MSRL: Distributed
Reinforcement Learning
with Dataflow Fragments

AUTHORS: H. ZHU, B. ZHAO, G. CHEN, W. CHEN, Y. CHEN,
L. SHI, Y. YANG, P. PIETZUCH, L. CHEN

PRESENTED BY OGNEN PENDAROVSKI

Motivation: RL 1s powerful
but resource demanding

Reinforcement learning approaches for AI have yielded impressive
results over the past decade: in board games, video games,
robotics, and LLMs.

These successes have required immense computational resources:
AlphaStar - 384 TPUv3 chips, 150 CPUs with 28 cores each;

OpenAI Five — 1536 optimizer GPUs, 1440 rollout GPUs, 172800 rollout CPUs;

RLHF and RLVR - high VRAM requirements even for small models, rollouts
expensive due to high inference costs.

To solve more such problems, scalable, highly parallel systems
are needed.

RL distributed system
classes

Existing RL distributed system frameworks fall into three

categories: function-based, actor-based, and dataflow-based
approaches.

Agent.act() Agent.act() Agent.act()
Python function Dataflow operators

def actor{=ztots)
action=actor_net{.)

Message| &

Funciion call Function operator

Environment.step()) Environment.step() Shﬂ;“?d memory
Python function Environment.step
e remar Dataflow operato

—/\—

Agent.lear Agent.learn()
' Dataflow operato

Agent.learn()
Python function

def leorn(stote, reword)
losz=_

(a) Function-based (b) Actor-based (c) Dataflow-based

RL distributed system
classes

Function—-based:

The RL algorithms are represented by functions/methods, called in the training
loop and directly executed by workers;

Typical examples are Acme, SEED-RL, with Rlgraph allowing greater abstraction.
Actor-based:

Treat algorithms as actors deployed on workers, distributed using a scheduler;
Examples include Ray, RL1lib, MALib.

Dataflow—-based:

Describes algorithms as computation graphs of operators, with distribution
strategies being fixed;

Examples are Podracer, RLlib Flow, WarpDrive.

Hardware acceleration available only for neural network
inference and training.

Motivation: new type of
system

Disentangling the specific algorithm (and its implementation)
from the distribution strategy, allowing for separate
optimization of both.

Abstracting away the device type and software implementation of
each subset of code being executed, allowing specialized
optimization for each subtask, on top of variable distribution
strategy.

MindSporeRL: fragmented
dataflow paradigm

Introduces fragmented dataflow paradigm.

Each fragment is a specific dataflow graph built out of
predefined primitives and can be independently executed on an
abstracted worker, with tailored software implementations.

All the fragments are then connected in a fragmented dataflow
graph (FDG), with each entry and exit interfaces on each node.

MindSporeRL: fragment
flexibility

An example of a useful abstraction of fragment hardware and
software architecture:

Actor fragment: computation graph of policy neural network, parallelized across
several GPUs, with specific accelerated inference engine;

Environment fragment: parallelized Python code for environment simulation, run
on multiple CPU cores;

Learner fragment: CUDA kernel performing calculations on received rollout
rewards, updates network parameters.

Fragment A (Actors
L
gather putational graph
actions
OO | |«

TV
Fragment B (Environmen t) exit interface entry interface [=

< < <
Python functions “? -1@ “? broadcast
def step(: ic)
o = anv.step) GPU1 GPU2 GPU3B parameters

entry interface it Fragment C (Learner])

e
cPU ﬁ sand >

trajectories

CUDA kernel

entry interface exit interface

<
GPU 1@

MindSporeRL: distribution
policiles

The distribution policy allocates the fragments amongst the
worker systems.

The choice of policy is strongly dependent on the specific RL
algorithm, the architecture of the neural network, as well as
the hardware parameters of the cluster, including the number of
chips, their individual performance, and interconnect bandwidth.

MindSporeRL: example
distribution policies

While the framework itself provides the ability to customize
distribution policies using their templates, the paper presents
several classes as examples:

DP-SingleLearnerCoarse

DP-SinglelLearnerFine

DP—-MultiLearner

Single learner distribution
policiles

DP-SingleLearnerCoarse - distributes multiple replicas of the
actor and environment, while using a single learner.
Most suitable for complex environments but simpler neural networks.

The actors and the learner are all GPU accelerated, while the environment
replicas run on CPUs.

DP-SinglelLearnerFine — 1like its coarse variant, only combines
the actor and environment on the same CPU.
Not necessary to transmit policy parameters, better for large neural networks.

Worker 1 Worker 2 Worker 1 Worker 2
CPU \(GPU = PP CPU (CPU o — CPU)
Environ§ ®_ puffer buffer @ Environ . buffer buffer
ment o ® 0« >@® o ment O - >0 O >
) Actor) L (Environment Actor | Actor Environment)
Worker 3 Broadcast Gather Worker 4 Worker 3 Scatter Gather Worker 4

4 o -
>® GPU CPU (CPU -8 . —9® cpu|[cPU)
® | = bl.?fl:eary .\ ©
¢ ¢ Replay < 0 0« ¢ ¢ Replay
7

 Learner buffer | Environment Actor | Learner buffer

>

Multi learner distribution
policy

DP-MultilLearner performs learning with multiple workers.

Each learner is co-located with an actor on a GPU, with the
environment on the CPU of the same worker.

It is a good choice when the generated training data is too
great for single learner systems, or for decentralized training.

Worker 1 Worker 2
r Y 4 AW o |
GPU B GPU CPU
CPl_J ____..,..---". THeplay Replay § ®<—

Environ®™ | Actor buffer || buffer Actor| | T Environ
ment © bt e L bt ment
§)| @ 9« ¥ Learner)|Learnerg g.g o))
Worker 3 \ Allreduce WDI'I(EI' 4

GPU (& [PU
oP ...-——-*"Tne:h, eplayq-oe—|| =~ Y
Environ® T Actor buffer{['buffer | Actor —~"Environ
ment ¢—R @ © L e & >® ment
earner
_& 94 4 Learner) |Learnerg 9L y

MindSporeRL: architecture

The system architecture of MSRL is a coordinator/worker design.

Given a distribution policy, the coordinator generates the
fragmented dataflow graph and assigns the fragments to the
workers.

The worker devices all have at least one execution backend. The
received fragments are optimized and sent to the backends.

MindSporeRL: architecture

The coordinator consists of two components:

FDG generator: splits the RL algorithm according to the distribution policy,
finds the boundaries and generates interfaces between fragments;

Fragment dispatcher: activates execution backends in each worker, sets up
distributed communication between the fragment interfaces, and ultimately
dispatches the fragments.

The worker, similarly, has two parts:

Fragment optimizer: optimizes received fragments for the available backend by
directly manipulating the AST;

Executor backends: performs the graph encoded computations on the target worker
device.

MindSporeRL: architecture

Distribution policy (1] Coordinator (2]
Deployment configuration [Fragment Generator] Fragment Dispatcher]
Algorithm configuration T BT
(FragmentA) T (Fragment B) .- [Fragment C
@ Workeri @ i i @ Worker2 © . @ Worker3 ©
:[Fragment Executor | | ;| Fragment Executor |! | Fragment Executor
| Optimizer Backends | ; : | Optimizer Backends |: :| Optimizer Backends
|| Python Environment.step() . :| (CUDA runtime i :(Pythcn Environment.step(}J
A\S 2 E [-] : E g
e ! Gather | - . » B
| GPU : ' : . G '
1P —— | | (experience) ! r /DNN englnew | (ex p:::‘l:r : EF'U :
:||Broadcast ¢ DNN engine ; d : oy N : Nce) || DNN engine Broadcast
|| operator-: Send ; Broadcast Gather .. . Broadcast ! . operator
‘operator {(DNN weights) ;|| operator : : (DNN weights) | Send ..
:. — | Broadcast operator 'L_“—-———— : operator

Empirical evaluation

For evaluation purposes, the framework was used with the
MindSpore DNN framework.

The baseline comparison frameworks were Rllib (Ray) as a
distributed systems competitor, and WarpDrive as a single GPU

competitor.

The measurements were performed on three RL algorithms:
Proximal policy optimization (PPO)
Multi agent PPO (MAPPO)
Asynchronous advantage actor-critic (A3C)

Evaluation against Ray

For PPO, 320 environments were distributed between each actor,
with a single learner for training.

For A3C, multiple actors interacted with their environment and

locally computed gradients which were learned asynchronously by
one learner.

200 MSRBL 500 W—A—H
'y Ray — 400
g 150 £ 200 MSRL
< 100 Y Ray
£ £ %% % %
= 90 ~ 100
0 0
1 2 4 B 16 24 2 4 8 16 24
Mumber of GPUs Number of GPUs

(a) Episode time vs. GPUs (PPQ) (b) Episode time vs. GPUs (A3C)

Evaluation against WarpDrive

The DP-GPUOnly distribution policy was used on MSRL, which

combines the entire training loop into one fragment that is then
copied to many devices.

The comparison was done against WarpDrive.

200 MSRL 200

. WaroDii . MSRL —¥—
E 150 arprive E, 150
E 100 E mﬂ* x*
= 90 =
0 50
2 4 6 8 10 16 32 48 64 80 96 112128
Number of agents (x1 04} Number of agents (x1 U")
(a) Episode time vs. agents (b) Episode time vs. agents

(1 GPU) (n GPUs)

Evaluation with different
distribution policies

Different policies differ in performance (a fundamental

advantage in theory).

DP-SingleLearnerCoarse was compared with DP-MultilLearner.

g 800 r—singleLeamerCoarse FBeo|[PO 300
2 600 MultiLearner § A3C —A—
£ = 200
£ 400 %’“*#ﬁ:ﬁj 2
= -—
£ 200 o 20 100
g 0 T, o
f—

10 20 30 40 50 60 70 2 4 8 1624

Number of actors Number of actors

A3C time (ms)
Training time (secs)

(a) Training time vs. actors (PPQ) (b) Episode time (PPO vs. A3C)

1000 § 2000 SingleLearnerCoarse
800 8 4500 MultiLearner
Lor]
600 £ 1000
400 o
200 ingleLearnerCoarse = 500
MultiLearner - l,_ﬂf 0
100 200 300 400 500 600 0 1.2 3 4 5 6

Number of environments Network latency (ms)

(c) Training time vs. envs (d) Training time vs. network

latency

Evaluating hardware and
software scalability

The final set of comparisons is based on increasing the number of
GPUs, agents, and episodes, and comparing the training time,
episode time, throughput, and total reward value.

§ 000 SingleLearnerCoarse 60 10000 MSRL —— g 100000
@ 4000 e e % | @ :.' @ 1000 sequential S 10000
2 3000] o 5 1000
£ £ 30 2 100 5
2 2000 £ 20 g2 1 § 100
‘€ 1000 10 [o 10
‘@ =¥ 1 £ an
l,___ 0 'D |_ 1 & o [il o i
1 2 4 8 16 32 64 1 2 4 8 16 32 64 2 4 8 16 32 64 2 4 8 16 32 64
Number of GPUs Number of GPUs Number of agenis Number of agents
(a) Training time vs. GPUs (b) Episode time vs. GPUs (a) Training time per episode (b) Training throughput
5000
® 4000
E
o 3000
[0]
& 2000
2
~ 1000
0

1 20 40 60 80 100
Number of episodes

Personal opinion - strengths

The primary advantage of the MSRL framework is the clever
abstraction of fragments in conjunction with the programmable
coordinator, allowing a decoupling between the selected RL
algorithm and the way it is distributed in a cluster.

The modularity afforded by this approach is an important
component, as it theoretically allows arbitrary optimization of
the software running on specific worker devices.

Personal opinion -
weaknesses

Multi-GPU scaling properties examined for up to 64 GPUs, a small
number compared to the clusters used in the most successful RL
projects of the past decade.

The choice of distribution policy adds great complexity - this
is to be expected, but the framework could use stronger
defaults, ideally through an automated approach.

Developer support seems to have stalled - no activity on the
main GitHub page for nearly two years.

Summary

Motivation: unnecessary coupling between algorithm logic and
distribution strategy in existing frameworks.

Potential solution: MSRL — uses new abstraction called
fragmented dataflow graph, working in parallel with customizable
distribution policies.

Empirical results: better performance and modularity than
previous systems.

Potential drawbacks: unexplored at larger scales, lack of
automatic distribution policies, and most crucially, seeming
abandonment of the project.

References

MSRL: Distributed Reinforcement Learning with Dataflow Fragments by H.
Zhu et al.

RLgraph: Modular Computation Graphs for Deep Reinforcement Learning by
M. Schaarschmidt et al.

Understanding and Alleviating Memory Consumption in RLHF for LLMs by J.
Zhou et al.

https://github.com/mindspore-lab/mindrl

	Slide 1: MSRL: Distributed Reinforcement Learning with Dataflow Fragments
	Slide 2: Motivation: RL is powerful but resource demanding
	Slide 3: RL distributed system classes
	Slide 4: RL distributed system classes
	Slide 5: Motivation: new type of system
	Slide 6: MindSporeRL: fragmented dataflow paradigm
	Slide 7: MindSporeRL: fragment flexibility
	Slide 8: MindSporeRL: distribution policies
	Slide 9: MindSporeRL: example distribution policies
	Slide 10: Single learner distribution policies
	Slide 11: Multi learner distribution policy
	Slide 12: MindSporeRL: architecture
	Slide 13: MindSporeRL: architecture
	Slide 14: MindSporeRL: architecture
	Slide 15: Empirical evaluation
	Slide 16: Evaluation against Ray
	Slide 17: Evaluation against WarpDrive
	Slide 18: Evaluation with different distribution policies
	Slide 19: Evaluating hardware and software scalability
	Slide 20: Personal opinion - strengths
	Slide 21: Personal opinion - weaknesses
	Slide 22: Summary
	Slide 23: References

