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Motivation: RL is powerful 
but resource demanding
• Reinforcement learning approaches for AI have yielded impressive
results over the past decade: in board games, video games, 
robotics, and LLMs.

• These successes have required immense computational resources:
• AlphaStar – 384 TPUv3 chips, 150 CPUs with 28 cores each;

• OpenAI Five – 1536 optimizer GPUs, 1440 rollout GPUs, 172800 rollout CPUs;

• RLHF and RLVR – high VRAM requirements even for small models, rollouts 
expensive due to high inference costs.

• To solve more such problems, scalable, highly parallel systems 
are needed.



RL distributed system 
classes
• Existing RL distributed system frameworks fall into three 
categories: function-based, actor-based, and dataflow-based 
approaches.



RL distributed system 
classes
• Function-based:
• The RL algorithms are represented by functions/methods, called in the training 
loop and directly executed by workers;

• Typical examples are Acme, SEED-RL, with Rlgraph allowing greater abstraction.

• Actor-based: 
• Treat algorithms as actors deployed on workers, distributed using a scheduler;

• Examples include Ray, RLlib, MALib.

• Dataflow-based:
• Describes algorithms as computation graphs of operators, with distribution 
strategies being fixed;

• Examples are Podracer, RLlib Flow, WarpDrive.

• Hardware acceleration available only for neural network 
inference and training.



Motivation: new type of 
system
• Disentangling the specific algorithm (and its implementation) 
from the distribution strategy, allowing for separate 
optimization of both.

• Abstracting away the device type and software implementation of
each subset of code being executed, allowing specialized 
optimization for each subtask, on top of variable distribution 
strategy.



MindSporeRL: fragmented 
dataflow paradigm
• Introduces fragmented dataflow paradigm.
• Each fragment is a specific dataflow graph built out of 
predefined primitives and can be independently executed on an 
abstracted worker, with tailored software implementations.

• All the fragments are then connected in a fragmented dataflow 
graph (FDG), with each entry and exit interfaces on each node.



MindSporeRL: fragment 
flexibility
• An example of a useful abstraction of fragment hardware and 
software architecture:
• Actor fragment: computation graph of policy neural network, parallelized across 
several GPUs, with specific accelerated inference engine;

• Environment fragment: parallelized Python code for environment simulation, run 
on multiple CPU cores;

• Learner fragment: CUDA kernel performing calculations on received rollout 
rewards, updates network parameters.



MindSporeRL: distribution 
policies
• The distribution policy allocates the fragments amongst the 
worker systems. 

• The choice of policy is strongly dependent on the specific RL 
algorithm, the architecture of the neural network, as well as 
the hardware parameters of the cluster, including the number of 
chips, their individual performance, and interconnect bandwidth.



MindSporeRL: example 
distribution policies
• While the framework itself provides the ability to customize 
distribution policies using their templates, the paper presents 
several classes as examples:
• DP-SingleLearnerCoarse

• DP-SingleLearnerFine

• DP-MultiLearner



Single learner distribution 
policies
• DP-SingleLearnerCoarse – distributes multiple replicas of the
actor and environment, while using a single learner. 
• Most suitable for complex environments but simpler neural networks.

• The actors and the learner are all GPU accelerated, while the environment 
replicas run on CPUs.

• DP-SingleLearnerFine – like its coarse variant, only combines 
the actor and environment on the same CPU.
• Not necessary to transmit policy parameters, better for large neural networks.



Multi learner distribution 
policy
• DP-MultiLearner performs learning with multiple workers.
• Each learner is co-located with an actor on a GPU, with the 
environment on the CPU of the same worker.

• It is a good choice when the generated training data is too 
great for single learner systems, or for decentralized training.



MindSporeRL: architecture
• The system architecture of MSRL is a coordinator/worker design. 
• Given a distribution policy, the coordinator generates the 
fragmented dataflow graph and assigns the fragments to the 
workers. 

• The worker devices all have at least one execution backend. The 
received fragments are optimized and sent to the backends.



MindSporeRL: architecture
• The coordinator consists of two components:
• FDG generator: splits the RL algorithm according to the distribution policy, 
finds the boundaries and generates interfaces between fragments;

• Fragment dispatcher: activates execution backends in each worker, sets up 
distributed communication between the fragment interfaces, and ultimately 
dispatches the fragments.

• The worker, similarly, has two parts:
• Fragment optimizer: optimizes received fragments for the available backend by 
directly manipulating the AST;

• Executor backends: performs the graph encoded computations on the target worker 
device.



MindSporeRL: architecture



Empirical evaluation
• For evaluation purposes, the framework was used with the 
MindSpore DNN framework.

• The baseline comparison frameworks were Rllib (Ray) as a 
distributed systems competitor, and WarpDrive as a single GPU 
competitor.

• The measurements were performed on three RL algorithms:
• Proximal policy optimization (PPO)

• Multi agent PPO (MAPPO)

• Asynchronous advantage actor-critic (A3C)



Evaluation against Ray
• For PPO, 320 environments were distributed between each actor, 
with a single learner for training.

• For A3C, multiple actors interacted with their environment and 
locally computed gradients which were learned asynchronously by 
one learner.



Evaluation against WarpDrive
• The DP-GPUOnly distribution policy was used on MSRL, which 
combines the entire training loop into one fragment that is then 
copied to many devices. 

• The comparison was done against WarpDrive.



Evaluation with different 
distribution policies
• Different policies differ in performance (a fundamental 
advantage in theory).

• DP-SingleLearnerCoarse was compared with DP-MultiLearner.



Evaluating hardware and 
software scalability
• The final set of comparisons is based on increasing the number of 
GPUs, agents, and episodes, and comparing the training time, 
episode time, throughput, and total reward value.



Personal opinion - strengths
• The primary advantage of the MSRL framework is the clever 
abstraction of fragments in conjunction with the programmable 
coordinator, allowing a decoupling between the selected RL 
algorithm and the way it is distributed in a cluster.

• The modularity afforded by this approach is an important 
component, as it theoretically allows arbitrary optimization of 
the software running on specific worker devices.



Personal opinion -
weaknesses
• Multi-GPU scaling properties examined for up to 64 GPUs, a small 
number compared to the clusters used in the most successful RL 
projects of the past decade.

• The choice of distribution policy adds great complexity – this 
is to be expected, but the framework could use stronger 
defaults, ideally through an automated approach.

• Developer support seems to have stalled – no activity on the 
main GitHub page for nearly two years.



Summary
• Motivation: unnecessary coupling between algorithm logic and 
distribution strategy in existing frameworks.

• Potential solution: MSRL – uses new abstraction called 
fragmented dataflow graph, working in parallel with customizable 
distribution policies.

• Empirical results: better performance and modularity than 
previous systems.

• Potential drawbacks: unexplored at larger scales, lack of 
automatic distribution policies, and most crucially, seeming 
abandonment of the project.
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