
Machine Learning Group, Department of Engineering, University of Cambridge

Probabilistic Programming and
Inference

Large-Scale Data Processing and Optimisation
13 Nov 2024

Hong Ge
hg344@cam.ac.uk

slides courtesy of Tor Fjelde

mailto:hg344@cam.ac.uk

Bayesian inference: probability view

Given some “real world” data

Want to determine parameters
given “real world” data , i.e.

Bayes’ rule tells us that

Which we can write as generative model

Bayesian inference: simulator view

Have simulator which, given parameters
theta, can generate new data

Have data from “real world”

Have prior knowledge regarding values of
theta are probable, giving rise to a prior

distribution

Aim: determine parameters such that the
generated data is close to true data ,

i.e. sample from .

Bayesian inference: biased coin

Data of coin flips from a biased coin

Initial belief: it’s a fair coin

Update our belief using the observations

More data => more certain!

Bayesian inference: biased coin

Data of coin flips from a biased coin

Initial belief: it’s a fair coin

Update our belief using the observations

More data => more certain!

Bayesian inference: linear regression

Bayesian inference: linear regression

Bayesian inference: in practice

Posterior is generally not available in
closed-form

Requires various approximate methods to inspect
.

E.g. Markov Chain Monte Carlo (MCMC), variational
inference (VI)

Annoying & difficult to implement!

Bayesian inference: summary

Principled way to incorporate prior
knowledge through p(theta)

Allows quantification of uncertainty

Non-trivial for interesting problems

Both computationally expensive and
requires knowledge of inference methods

Probabilistic programming

Aim: make Bayesian inference approachable.

User should only have to write down their model,
and the rest should be “automatic”

Key ideas:

1. Decouple modelling and inference
2. General-purpose inference

And many more!

Probabilistic programming

Probabilistic programming language (PPL)

=
Suite of tools allowing easy specification of models

+ inference method

Many different approaches to PPLs

And many more!

Probabilistic programming

Many different approaches to PPLs

And many more!

Stan

Has its own DSL

Implemented in C++

Provides convenient interfaces in
R, Python, Julia, etc.

Very well-established with great
track record (gold standard)

Probabilistic programming

Many different approaches to PPLs

And many more!

BUGS

Has its own DSL

Implemented in Component Pascal

Provides convenient interface in R

Old now, but was one of the very
first PPLs

Probabilistic programming

Many different approaches to PPLs

And many more!

PyMC, Pyro and Bean

Embedded in Python

Relies on underlying “graph”
computational frameworks, e.g. JAX,

PyTorch

But have to work with a subset of
Python compatible with framework

And many more!

Model and inference are closely coupled

Model and inference are decoupled, but modelling
language is closely coupled with inference

e.g. BUGS: Gibbs, Stan: HMC, Infer.NET: EP/VMP

Modelling language is decoupled with inference details,
but closely coupled with a computational backend

e.g. Pyro: JAX, PyTorch; PyMC: Theano, BlackJAX: JAX

Many different approaches to PPLs

↓

↓

And many more!

⇒ More general purpose

Inference-agnostic: models are compatible with a wide
range of MCMC and VI algorithms

Interoperability with other modelling libraries (GPs,
DiffEqs): requires all modelling libraries using the

same computational backend

Good tools for profiling/debugging/interactively_run
models and inference; High performance

Modular / Compositional inference
among others

Turing.jl: what is it?

Turing.jl: what is it?

Fully implemented in the Julia programming
language

Approachable for users familiar with Matlab,
Python and R

Support BUGS syntax via JuliaBUGS

Growing in popularity

Turing.jl: what is it?

Fully implemented in the Julia programming
language

Approachable for users familiar with Matlab,
Python and R

Support BUGS syntax via JuliaBUGS

Growing in popularity

Turing.jl: Bayesian linear regression

JuliaBUGS: Rats model

Turing.jl: workflow

Bayesian workflow is important

Should be “simple” to perform

Turing.jl: workflow

Standard Bayesian workflow

Define model “in maths”

Define model in Turing.jl

Perform prior checks

Perform inference

Evaluate, e.g. predict

Rinse and repeat!

Turing.jl: workflow

Standard Bayesian workflow

Define model “in maths”

Define model in Turing.jl

Perform prior checks

Perform inference

Evaluate, e.g. predict

Rinse and repeat!

Turing.jl: workflow

Standard Bayesian workflow

Define model “in maths”

Turing.jl: workflow

Standard Bayesian workflow

Define model “in maths”

Define model in Turing.jl

Perform prior checks

Perform inference

Evaluate, e.g. predict

Rinse and repeat!

Turing.jl: workflow

Standard Bayesian workflow

Define model in Turing.jl

Turing.jl: workflow

Standard Bayesian workflow

Define model “in maths”

Define model in Turing.jl

Perform prior checks

Perform inference

Evaluate, e.g. predict

Rinse and repeat!

Turing.jl: workflow

Standard Bayesian workflow

Perform prior checks

Turing.jl: workflow

Standard Bayesian workflow

Define model “in maths”

Define model in Turing.jl

Perform prior checks

Perform inference

Evaluate, e.g. predict

Rinse and repeat!

Turing.jl: workflow

Standard Bayesian workflow

Perform inference

Turing.jl: workflow

Standard Bayesian workflow

Define model “in maths”

Define model in Turing.jl

Perform prior checks

Perform inference

Evaluate, e.g. predict

Rinse and repeat!

Turing.jl: workflow

Standard Bayesian workflow

Evaluate, e.g. predict

Turing.jl: workflow

Standard Bayesian workflow

Define model “in maths”

Define model in Turing.jl

Perform prior checks

Perform inference

Evaluate, e.g. predict

Rinse and repeat!

Turing.jl: overview

Convenience and performance from Julia

Similar design philosophy as Julia: accept
everything and optimize when possible

Models are Julia functions, distributions are Julia,
everything is Julia!

Does mean that certain operations are not
possible, e.g. automatic marginalization

Naive implementation of model might not be the
most performant

The Epimap model for COVID-19

[Nicholson et al, 2022]

http://drive.google.com/file/d/1X5zLJsnS0utzvySEiPtPX0Ap2OAZZQYJ/view
https://pmc.ncbi.nlm.nih.gov/articles/PMC7612804/

Turing.jl: in the wild

Turing.jl: in the wild

David Widmann
PhD (Uppsala University)

Now at Pumas AI

Hong Ge
Senior Research Fellow

(University of Cambridge)

Cameron Pfiffer
PhD (University of Oregon)
Now postdoc at Stanford

Kai Xu
PhD (University of Edinburgh)
Now at MiT-IBM Watson AI Lab

Mohamed Tarek
PhD (University of Sidney)

RA (University of Sideny) and Pumas AI

Tor Erlend Fjelde
PhD student

(University of Cambridge)

Martin Trapp
Postdoc

(Aalto University)

Qingliang Zhuo
Beijing Paoding Technology Co., LTD.

Seth Axen
ML Research Engineer

(University of Tübingen)

Markus Hauru
Research Engineer

(Alan Turing Institute)

And many other contributors to Turing.jl and the Julia ecosystem!

Kyurae Kim
PhD student

(University of Pennsylvania)

Will Tebbutt
Postdoc

(University of Cambridge & ATI)

Thank you for listening!

	Slide Number 1
	Bayesian inference: probability view
	Bayesian inference: simulator view
	Bayesian inference: biased coin
	Bayesian inference: biased coin
	Bayesian inference: linear regression
	Bayesian inference: linear regression
	Bayesian inference: in practice
	Bayesian inference: summary
	Probabilistic programming
	Probabilistic programming
	Probabilistic programming
	Probabilistic programming
	Probabilistic programming
	Slide Number 15
	Turing.jl: what is it?
	Turing.jl: what is it?
	Turing.jl: what is it?
	Turing.jl: Bayesian linear regression
	JuliaBUGS: Rats model
	Turing.jl: workflow
	Turing.jl: workflow
	Turing.jl: workflow
	Turing.jl: workflow
	Turing.jl: workflow
	Turing.jl: workflow
	Turing.jl: workflow
	Turing.jl: workflow
	Turing.jl: workflow
	Turing.jl: workflow
	Turing.jl: workflow
	Turing.jl: workflow
	Turing.jl: workflow
	Turing.jl: overview
	The Epimap model for COVID-19
	Turing.jl: in the wild
	Turing.jl: in the wild
	Slide Number 39
	Slide Number 40
	Thank you for listening!

