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Parallel Execution and Control Models

• Execution Models

1. Single Program Multiple Data (SPMD)

2. Multiple Program Multiple Data (MPMD)

➢ Enables the use of heterogenous computation and clusters, model sparsity, and 

pipeline/model parallelism 

• Control Models

1. Single-controller

➢ Dispatch of computations to hosts over a DCN is high-latency

2. Multi-controller

➢ Inflexible in terms of resource virtualisation, since each host has its own exclusive controller
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Existing Execution Schemes

• Main contributions of Pathways: 

➢ Provides flexibility of single-controller systems with performance of multi-controller

➢ Enables efficient future research for MPMD, while maintaining state-of-the-art 

performance for current SPMD use-cases

(i) Multi-controller - SPMD

(JAX/PyTorch)

(ii) Single-controller - SPMD

(TensorFlow v1)

(iii) Single-controller - MPMD

(TensorFlow v1)
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Pathways Dataflow Model

➢ Sharded dataflow graph consisting of asynchronous operators

➢ Nodes in the graph are compiled functions, to be placed on virtual devices 

satisfying network topology and memory constraints

➢ Can be used as a drop-in replacement for the JAX backend

➢ Nodes represent XLA computations

➢ Enables existing JAX code to scale beyond a single TPU pod

Sharded Dataflow Program
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Pathways System Architecture

➢ Backend: set of accelerators grouped into tightly-coupled islands

➢ Resource manager: centralised management of devices, enabling virtualisation
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Client Operations and Coordination 

• Users interact with the Pathways client:

➢ Registers computations with the resource manager

➢ Compiles user programs to the device location-agnostic Pathways IR

➢ Uses sharded buffer that may be distributed over multiple devices, to avoid 

the client becoming the bottleneck

• Cross-host coordination uses Google’s closed-source Plaque:

➢ The low-level Pathways IR is converted into a Plaque program

➢ Provides low-latency critical messaging over a DCN

➢ Batches messages to the same host for high-throughput requirements
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Gang-scheduled Dynamic Dispatch 

➢ Per-island centralised schedulers 

order computations across devices

➢ Plaque programs:
1. Enqueue execution of node with 

buffer futures as input.

2. Enqueue network sends for the 

buffer futures output by a node.

3. Communicate with the scheduler to 

determine a consistent order of 

node executions in that island. 
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Parallel Asynchronous Dispatch 

➢ Run the host-side work (scheduling, resource allocation and coordination) 

in parallel to device computations to reduce time spent stalling

➢ This can only be done if the compiled functions are regular
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Evaluation: Dispatch Overheads

• Micro Benchmark: trivial gang-

scheduled computation containing 

a single AllReduce operation

• Three settings:

➢ OpByOp (–O): user code contains 

a separate call for each execution

➢ Chained (-C): a series of calls, each 

executing 128 nodes

➢ Fused (-F): a series of calls, each 

executing a single node, but each 

node containing 128 computations

Pathways outperforms single-controller systems like 

TF and Ray, and matches multi-controller JAX in -F 

and -C configurations for up to 1000 and 256 TPU 

cores, respectively.
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Evaluation: Multi-tenancy

➢ Analysis of aggregated 

throughput when multiple 

clients concurrently submit 

different Pathways programs.

➢ Matches performance of JAX as 

the number of clients increase.

Aggregate throughput for each 

system (compute time in ms)
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Evaluation: Large Scale Model Performance

• Training real ML models as SPMD programs

• For Text-to-Text Encoder-Decoder Transformer models, throughput 

(tokens/s) of JAX and Pathways is identical 

➢ Computations are large enough to mask single-controller overheads.
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Evaluation: Large Scale Model Performance

• Pipelining the training of a Transformer model (3B parameters)

• Competitive throughput (131.4k tokens/s) can be achieved compared to 

SPMD.
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Evaluation: Large Scale Model Performance

• Comparison of SPMD and Pipelined performance for Decoder-only 

Transformer model

• Training throughput given number of stages (S) and micro-batches (M)

• Pipelined performance can be better than SPMD, and throughput scales 

linearly with number of hosts
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Final Thoughts: Positives

• Matches state-of-the-art performance, while enabling future research 

directions

• Drop-in replacement for the backend of existing JAX code

• Provides great flexibility, enabling future research directions in ML

• Enables large-scale use of (internal) large-scale models such as Google’s 

PaLM (540B) 

• Core part of Google’s “AI Hypercomputer” (2025)

➢ Pathways is now available as part of Google Cloud for inference and training
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Final Thoughts: Criticisms

• Architecture is only for TPUs as the execution backend

➢ Authors only speculate that the system can be adapted to use GPUs

• Relies on Google’s closed-source Plaque

➢ Authors again only speculate that Ray can be used instead

• Details omitted, such as how fault tolerance is handled

➢ The work is not reproducible, and further research is needed for the 

general case

• Experimentation could be extended to cover a wider range of end-

to-end MPMD use-cases, suggesting best practices
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Thank you!

Any Questions?
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