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Parallel Execution and Control Models

e Execution Models

|. Single Program Multiple Data (SPMD)
2. Multiple Program Multiple Data (MPMD)

» Enables the use of heterogenous computation and clusters, model sparsity, and
pipeline/model parallelism

e Control Models

|. Single-controller
» Dispatch of computations to hosts over a DCN is high-latency

2. Multi-controller

» Inflexible in terms of resource virtualisation, since each host has its own exclusive controller
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Existing Execution Schemes
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* Main contributions of Pathways:

» Provides flexibility of single-controller systems with performance of multi-controller

> Enables efficient future research for MPMD, while maintaining state-of-the-art
performance for current SPMD use-cases
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Pathways Dataflow Model

A\

Sharded dataflow graph consisting of asynchronous operators
> Nodes in the graph are compiled functions, to be placed on virtual devices
satisfying network topology and memory constraints

» Can be used as a drop-in replacement for the JAX backend
» Nodes represent XLA computations
» Enables existing JAX code to scale beyond a single TPU pod

(9@P~ Transfer subgraph

Sharded Dataflow Program
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Pathways System Architecture

> Backend: set of accelerators grouped into tightly-coupled islands

» Resource manager: centralised management of devices, enabling virtualisation
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Client Operations and Coordination

« Users interact with the Pathways client:
> Registers computations with the resource manager
» Compiles user programs to the device location-agnostic Pathways IR
> Uses sharded buffer that may be distributed over multiple devices, to avoid
the client becoming the bottleneck

* Cross-host coordination uses Google’s closed-source Plaque:

> The low-level Pathways IR is converted into a Plague program
» Provides low-latency critical messaging over a DCN
> Batches messages to the same host for high-throughput requirements



Gang-scheduled Dynamic

» Per-island centralised schedulers
order computations across devices

» Plague programs:

|.  Enqueue execution of node with
buffer futures as input.

2. Enqueue network sends for the
buffer futures output by a node.

3. Communicate with the scheduler to
determine a consistent order of
node executions in that island.

Dispatch
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Parallel Asynchronous Dispatch

> Run the host-side work (scheduling, resource allocation and coordination)
in parallel to device computations to reduce time spent stalling
> This can only be done if the compiled functions are regular

Client | run program ) Client C run program )
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(a) Sequential dispatch (b) Parallel dispatch
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Evaluation: Dispatch Overheads

« Micro Benchmark: trivial gang-
scheduled computation containing
a single AllReduce operation

« Three settings:

» OpByOp (—O): user code contains
a separate call for each execution

» Chained (-C): a series of calls, each
executing 128 nodes
» Fused (-F): a series of calls, each

executing a single node, but each

node containing 128 computations

Computations per second
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Pathways outperforms single-controller systems like

TF and Ray, and matches multi-controller JAX in -F
and -C configurations for up to 1000 and 256 TPU
cores, respectively.
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Evaluation: Multi-tenancy

> Analysis of aggregated 10° 5
throughput when multiple '
clients concurrently submit :
different Pathways programs. &
» Matches performance of JAX as &
the number of clients increase. §
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Evaluation: Large Scale Model Performance

* Training real ML models as SPMD programs
For Text-to-Text Encoder-Decoder Transformer models, throughput
(tokens/s) of JAX and Pathways is identical

» Computations are large enough to mask single-controller overheads.

Model Params TPU cores JAX PATHWAYS
T5-Base 270M 32 618k 618k
TS5-Large 7710M 32 90.4k 90.4k
T5-3B 3B 512 282.8k 282.8k

T5-11B 11B 512 84.8k 84.8k
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Evaluation: Large Scale Model Performance

 Pipelining the training of a Transformer model (3B parameters)

«  Competitive throughput (13 1.4k tokens/s) can be achieved compared to

SPM D 4 islands of 32 TPUs 16 pipeline stages in each direction,
assigned 8 TPUs each

Forward Pipeline Backward Apply
pass "Bubble" pass gradients




Evaluation: Large Scale Model Performance

«  Comparison of SPMD and Pipelined performance for Decoder-only

Transformer model
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* Training throughput given number of stages (S) and micro-batches (M)
« Pipelined performance can be better than SPMD, and throughput scales

linearly with number of hosts

Model configuration TPU cores PATHWAYS
Model-parallel (SPMD) 128 125.7k
Pipelining, S=4, M=16 128 133.7k
Pipelining, S=8, M=32 128 132.7k
Pipelining, S=16, M=64 128 131.4k
Pipelining, S=16, M=64 512 507.8k




14/16

Final Thoughts: Positives

* Matches state-of-the-art performance, while enabling future research
directions

* Drop-in replacement for the backend of existing JAX code

* Provides great flexibility, enabling future research directions in ML

« Enables large-scale use of (internal) large-scale models such as Google’s

PaLM (540B)
« Core part of Google’s “Al Hypercomputer” (2025)

» Pathways is now available as part of Google Cloud for inference and training
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Final Thoughts: Criticisms

* Architecture is only for TPUs as the execution backend

» Authors only speculate that the system can be adapted to use GPUs
* Relies on Google’s closed-source Plaque

» Authors again only speculate that Ray can be used instead
« Details omitted, such as how fault tolerance is handled

» The work is not reproducible, and further research is needed for the
general case

- Experimentation could be extended to cover a wider range of end-
to-end MPMD use-cases, suggesting best practices
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Thank you!
Any Questions!
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