

A Comparative Study of Probabilistic Programming Frameworks: Pyro vs TensorFlow Probability

Presenter: Hetong Shen; hs899

R244 Mini Project

• Pyro

- Pyro
- TensorFlow Probability

- Pyro
- TensorFlow Probability
- Similarities

Aspect		
Probabilistic Programming		
Bayesian Modeling		
Autodiff Support		
Flexible Model Design		
Monte Carlo Methods		
Variational Inference		
Distributions		
Integration with Neural Networks		
Open Source		
Parallel Computation		

- Pyro
- TensorFlow Probability
- Similarities
- Differences

Aspect	Руго	TensorFlow Probability (TFP)
Backend	PyTorch	TensorFlow
Execution Style	dynamic computation graph	static computation graphs but supports eager execution
Inference Algorithms	emphasizes variational inference and MCMC methods	offers variational inference and MCMC with a wider variety of pre-built algorithms Hamiltonian Monte Carlo (HMC).
Performance on Large Models	may incur overhead for large-scale production environments	Better suited for large-scale production tasks with TensorFlow's optimizations
Real-Time Applications	suits for real-time and interactive probabilistic modeling tasks	stronger for production environments with tools like TensorFlow Serving

Task 1 - Performance Comparison

- Model: Bayesian Neural Network (BNN)
- Algorithm: Variational Inference (VI) for parameter estimation.
- Dataset: CIFAR-10

Task 2 - Computation Trade-offs

- Model: Gaussian Process Regression
- Algorithm: Hamiltonian Monte Carlo (HMC)
- Dataset: UCI Machine Learning Repository's Diabetes Dataset ???

Goal

- usability, flexibility, and performance
- strengths and limitations of each framework
- computational trade-offs
- learning curves and application domains
- evaluate quantitatively and qualitatively

Project Plan and Timeline

Day 1: Dataset preparation and environment setup.

Day 2: Model and algorithm implementation in Pyro and TFP.

Day 3: Run experiments, collect metrics, and analyze results.

Day 4: Summarize findings, create visualizations

Day 5: Write the report.

