
CIEL: a universal execution engine for distributed
data-flow computing

Derek Murray, Malte Schwarzkopf, Christopher Smowton,
Steven Smith, Anil Madhavapeddy and Steven Hand

Presented by: Deniz Alkan (da626)

22 October 2025

1 / 13



Background & Context

▶ Goal: Good distributed computing

▶ Problem: What is “good”?

2 / 13



Previous Work: MapReduce

MapReduce: bipartite graph
structure to

1. map inputs into
intermediate key, value pairs

2. reduction on the values of
each key

Figure: MapReduce architecture 1

▶ Simple, makes sense

▶ Easily parallelisable

▶ transparent scaling & fault tolerance

1https://www.geeksforgeeks.org/c-sharp/map-reduce-in-hadoop
3 / 13



Previous Work: Dryad/LINQ

Dryad/LINQ: directed acyclic
graph (DAG) structure:

1. inputs and outputs flow
between tasks

2. statically generated task
ordering/scheduling

Figure: Dryad architecture1

▶ More complex, allowing for complicated relationships and
operations

▶ streaming
1Isard et al. Dryad: Distributed Data-Parallel Programs from Sequential

Building Blocks
4 / 13



Previous Work: Pregel & BSP

BSP (Bulk Synchronous Parallel)
operates in “supersteps”:

1. compute in parallel

2. communicate – exchange
data

3. synchronise (barrier) - vote
to finish superstep when
individually done

Figure: Pregel implementing BSP1

▶ dynamic control flow

▶ no online task generation (as with others)

1Malewicz et al. Pregel: A System for Large-Scale Graph Processing
5 / 13



Previous Work – Notable Mentions: Iterative MR, Piccolo

▶ Iterative MR extends MapReduce to include data-driven
control flow

▶ Piccolo reduces MapReduce into a single layer of “kernel”
operations and implements a checkpoint system for fault
tolerance, but suffers from non-transparent scaling.

6 / 13



Identifying the Problem

▶ We need dynamic control flow, data locality, transparent
scaling and fault tolerance

▶ Pregel has all of these, what is the issue?

▶ What about recursive algorithms?

▶ Fifth requirement: flexibility!

▶ CIEL’s goal: unify all five requirements AND preserve
transparent automatic distribution → evolution of predecessors

7 / 13



CIEL’s Ideas and Solution
▶ objects, references, tasks
▶ dynamic task graphs:

1. tasks publish references or
further tasks with
reference to originally
scheduled output

2. child tasks depend on
non-empty addresses /
outputs of pre-existing
tasks ⇒ prevent cycles

▶ lazy (“backward”)
evaluation selected over
eager (“forward”) evaluation
⇒ better memoisation & FT

▶ master-worker structure w/
FT & deterministic naming

Figure: CIEL master and workers 1

1Murray et al. CIEL: a universal execution engine for distributed data-flow
computing

8 / 13



CIEL & Skywriting

▶ purpose built, Turing-complete language

▶ runs on CIEL

▶ abtracts away the dereference operator’s continuation-passing
style - which is claimed to be the main selling point of
Skywriting

▶ what about other languages?

9 / 13



Evaluation

▶ Evaluation against Hadoop (MapReduce implementation) in
Grep and k-means - improved results (not enough)

▶ non-comparative dynamic programming evaluation:
disappointingly unscalable results

▶ why?

10 / 13



Opinions
▶ The evaluated results show worse-than-expected performance,

CIEL is not as innovative as it advertises: limited scope
▶ This is demonstrated by the number of citations of CIEL: 413
▶ This seems little... at least until 2023 CIEL was the only

system that supported dynamic task generation, as surveyed
by Margara et al.1

▶ How about TensorFlow? 13929 why?
▶ TF paper2 doesn’t have many bad things to say about CIEL –

just grouped in with the others: TF closer to Naiad w/ static,
cyclic data flow. CIEL is just a building block / case study

▶ Yu et al.3 deduce that CIEL’s dynamic task generation causes
each task to act as a black box. This curbs optimisation,
explainability and granularity.

▶ Skywriting: barrier to entry – mainstream language instead?
1Margara et al. A Model and Survey of Distributed Data-Intensive Systems
2Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous

Distributed Systems
3Yu et al. Dynamic Control Flow in Large-Scale Machine Learning

11 / 13



Questions/Suggestions

▶ Why hasn’t CIEL addressed the problem of stragglers?

▶ Clearly motivated by MapReduce, its potential and drawbacks

▶ MapReduce reported 44% increase in runtime due to
stragglers on sorting4

▶ CIEL may have more “granular” tasks than a huge reduce
function, e.g.

▶ Not always the case... e.g. we could roughly simulate
MapReduce with CIEL

4Dean and Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters

12 / 13



Final Remarks

▶ Unfortunately I can’t just say very good just because it was
developed in Cambridge, and CIEL sounds like CL (Computer
Lab).

▶ I will, however, give bonus points for using the name CIEL
and Skywriting together, as “ciel” means “sky” in French...

13 / 13


	Context/Background
	Problem
	CIEL's Solution
	Opinion

