Ligra: A lightweight Graph
Processing Framework for Shared
Memory

Authored by Julian Shun and Guy E. Blelloch

Presented by: Ruquaiya Shuaaibu (rs2377)



Motivation/Background

Massive graphs in social, web, and biological networks
Most frameworks (Pregel, GraphlLab, Pegasus, etc.) target distributed clusters

But modern multicore servers can hold terabytes of RAM — billions of edges fit in
memory

Can shared-memory systems rival distributed frameworks for large-scale graph
processing?



Research Questions

How can graph algorithms be parallelized efficiently on shared memory?

Can a lightweight abstraction simplify graph programming?

Can such a framework achieve performance comparable to large distributed
systems?



Shared vs Distributed

Aspect

Communication
Complexity
Performance per core
Scalability

Sync Method

Shared Memory (Ligra)

In-memory (fast)
Simple, no partitioning
Higher

Limited by RAM

Atomic (CAS)

Distributed (Pregel, Grap,
etc)

Network (slow)

Complex message passing
Lower

Scales across nodes

Bulk sync/message passing



Ligra: Core ldea

Two key primitives:
VERTEXMAP: Apply a function over active vertices
EDGEMAP: Apply a function over edges from active vertices

Framework automatically switches between:

Sparse mode (few active vertices)
Dense mode (many active vertices)

Inspired by hybrid BFS optimisation



Simplified example

Start with root vertex
Use EDGEMAP to expand to neighbors
Uses atomic compare-and-swap (CAS) to mark visited vertices

Framework handles parallelism automatically



Algorithms Supported

Breadth-First Search (BFS)
PageRank

Betweenness Centrality
Graph Connectivity

Radii Estimation

Bellman-Ford Shortest Paths



Results

Setup: 40-core Intel Xeon (256 GB RAM)
Graphs up to 12.9 billion edges

Highlights:

20-35x% speedup vs single-thread baseline

Per-core performance > distributed frameworks (Pregel, GraphlLab, etc.)
Often faster overall despite fewer cores

Very concise code (BFS in ~15 lines)



Main Contributions

Lightweight framework with two simple primitives (VERTEXMAP, EDGEMAP)
Adaptive hybrid traversal (sparse <> dense)
Efficient, simple implementations of core graph algorithms

Demonstrates that shared-memory systems can rival or outperform distributed
systems per core



Opinions/critiques

Data Scale Has Outgrown Single Machines
Lacks Fault Tolerance & Elasticity

Static Graph Assumption

Still Influential & Efficient



