
Florian Klein (fbk24), Large-Scale Data Processing and Optimisation (R244)

Naiad
A Timely Dataflow System





Background
Dataflow Programming

Input Output



Background
Dataflow Programming

Input OutputMap Filter Sum



Motivation
Dataflow Programming

• ML frameworks (e.g. TensorFlow)


• Realtime Analytics


• Network & Packet Processing

[1]



Motivation
Most important metrics

Modern data processing tasks require:


A. Timeliness: High Throughput and Low Latency 

B. Consistency: Correct results even when we have late arrivals 

C. Expressiveness: Iterative and Incremental Computations



Motivation
Expressiveness and Iterative Computations

Input OutputMap Filter Sum

Example Applications: 


PageRank (uses previous scores + new input for next iteration)


Streaming Statistics (e.g. Rolling Average, …) 



Existing Approaches
Batch Processing

• Support synchronous 
iterations (on one batch)


• Higher Latency

let mut iteration = 0;

while !converged {

    // run parallel on all data

    process_batch();

    // wait for all workers to finish

    block_on(global_barrier);

    iteration += 1;

}
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Existing Approaches
Stream Processing

• Low Latency 


• Only non-iterative 
algorithms

while let Some(event) = stream.next() {

    // update incrementally

    process(event);

    emit_partial_results();

    // ...more data may still arrive

}
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Existing Approaches
Comparison

Latency

Expressiveness Consistency

Batch Processing

Stream Processing

Database

Timely Dataflow



Approach
Outside Perspective

• External Producer labels each 
message with an integer epoch

Input

Output

Timely 
Dataflow

m1, epoch1

• Notifies when no more messages 
from a given epoch

Epoch1 ✅

• Outputs transformed messages 
with epoch label and also 
notifies when epoch done

m1’, epoch1

Epoch1 ✅



Approach
Timely Dataflow: Overview
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Approach
Vertices

Vertex 
(this)

v.on_recv(e: Edge, m: Message, t: Timestamp)

v.on_notify(t: Timestamp)

this.send_by(e: Edge, m: Message, t: Timestamp)

this.notify_at(t: Timestamp)

Vertex 
(v)

Implements Callbacks:

Can call:

e: Edge



Approach
Vertices

• Ordering of send / recv is 
flexible, BUT:

For t’ <= t: 


v.on_notify(t) only after all v.on_recv(e, m, t’)

• When invoked with t, only invoke 
send/notify with t’ >= t („not sent 
backwards)

Vertex 
(e.g. filter)



Approach
Logical Timestamps: Loops

Loops require: Ingress, Egress, and a Feedback Vertex. 


We can define:


Input OutputMap Filter SumI E

F

Loop Context



Approach
Pointstamps & Scheduling

Filter

• Events uniquely identified by: 
Map

Map

• „p1 could result in p2“ <-> ∃ ψ(t1) <= t2; then find minimal (earlierst) paths


• ψ: path, where we transform p1 according to the update rules (l1 -> l2)

p1

Methods change the pointstamp of m:


• v.send_by(e, m, t) -> (t, e)


• v.notify_at(t) -> (t, v)

P2

ψ



Approach
Pointstamps & Scheduling

Scheduler: 


• Maintains a set of active point stamps


• Tracks two counters per pointstamp:


• Occurrence: Outstanding events with that 
timestamp


• Precursor: Number of active timestamps that 
could result in this pointstamp


P1 scheduled when precursor = 0 & active



Approach
Naiad - Distributed Timely Dataflow 



Approach
Naiad - Key Differences

Single-threaded Timely Distributed Naiad

Frontier tracking Single global frontier Each worker has local frontier

Progress 
metadata Per-vertex pointstamps Projected (logical-level) pointstamps (smaller state)

Coordination None (local only) Broadcast + aggregation of progress updates

Delivery 
condition when no earlier local events when no earlier events on any worker

Fault tolerance Not required Checkpoint + restore of vertex and progress state



Results
Performance Evaluation

Evaluation on Pagerank, Strong / Weakly Connected Components (SCC, WCC), 
All Pair Shortest Path (ASP)
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Results
Performance Evaluation

Comparison: Distributed database (PDW), A general-purpose batch processor 
(DryadLINQ), and a purpose-built distributed graph store (SHS).

10-600x 
speedup!



Discussion
Pro

• Unified model: Before, iteration was synchronous and slow; streaming had 
low latency but no iterative algorithms: Naiad / Timely Dataflow solved that 
problem


Latency

Expressiveness Consistency

Timely Dataflow



Discussion
Pro

• Timestamps for Iterative Processes: No global barrier like in batch systems, 
coordination only when needed, deterministic iteration in streaming systems




Discussion
Contra

• Coordination: Global protocol still requires all workers to participate; there is 
a limit to scalability („it’s not a database“)




Discussion
Contra

• Fault-tolerance is too simplistic: Recovery requires a global rollback to 
the last checkpoint and temporarily pauses the whole system. (e.g., compare 
to Google Millwheel)




Discussion
Contra

• Complexity for programmer: non-trivial in comparison to e.g. Spark as e.g. 
reasoning about timestamps is required


• However, implementations nowadays abstract that away as well.   

       worker.dataflow(|scope| {

            scope.input_from(&mut input)

                 .exchange(|x| *x)

                 .inspect(move |x| println!("worker {}:\thello {}", index, x))

                 .probe_with(&mut probe);

        });



Discussion
Impact: Timely Dataflow and Naiad

fn main() {

   timely::execute_from_args(std::env::args(), |worker| {

        let index = worker.index();

        let mut input = InputHandle::new();

        let mut probe = ProbeHandle::new();


       worker.dataflow(|scope| {

            scope.input_from(&mut input)

                 .exchange(|x| *x)

                 .inspect(move |x| println!("worker {}:\thello {}", index, x))

                 .probe_with(&mut probe);

        });


       for round in 0..10 {

            if index == 0 { input.send(round); }

            input.advance_to(round + 1);

            while probe.less_than(input.time()) {

                worker.step();

            }

        }

    }).unwrap();
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Discussion
Impact: Timely Dataflow and Naiad

Concept from Naiad Influenced

Timely Dataflow Timely (Rust), Differential Dataflow

Frontier Tracking Apache Flink (Watermarks), …

Low-latency iterative computation Flink Unified Engine, 

Spark Structured Streaming

Iterative Computations e.g. Streaming ML



Conclusion
Timely Dataflow

Latency

Expressiveness Consistency

Timely Dataflow

• Great for data flow 
tasks!


• Inspired modern 
systems like timely 
dataflow and 
differential dataflow!

Naiad

• Unified low-latency 
streaming + iteration 
in one system


• Practical distributed 
progress



Thank you!



Questions?



https://www.linkedin.com/posts/nikkisiapno_batch-
processing-vs-real-time-streaming-
activity-7316406319614251009-9yd1

[1]

https://en.wikipedia.org/wiki/File:Page_rank_animation.gif[3]

[2] https://johncarlosbaez.wordpress.com/2016/06/05/
programming-with-data-flow-graphs/

[4] https://spark.apache.org/

https://nightlies.apache.org/flink/flink-docs-master/docs/
dev/datastream/event-time/generating_watermarks/

https://github.com/TimelyDataflow/timely-dataflow


