated code and manual tuning). Replace ATLAS [5] /
FFTW [4] (C tuning libraries).
1 optimal implementation ported to different machines by
re-compiling and autotuning (x86 vs Sun Niagara).

Umer Hasan Petabricks, 2009 Michelmas 2025 2 / 9



Features

Algorithmic choice through 1 transform with multiple rules.

The compilation uses a Choice Dependency Graph (CDG), nodes
= transforms/rules, edges = (data) dependencies.
Accuracy choice with iterative and recursive methods.
How does the autotuner select the best rule?

Figure 1: MatrixMultiply
PetaBricks source code Figure 2: Interactions between compiler and output binaries.
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How does this relate to search space optimisation?

The autotuner is a bottom-up genetic algo which uses dynamic
programming to prune the search space.

Bottom-up finds the optimal solution for the smallest subproblem.
Tracks an optimal family.
Large problems solutions built from smaller problem solutions.
Evolutionary strategy: candidate -> measure runtime -> random
mutation (stochastic search) -> select new ’parents’.
Tracks performance vs accuracy (error and convergence rate).
Concretely, insertion sort is introduced at N = 68 instead of
N = 15. Merge sort with 4 splits instead of 2.
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Results

Figure 3: Matrix Multiply on 8
cores.

Figure 4: Sort on 8 cores. Figure 5: Parallel scalability on
x86.
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My Thoughts

Maybe it can be a C++ library now (lower adoption barrier).

Compilation takes hours on a ’good?’ machine. Empirically finding
parameters is time consuming.
Let’s see how the autotuner really performs on data structures that
aren’t matrices.
Should we optimise for energy consumption? final binary size?
robustness (average runtime on different input data)? [2]
The core assumption is the ’Optimal Substructure Principle’ [3].
My personal bias is against general frameworks (80/20 rule).
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