
HYBRID BAYESOPT AND RL
OPTIMIZATION IN EMUKIT

R244 - Chris Tomy - 2024/12/04

SETUP

Standard RL Setup: Markov Decision Process
environment (S, A, P , R)

PARAMETERIZATIONS

Environment is parameterized:
Agent learns control policy:

θ = [g, t, …]
π : S → A

MOTIVATION

Goal: minimize some cost function.

Example: where T is time, and F
is fuel.

View this as .

min (λ1T + λ2F)

max E[∑ ri]

NAIVE APPROACH

BO using a GP surrogate

Model relationship between hyperparameters

and the cost of trained policy .

Computing : re-train and evaluate policy for
each ?

f ∼ N(μ, K)
→θ

f(→θ)

f(→θ)
θ

How do we do better than re-training a policy?

INSIGHT

For , the policy may not
change much.

g = −1 → g = −1.1

BETTER APPROACH

General idea: adapt the policy, don't re-learn.

POLICY FINE-TUNING

Sound method: reduces to better parameter inits
for the policy.
Fine-tune: θk+1 = θk − α∇J ′

The larger gets, the more difficult
finetuning may become.
Store all previous policies and init
from closest

||→θ − →θ′||2

π1, π2, …

IDEAL CASE

Perfectly adaptable policy

Just run an episode for each

π⋆

→θ

META RL

RL to learn adaptable policies.

HOW DOES META-RL WORK?

LSTM hidden state: "memory".
No gradient updates

RESEARCH QUESTIONS

Can we use the surrogate to better perform policy
adaptation?
Can we tweak the acquisition function to make
adaptation training easier?
How much accuracy do we lose with these
adaptation methods?
Multi-fidelity policy adaptation methods?

Multi-fidelity

EMUKIT

Toolkit for BO
Interfaces to define your parameter space, GP,
acquisition, etc.
No built-in RL support

WORK PLAN

OpenAI Gym environment
Implement naive hyperparameter search over
environments
Learn lots of RL methods
Benchmark improvement with finetuning,
MetaRL, etc.

Tech: OpenAI Gym, Emukit, PyTorch.

Thanks!

