CIEL: a universal execution engine for distributed
data-flow computing

Derek Murray, Malte Schwarzkopf, Christopher Smowton,
Steven Smith, Anil Madhavapeddy and Steven Hand

Presented by: Deniz Alkan (da626)

22 October 2025

1/13

Background & Context

» Goal: Good distributed computing
» Problem: What is “good”?

2/13

Previous Work: MapReduce

MapReduce: bipartite graph
structure to
1. map inputs into
intermediate key, value pairs

2. reduction on the values of
each key

DG
Figure: MapReduce architecture !
» Simple, makes sense

» Easily parallelisable

» transparent scaling & fault tolerance

https://www.geeksforgeeks.org/c-sharp/map-reduce-in-hadoop
3/13

Previous Work: Dryad/LINQ

Job schedule Data plane
Foppna | i [_Files, FIFO, Nem,k |

Dryad/LINQ: directed acyclic
graph (DAG) structure:
1. inputs and outputs flow] m EI

between tasks Control plane

Figure 1: The Dryad system organization. The job manager (JM)

2. statical Iy generated task consults the name server (NS) to discover the list of available com-
puters. It maintains the job graph and schedules running vertices (V)

H H as computers become avallable using the dasmon (D) as a proxy.

Ord eri ng/SChed u l | ng Vertices exchange data through files, TCP pipes, or shared-memory

channels. The shaded bar indicates the vertices in the job that are
currently running.

Figure: Dryad architecture!

> More complex, allowing for complicated relationships and
operations

P streaming

!lsard et al. Dryad: Distributed Data-Parallel Programs from Sequential
Building Blocks

4/13

Previous Work: Pregel & BSP

Superstep O

BSP (Bulk Synchronous Parallel)
operates in “supersteps”:

e Superstep 1

1. compute in parallel

oS
&)

2. communicate — exchange
data

e Superstep 2

3. synchronise (barrier) - vote
to finish superstep when
individually done

008

o o Superstep 3

Figure: Pregel implementing BSP?

» dynamic control flow

» no online task generation (as with others)

'Malewicz et al. Pregel: A System for Large-Scale Graph-Processing
5/13

Previous Work — Notable Mentions: lterative MR, Piccolo

» |terative MR extends MapReduce to include data-driven
control flow

» Piccolo reduces MapReduce into a single layer of “kernel”
operations and implements a checkpoint system for fault
tolerance, but suffers from non-transparent scaling.

6/13

|dentifying the Problem

v

vVvVvYvyy

We need dynamic control flow, data locality, transparent
scaling and fault tolerance

Pregel has all of these, what is the issue?
What about recursive algorithms?
Fifth requirement: flexibility!

CIEL's goal: unify all five requirements AND preserve
transparent automatic distribution — evolution of predecessors

7/13

CIEL's Ideas and Solution

» objects, references, tasks
» dynamic task graphs:

1. tasks publish references or
further tasks with
reference to originally
scheduled output

2. child tasks depend on
non-empty addresses /
outputs of pre-existing
tasks = prevent cycles

» lazy (“backward”)
evaluation selected over
eager (“forward") evaluation
= better memoisation & FT

» master-worker structure w/

— FT & deterministic naming

PFUBLISH ORJIECT

Object
table

Worker

table DISPATCH TASK

Task
table

] Object

|==8) SPAWN TASKES.

Figure: CIEL master and workers !

Murray et al. CIEL: a universal execution engine for distributed data-flow

computing

8/13

CIEL & Skywriting

» purpose built, Turing-complete language

runs on CIEL

P abtracts away the dereference operator's continuation-passing
style - which is claimed to be the main selling point of
Skywriting

v

» what about other languages?

9/13

Evaluation

» Evaluation against Hadoop (MapReduce implementation) in
Grep and k-means - improved results (not enough)

» non-comparative dynamic programming evaluation:
disappointingly unscalable results

> why?

10/13

Opinions

» The evaluated results show worse-than-expected performance,
CIEL is not as innovative as it advertises: limited scope

» This is demonstrated by the number of citations of CIEL: 413

» This seems little... at least until 2023 CIEL was the only
system that supported dynamic task generation, as surveyed
by Margara et al.l

» How about TensorFlow? 13929 why?

» TF paper? doesn't have many bad things to say about CIEL —
just grouped in with the others: TF closer to Naiad w/ static,
cyclic data flow. CIEL is just a building block / case study

» Yu et al.3 deduce that CIEL’s dynamic task generation causes
each task to act as a black box. This curbs optimisation,
explainability and granularity.

» Skywriting: barrier to entry — mainstream language instead?
!Margara et al. A Model and Survey of Distributed Data-Intensive Systems
2Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous

Distributed Systems

3Yu et al. Dynamic Control Flow in Large-Scale Machine Learning
11/13

Questions/Suggestions

» Why hasn't CIEL addressed the problem of stragglers?

v

Clearly motivated by MapReduce, its potential and drawbacks

» MapReduce reported 44% increase in runtime due to
stragglers on sorting®

» CIEL may have more “granular” tasks than a huge reduce
function, e.g.

P> Not always the case... e.g. we could roughly simulate
MapReduce with CIEL

*Dean and Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters
12/13

Final Remarks

» Unfortunately | can't just say very good just because it was
developed in Cambridge, and CIEL sounds like CL (Computer
Lab).

» | will, however, give bonus points for using the name CIEL
and Skywriting together, as “ciel” means “sky” in French...

13/13

	Context/Background
	Problem
	CIEL's Solution
	Opinion

