Naiad

A Timely Dataflow System

Florian Kilein (fbk24), Large-Scale Data Processing and Optimisation (R244)

Naiad: A Timely Dataflow System

Derek G. Murray
Michael Isard

Frank McSherry Rebecca Isaacs
Paul Barham

Martin Abadi

Microsoft Research Silicon Valley
{derekmur,mcsherry,risaacs,misard,pbar,abadi}@microsoft.com

Abstract

Naiad is a distributed system for executing data parallel,
cyclic dataflow programs. It offers the high throughput
of batch processors, the low latency of stream proces-
sors, and the ability to perform iterative and incremental
computations. Although existing systems offer some of
these features, applications that require all three have re-
lied on multiple platforms, at the expense of efficiency,
maintainability, and simplicity. Naiad resolves the com-
plexities of combining these features in one framework.
A new computational model, timely dataflow, under-
lies Naiad and captures opportunities for parallelism
across a wide class of algorithms. This model enriches
dataflow computation with timestamps that represent
logical points in the computation and provide the basis
for an efficient, lightweight coordination mechanism.

Low-latency query
responses are delivered

Queries are
joined with
processed data

User queries
are received

Complex processing
incrementally re-
executes to reflect

Updates to
changed data

data arrive

Figure 1: A Naiad application that supports real-
time queries on continually updated data. The
dashed rectangle represents iterative processing that
incrementally updates as new data arrive.

requirements: the application performs iterative process-

Background

Dataflow Programming

Input Output

Background

Dataflow Programming

Input g Map g Filter > Sum > Output

O

Motivation

Dataflow Programming

ML frameworks (e.g. TensorFlow)
* Realtime Analytics

 Network & Packet Processing

1]

Motivation

Most important metrics

ad

Modern data processing tasks require:

A. Timeliness: High Throughput and Low Latency
B. Consistency: Correct results even when we have late arrivals

C. Expressiveness: lterative and Incremental Computations

Motivation

Expressiveness and lterative Computations

Input g Map g Filter > Sum > Output

Example Applications:
o0 PageRank (uses previous scores + new input for next iteration)

o Streaming Statistics (e.g. Rolling Average, ...)

Existing Approaches

Batch Processing

* Support synchronous Batch Processing
iterations (on one batch)

Saves ou+pu+ or
+ri iggers another

Collect data Parallel

computations
from sources P n process

 Higher Latency

let mut iteration = 0O;
while lconverged {

Process Generate
process_batch(); batches output
Divide data
block_on(global_barrier); into chunks

iteration += 1;

J

2]

Existing Approaches

Stream Processing

n real time

* Low Latency Real-time Streaming
. _ Generate data from o .
- ontinuou tream eturn results in
° Only .non Iteratlve cont i ams Transform, filter, real-time, store the data,
Eilg)()FTtr1rT155 .;°" ¢ aggregate data or trigger actions

while let Some(event) = stream.next() {

messages

process(event);

emit_partial_results();
Buffer data

} using tools Buffer & Storage
transport data & action

2]

Existing Approaches

Comparison

Latency
Stream Processing

Batch Processing

Database

Timely Dataflow

Expressiveness Consistency

Approach

Outside Perspective

» External Producer labels each
message with an integer epoch

* Notifies when no more messages
from a given epoch

* Qutputs transformed messages
with epoch label and also
notifies when epoch done

Epochf

>

m1, epochi

Input

Timely
Dataflow

\ 4

Output

m1’, epocht

Epochf

>

Approach

Timely Dataflow: Overview

Input g Map '

Filter g Sum Output

Approach

Vertices
Implements Callbacks:

v.on_recv(e: Edge, m: Message, t: Timestamp)

v.on_notify(t: Timestamp) .

] Vertex X Vertex
(this) (v)
Can call:

this.send_by(e: Edge, m: I\/IessagewTimestamp) -

this.notify_at(t: Timestamp) —

Approach

Vertices

* Ordering of send / recv is
flexible, BUT:

Fort’ <=t: .
(e.g. filter)

v.on_notify(t) only after all v.on_recv(e, m, t’)

 When invoked with t, only invoke
send/notify with t’ >= 1t (,,not sent
backwards)

Approach

Logical Timestamps: Loops

Loop Context

~

Input g Map —'»
_

Loops require: Ingress, Egress, and a Feedback Vertex.

\ 4

Filter > Sum Output

We can define:
Vertex Input timestamp Output timestamp

Ingress (e, (c, ... cx)) (e, (c1, £, 0))

epoch loop counters

et N e N

Egress (e,{c1y.. ,Ck,ckr1)) (e (cyy....ck))
Feedback (e, {cy,...,cx)) (e,{(c1y...,cx+1))

Timestamp : (e € N, {cy,...,cx) € NY)

Approach

Pointstamps & Scheduling

o1 I
« Events uniquely identified by: \

Pointstamp : (¢ € Timestamp, ! € Edge U Vertex). \
Filter
Methods change the pointstamp of m: Map /

e v.send_by(e, m, t) -> (t, e)

o v.notify_at(t) -> (t, v)

o .p1 could result in p2* <-> 3 P(t1) <= t2; then find minimal (earlierst) paths

» (: path, where we transform p1 according to the update rules (11 -> 12)

Approach

Pointstamps & Scheduling

Scheduler:
 Maintains a set of active point stamps
* [racks two counters per pointstamp:

* Occurrence: Outstanding events with that
timestamp

* Precursor: Number of active timestamps that
could result in this pointstamp

P1 scheduled when precursor = 0 & active

Maintain set of
active pointstamps

Occurrence
count=07?

Decrement
precursor counts

Precursor
count=07?

No

Deliver
notification

Approach

Naiad - Distributed Timely Dataflow

Logical graph o—m-)o-)e

TCP/IP network

(Sec 2) Process

Approach

Naiad - Key Differences

Single-threaded Timely Distributed Naiad
Frontier tracking Single global frontier Each worker has local frontier
Progress
netadata Per-vertex pointstamps Projected (logical-level) pointstamps (smaller state)
Coordination None (local only) Broadcast + aggregation of progress updates
Delivery . .
.. when no earlier local events when no earlier events on any worker
condition

Fault tolerance Not required Checkpoint + restore of vertex and progress state

Results

Performance Evaluation

A BCDEFGH Il J KL MN [3]

Evaluation on Pagerank, Strong / Weakly Connected Components (SCC, WCC),
All Pair Shortest Path (ASP)

Results

Performance Evaluation

10-600x

_Algorithm | PDW _ DryadLINQ __ SHS __ Naiad speedup!

PageRank | 156,982 68,791 836,455 4,656

SCC 7,306 6,294 15,903 729
WCC | 214,479 160,168 26,210 268

ASP 671,142 749,016 2,381,278 1,131

Table 1: Running times in seconds of several graph
algorithms on the Category A web graph. Non-Naiad
measurements are due to Najork ef al. [34].

Comparison: Distributed database (PDW), A general-purpose batch processor
(DryadLINQ), and a purpose-built distributed graph store (SHS).

Discussion

Pro

* Unified model: Before, iteration was synchronous and slow; streaming had
low latency but no iterative algorithms: Naiad / Timely Dataflow solved that
problem

Latency Timely Dataflow

EXpressiveness Consistency

Discussion

Pro

 Timestamps for lterative Processes: No global barrier like in batch systems,
coordination only when needed, deterministic iteration in streaming systems

Streaming context

epoch loop counters

et N e N
Timestamp : (e € N, {cy,...,cx) € NY)

Discussion

Contra

 Coordination: Global protocol still requires all workers to participate; there is
a limit to scalability (,it’s not a database®)

Discussion

Contra

 Fault-tolerance is too simplistic: Recovery requires a global rollback to
the last checkpoint and temporarily pauses the whole system. (e.g., compare
to Google Millwheel)

— -,
v n

Discussion

Contra

 Complexity for programmer: non-trivial in comparison to e.g. Spark as e.qg.
reasoning about timestamps is required

« However, iImplementations nowadays abstract that away as well.

worker.dataflow(|scope| {
scope.input_from(&mut input)
.exchange([x| *x)
inspect(move |x| printin!("worker {}:\thello {}", index, X))
.probe_with(&mut probe);

});

Discussion

Impact: Timely Dataflow and Naiad

fn main() {
timely::execute_from_args(std::env::args(), |workerl| {
et index = worker.index();
et mut input = InputHandle::new();
et mut probe = ProbeHandle::new();

H TimelyDataflow [timely-dataflow (public

<> Code (-) Issues 66 i9 Pull requests 36 (>) Actions Projects [Wiki () ¢

worker.dataflow(|scope| {
scope.input_from(&mut input)
.exchange(|x| *x)
.inspect(move [x| printin!("worker {}:\thello {}", index, X))
probe_with(&mut probe);

});

for round in 0..10 {
if index == 0 { input.send(round); }
input.advance_to(round + 1);
while probe.less_than(input.time()) {

‘[\Z worker.step();
APACHE 4.0.1
SparK. .

}.unwrap();
4] }

Discussion

Impact: Timely Dataflow and Naiad

Concept from Naiad Influenced
Timely Dataflow Timely (Rust), Differential Dataflow
Frontier Tracking Apache Flink (Watermarks), ...
Low-latency iterative computation Spat:(irgktrﬂg’icﬂ?: dEg gienaeﬁing Spark **
Ilterative Computations e.g. Streaming ML

Conclusion

Timely Dataflow

Latency

Timely Dataflow

* Unified low-latency
streaming + iteration
IN one system

e Great for data flow
tasks!

* |nspired modern
systems like timely
dataflow and
differential dataflow!

 Practical distributed
progress

Expressiveness Consistency

Thank you!

Questions?

1]

2]

[3]
4]

https://www.linkedin.com/posts/nikkisiapno_batch-
processing-vs-real-time-streaming-
activity-7316406319614251009-9yd1

https://johncarlosbaez.wordpress.com/2016/06/05/
programming-with-data-flow-graphs/

https://en.wikipedia.org/wiki/File:Page_rank_animation.gif

https://spark.apache.org/

https://nightlies.apache.org/flink/flink-docs-master/docs/
dev/datastream/event-time/generating_watermarks/

https://github.com/TimelyDataflow/timely-dataflow

