
X-RLFLOW: GRAPH 
REINFORCEMENT LEARNING FOR 

NEURAL NETWORK
SUBGRAPHS TRANSFORMATION

Authors: Guoliang He, Sean Parker, 
Eiko Yoneki

Presenter: Andrew Krapivin
1



Problem: Optimizing Tensor Programs

● Fancy model, but sloooowww
● Not efficient on target architecture!
● Goal: have compiler automatically optimize!

2



Levels of Optimization
● Instruction level
● Operator level
● Computation graph level

○ Nodes: operators
○ Edges: tensors
○ “Graph superoptimization”
○ Must factor in lower levels!

3



Approaches

4



Solution #1: Greedy Manual Heuristics
● Design graph transformations
● Apply one after another
● Greedy

Problems:

● Lots of manual effort
● Order matters
● Co-optimize layout and graph

5



Solution #2: Automation! (TASO)

● Given: specifications about 
graph equivalence

● Automatically generates and 
composes graph substitutions

Problems:
● (Really) inefficient search
● Overly simplistic cost model

6



Problems with Cost Model of TASO

7



The New Contribution: X-RLFLOW (More Automation!)
Goals:
● Speed up search with learned model
● Use hardware for evaluation

○ Without too much computation!
Contributions:
● Reinforcement learning model

○ Graph neural network
● Use hardware for evaluation, sometimes

8



Related Work: Tensat, PET, GO
● Tensat: equality saturation

○ (One) issue: running out of memory
● PET: partially equivalent transformations

○ Same cost model as TASO
○ Sensitive to shape of operators

● GO: RL, but different level of optimization

9



Optimization Process

10



Graph Rewrite Rules

● TASO generates general rewrite rules
● Essentially: patterns

11



Environment
● OpenAI gym
● Rewrite rules applied to different parts of graph
● RL agent picks one to maximize reward
● (Proxy) Reward is configurable

12



Architecture

13

● Encoding:
○ Node: one-hot encoding of operator
○ Edge: tensor shape is used as attribute

● Both current graph and candidates 
encoded!

○ Batched into “meta-graph”

● After several transformations, 
aggregate node values to choose 
best candidate



Details
● N: hardware evaluation every N iterations
● M: edge normalization constant
● Architecture support fixed # candidates

○ Mask out those don’t need
○ Necessary: #candidates shrinks as graph is more optimized

14



Learning Algorithm
● PPO: few roll-outs, then update network (round)
● After round: Don’t want too much change in weights

15

● Value network simply mean-squared error



GNN Architecture
● Follows GAT pretty closely
● First layer incorporates edges into node values:
● Several graph attention layers:

● Finally: global pooling

16



Evaluation and My Thoughts

17



X-RLFLOW Evaluation

● Equal or better than TASO everywhere
● Optimization times much slower

18



Comparison to Tensat

19



My Thoughts
Good:

● Better performance than TASO
● Usually better than Tensat
● Reinforcement learning better at exploring search space
● Hardware evaluation leads to better optimization
● Can generalize to different tensor shapes

Bad:
● Scalability?

○ What if big graph has many rewrite candidates?
● Cannot generalize to different computation graphs
● Questionable justification to avoid comparing with PET
● Only better than TASO on two examples
● Some details could be better explained (ex “meta-graph”)
● Optimization times do not include training

20



Questions?

21



Generalization to Different Tensor Shapes

22


