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Problem: Optimizing Tensor Programs

e Fancy model, but sloooowww
e Not efficient on target architecture!
e Goal: have compiler automatically optimize!




Levels of Optimization

e Instruction level

e Operator level ETS
e Computation graph level @ @ | Mathul
o Nodes: operators é \/ é
o Edges: tensors ®) (A @5
o "Graph superoptimization”
o Must factor in lower levels!



Approaches



Solution #1: Greedy Manual Heuristics

e Design graph transformations
* Apply one after another Crah S || Compe Gt
e Greedy

Graph Subst. Optimizer

Problems:

e Lots of manual effort Data Layout Optimizer

® O rd erm atte rs Optimized Comp. Graph
e Co-optimize layout and graph (@) Existing DN frameworks




Solution #¢: Automation! (TASO)

e Given: specifications about o
gr a ph e q U|V al enc e Operatorspeciﬁcations Input Comp. Graph
e Automatically generates and e
. . raph Subst. an
composes graph substitutions Sy
_ (895
P ro b I e m S: Verified Graph Subst.

Optimized Comp. Graph

e (Really) inefficient search
e Overly simplistic cost model

(b) TASO.



Problems with Cost Model of TASO

Table 1. Discrepancy between TASO’s cost model estimates and
TASO’s end-to-end inference latency on some unoptimised DNNSs.
E2E stands for end-to-end inference latency. Time is measured in

milliseconds.
DNNSs COST MODEL E2E DIFF (%)
DALL-E 1.8269 1.7324 5.2%
INCEPTIONV 3 8.3650 9.2098 10.1%
BERT 1.0453 1.1264 7.8%
SQUEEZENET 1.3082 1.4006 7.1%
RESNEXT-50 6.1545 7.6498 24%

T-T 2.4828 2:7281 9.9%




The New Contribution: X-RLFLOW (More Automation!)

Goals:

e Speed up search with learned model
e Use hardware for evaluation
o Without too much computation!

Contributions:

e Reinforcement learning model
o Graph neural network
e Use hardware for evaluation, sometimes



Related Work: Tensat, PET, GO

e Tensat: equality saturation
o (One)issue: running out of memory

e PET: partially equivalent transformations
o Same cost model as TASO
o Sensitive to shape of operators

e GO: RL, but different level of optimization



Optimization Process



Graph Rewrite Rules

X X
4 4
matmul matmul
/ matmul matmul
A B C A B C
source graph: Ax (B x C) target graph: (A xB) x C
(a) Associativity of matrix multiplication.
X Y
N Val
X N7 split
[ g
matmul
matmul matmul w
/4 \ / concat
Pl X
A B C A B C
source graph target graph

(b) Fusing two matrix multiplications using concatenation and split.

e TASO generates general rewrite rules
e Essentially: patterns



Environment

OpenAl gym

Rewrite rules applied to different parts of graph
RL agent picks one to maximize reward

(Proxy) Reward is configurable
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Architecture

e Encoding:
o Node: one-hot encoding of operator

X)
o Edge: tensor shape is used as attribute
e Both current graph and candidates =
encoded! 5o
o Batched into “meta-graph” JET e n e .~ -
e After several transformations, | ’ ‘
GNN —>— Policy : 2 g
aggregate node values to choose M
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Details

e N:hardware evaluation every N iterations
e M: edge normalization constant

e Architecture support fixed # candidates

o Mask out those don't need
o Necessary: #candidates shrinks as graph is more optimized
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Learning Algorithm

e PPO: few roll-outs, then update network (round)

e After round: Don't want too much change in weights

o
Leiip = —Egimin A" clip
» = ~Eg{min(Z. A cip( ™

e Value network simply mean-squared error

,Cvf = EG{(VQ(St) — V;Earget)2}

J = Eclip + Cl»Cvf - CQ»Centropy

1—e, 14+€)A™% )}

A N
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GNN Architecture

e Follows GAT pretty closely - L
e First layer incorporates edges into node values: Wi = O{W(Z €jllhi)}

e Several graph attention layers: JEE;
—)/ o —
hi —O'( E Ozi,jWhj)
JEN;

e Finally: global pooling

g =a(> k|7
N
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Evaluation and My Thoughts



X-RLFLOW Evaluation

200 N TASO
42.8% e 175 B X-RLflow
40 mm X-RLflow
7150
28.8% [J]
30| 25 £125
2 $100
=20 3
E 14.6% 14.5% g 75
%10 | i 1 ui e | E
2.0% i Lo 24% 25
0 *i o <& o NERENN R O
17% 52 \)e,,p GQ@(\ RESR
& - NI O <8 o «© @
® M Q\.\o \\?:" P
60‘& « &

Figure 6. Optimisation time taken for TASO and X-RLflow.

e Equal or better than TASO everywhere
e Optimization times much slower
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Comparison to Tensat

B X-RLflow
I tensat
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My Thoughts

Good:

We can also observe there are two DNNs where X-RLflow
achieves much better speedup than TASO. In the case of
SqueezeNet, TASO achieves a negative speedup. This is
because the cost model 1s inaccurate, and it misleads the
substitution engine. Note that the cost modelling depends on

Better performance than TASO

Usually better than Tensat

Reinforcement learning better at exploring search space
Hardware evaluation leads to better optimization

Can generalize to different tensor shapes

Bad:

Scalability?

o  What if big graph has many rewrite candidates?
Cannot generalize to different computation graphs
Questionable justification to avoid comparing with PET
Only better than TASO on two examples
Some details could be better explained (ex “meta-graph”)
Optimization times do not include training

We further compare PET and TASO on two similar DNNgs,
but their performances are very different. As shown in Table
2, PET outperforms TASO in ResNet-18 but falls short in
ResNext-50. We hypothesise this result is because PET’s
partially equivalent transformation is very sensitive to the
shape of operators. Choosing the right operator shapes may
bring significant improvement to partially equivalent trans-
formation, and PET’s paper also mentions a larger batch
size offers more optimisation opportunities. However, under-
standing when partially equivalent transformation performs
well is beyond the scope of this paper, and as a result, we
will focus on TASO in this work.

Table 2. Comparison of the optimised graph inference latency be-
tween PET and TASO in ResNet-18 and ResNext-50. Time is
measured in milliseconds.

| ResNet-18 | ResNext-50
PET‘ 1.9619 ‘ 10.6694

TASO 2.5534 6.6453
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Questions?



Generalization to Different Tensor Shapes
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Figure 7. Generalisation to different tensor shapes on DALL-E and
InceptionV3. The suffix number following the name of DNNs
indicates the input tensor shape. For example, ‘InceptionV3-225’
indicates the input image has a height and width of 225. **’ indi-
cates the DNNs where X-RLflow is trained to optimise.
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