
Florian Klein (fbk24), Large-Scale Data Processing and Optimisation (R244)

Naiad
A Timely Dataflow System

Background
Dataflow Programming

Input Output

Background
Dataflow Programming

Input OutputMap Filter Sum

Motivation
Dataflow Programming

• ML frameworks (e.g. TensorFlow)

• Realtime Analytics

• Network & Packet Processing

[1]

Motivation
Most important metrics

Modern data processing tasks require:

A. Timeliness: High Throughput and Low Latency

B. Consistency: Correct results even when we have late arrivals

C. Expressiveness: Iterative and Incremental Computations

Motivation
Expressiveness and Iterative Computations

Input OutputMap Filter Sum

Example Applications:

PageRank (uses previous scores + new input for next iteration)

Streaming Statistics (e.g. Rolling Average, …)

Existing Approaches
Batch Processing

• Support synchronous
iterations (on one batch)

• Higher Latency

let mut iteration = 0;

while !converged {

 // run parallel on all data

 process_batch();

 // wait for all workers to finish

 block_on(global_barrier);

 iteration += 1;

}

[2]

Existing Approaches
Stream Processing

• Low Latency

• Only non-iterative
algorithms

while let Some(event) = stream.next() {

 // update incrementally

 process(event);

 emit_partial_results();

 // ...more data may still arrive

}

[2]

Existing Approaches
Comparison

Latency

Expressiveness Consistency

Batch Processing

Stream Processing

Database

Timely Dataflow

Approach
Outside Perspective

• External Producer labels each
message with an integer epoch

Input

Output

Timely
Dataflow

m1, epoch1

• Notifies when no more messages
from a given epoch

Epoch1 ✅

• Outputs transformed messages
with epoch label and also
notifies when epoch done

m1’, epoch1

Epoch1 ✅

Approach
Timely Dataflow: Overview

Input OutputMap Filter SumI E

F

Approach
Vertices

Vertex
(this)

v.on_recv(e: Edge, m: Message, t: Timestamp)

v.on_notify(t: Timestamp)

this.send_by(e: Edge, m: Message, t: Timestamp)

this.notify_at(t: Timestamp)

Vertex
(v)

Implements Callbacks:

Can call:

e: Edge

Approach
Vertices

• Ordering of send / recv is
flexible, BUT:

For t’ <= t:

v.on_notify(t) only after all v.on_recv(e, m, t’)

• When invoked with t, only invoke
send/notify with t’ >= t („not sent
backwards)

Vertex
(e.g. filter)

Approach
Logical Timestamps: Loops

Loops require: Ingress, Egress, and a Feedback Vertex.

We can define:

Input OutputMap Filter SumI E

F

Loop Context

Approach
Pointstamps & Scheduling

Filter

• Events uniquely identified by:
Map

Map

• „p1 could result in p2“ <-> ∃ ψ(t1) <= t2; then find minimal (earlierst) paths

• ψ: path, where we transform p1 according to the update rules (l1 -> l2)

p1

Methods change the pointstamp of m:

• v.send_by(e, m, t) -> (t, e)

• v.notify_at(t) -> (t, v)

P2

ψ

Approach
Pointstamps & Scheduling

Scheduler:

• Maintains a set of active point stamps

• Tracks two counters per pointstamp:

• Occurrence: Outstanding events with that
timestamp

• Precursor: Number of active timestamps that
could result in this pointstamp

P1 scheduled when precursor = 0 & active

Approach
Naiad - Distributed Timely Dataflow

Approach
Naiad - Key Differences

Single-threaded Timely Distributed Naiad

Frontier tracking Single global frontier Each worker has local frontier

Progress
metadata Per-vertex pointstamps Projected (logical-level) pointstamps (smaller state)

Coordination None (local only) Broadcast + aggregation of progress updates

Delivery
condition when no earlier local events when no earlier events on any worker

Fault tolerance Not required Checkpoint + restore of vertex and progress state

Results
Performance Evaluation

Evaluation on Pagerank, Strong / Weakly Connected Components (SCC, WCC),
All Pair Shortest Path (ASP)

[3]

Results
Performance Evaluation

Comparison: Distributed database (PDW), A general-purpose batch processor
(DryadLINQ), and a purpose-built distributed graph store (SHS).

10-600x
speedup!

Discussion
Pro

• Unified model: Before, iteration was synchronous and slow; streaming had
low latency but no iterative algorithms: Naiad / Timely Dataflow solved that
problem

Latency

Expressiveness Consistency

Timely Dataflow

Discussion
Pro

• Timestamps for Iterative Processes: No global barrier like in batch systems,
coordination only when needed, deterministic iteration in streaming systems

Discussion
Contra

• Coordination: Global protocol still requires all workers to participate; there is
a limit to scalability („it’s not a database“)

Discussion
Contra

• Fault-tolerance is too simplistic: Recovery requires a global rollback to
the last checkpoint and temporarily pauses the whole system. (e.g., compare
to Google Millwheel)

Discussion
Contra

• Complexity for programmer: non-trivial in comparison to e.g. Spark as e.g.
reasoning about timestamps is required

• However, implementations nowadays abstract that away as well.

 worker.dataflow(|scope| {

 scope.input_from(&mut input)

 .exchange(|x| *x)

 .inspect(move |x| println!("worker {}:\thello {}", index, x))

 .probe_with(&mut probe);

 });

Discussion
Impact: Timely Dataflow and Naiad

fn main() {

 timely::execute_from_args(std::env::args(), |worker| {

 let index = worker.index();

 let mut input = InputHandle::new();

 let mut probe = ProbeHandle::new();

 worker.dataflow(|scope| {

 scope.input_from(&mut input)

 .exchange(|x| *x)

 .inspect(move |x| println!("worker {}:\thello {}", index, x))

 .probe_with(&mut probe);

 });

 for round in 0..10 {

 if index == 0 { input.send(round); }

 input.advance_to(round + 1);

 while probe.less_than(input.time()) {

 worker.step();

 }

 }

 }).unwrap();

}[4]

Discussion
Impact: Timely Dataflow and Naiad

Concept from Naiad Influenced

Timely Dataflow Timely (Rust), Differential Dataflow

Frontier Tracking Apache Flink (Watermarks), …

Low-latency iterative computation Flink Unified Engine,

Spark Structured Streaming

Iterative Computations e.g. Streaming ML

Conclusion
Timely Dataflow

Latency

Expressiveness Consistency

Timely Dataflow

• Great for data flow
tasks!

• Inspired modern
systems like timely
dataflow and
differential dataflow!

Naiad

• Unified low-latency
streaming + iteration
in one system

• Practical distributed
progress

Thank you!

Questions?

https://www.linkedin.com/posts/nikkisiapno_batch-
processing-vs-real-time-streaming-
activity-7316406319614251009-9yd1

[1]

https://en.wikipedia.org/wiki/File:Page_rank_animation.gif[3]

[2] https://johncarlosbaez.wordpress.com/2016/06/05/
programming-with-data-flow-graphs/

[4] https://spark.apache.org/

https://nightlies.apache.org/flink/flink-docs-master/docs/
dev/datastream/event-time/generating_watermarks/

https://github.com/TimelyDataflow/timely-dataflow

