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Bayesian inference: probability view

Given some “real world” data 

Want to determine parameters 
given “real world” data   , i.e.

Bayes’ rule tells us that

Which we can write as generative model



Bayesian inference: simulator view

Have simulator which, given parameters 
theta, can generate new data 

Have data    from “real world”

Have prior knowledge regarding values of 
theta are probable, giving rise to a prior

distribution 

Aim: determine parameters   such that the 
generated data   is close to true data   , 

i.e. sample from         . 



Bayesian inference: biased coin

Data    of coin flips from a biased coin

Initial belief: it’s a fair coin

Update our belief using the observations

More data => more certain!
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Bayesian inference: linear regression
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Bayesian inference: in practice

Posterior                   is generally not available in 
closed-form

Requires various approximate methods to inspect          
.

E.g. Markov Chain Monte Carlo (MCMC), variational 
inference (VI)

Annoying & difficult to implement!



Bayesian inference: summary

Principled way to incorporate prior 
knowledge through p(theta)

Allows quantification of uncertainty

Non-trivial for interesting problems

Both computationally expensive and 
requires knowledge of inference methods



Probabilistic programming

Aim: make Bayesian inference approachable. 

User should only have to write down their model, 
and the rest should be “automatic”

Key ideas: 

1. Decouple modelling and inference
2. General-purpose inference

And many more!



Probabilistic programming

Probabilistic programming language (PPL)

=
Suite of tools allowing easy specification of models 

+ inference method

Many different approaches to PPLs

And many more!



Probabilistic programming

Many different approaches to PPLs

And many more!

Stan

Has its own DSL

Implemented in C++

Provides convenient interfaces in 
R, Python, Julia, etc.

Very well-established with great 
track record (gold standard)



Probabilistic programming

Many different approaches to PPLs

And many more!

BUGS

Has its own DSL

Implemented in Component Pascal

Provides convenient interface in R

Old now, but was one of the very 
first PPLs



Probabilistic programming

Many different approaches to PPLs

And many more!

PyMC, Pyro and Bean

Embedded in Python

Relies on underlying “graph” 
computational frameworks, e.g. JAX, 

PyTorch

But have to work with a subset of 
Python compatible with framework



And many more!

Model and inference are closely coupled

Model and inference are decoupled, but modelling 
language is closely coupled with inference

e.g. BUGS: Gibbs, Stan: HMC, Infer.NET: EP/VMP

Modelling language is decoupled with inference details, 
but closely coupled with a computational backend 

e.g. Pyro: JAX, PyTorch; PyMC: Theano, BlackJAX: JAX

Many different approaches to PPLs

↓

↓



And many more!

⇒ More general purpose 

Inference-agnostic: models are compatible with a wide 
range of MCMC and VI algorithms 

Interoperability with other modelling libraries (GPs, 
DiffEqs): requires all modelling libraries using the 

same computational backend

Good tools for profiling/debugging/interactively_run 
models and inference; High performance

Modular / Compositional inference
among others

Turing.jl: what is it?



Turing.jl: what is it?

Fully implemented in the Julia  programming 
language

Approachable for users familiar with Matlab, 
Python and R

Support BUGS syntax via JuliaBUGS

Growing in popularity
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Turing.jl: Bayesian linear regression



JuliaBUGS: Rats model



Turing.jl: workflow

Bayesian workflow is important

Should be “simple” to perform



Turing.jl: workflow

Standard Bayesian workflow

Define model “in maths”

Define model in Turing.jl

Perform prior checks

Perform inference

Evaluate, e.g. predict

Rinse and repeat!
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Turing.jl: overview

Convenience and performance from Julia

Similar design philosophy as Julia: accept 
everything and optimize when possible

Models are Julia functions, distributions are Julia, 
everything is Julia!

Does mean that certain operations are not 
possible, e.g. automatic marginalization

Naive implementation of model might not be the 
most performant



The Epimap model for COVID-19

[Nicholson et al, 2022]

http://drive.google.com/file/d/1X5zLJsnS0utzvySEiPtPX0Ap2OAZZQYJ/view
https://pmc.ncbi.nlm.nih.gov/articles/PMC7612804/


Turing.jl: in the wild
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Thank you for listening!
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