NIVERSITY OF

AMBRIDGE

Equality Saturation For Tensor Graph Superoptimization

Authors: Yang, Y., Phothilimthana, P. M., Wang, Y. R., Willsey, M., Roy, S., and Pienaatr, J.
Year of Publication: 2021

Presenter. Hetong Shen
CRSIid: HS899

Department of Computer Science R244

TENSAT, a tensor graph superoptimization framework that
employs equality saturation on E-Graphs.

#B> UNIVERSITY OF

i

s jfj g5 CAMBRI DGE

TENSAT, atensor graph superoptimization framework that
employs equality saturation on E-Graphs.

"
o

MatMul_1

Relu

oot

TENSAT, atensor graph superoptimization framework that
employs equality saturation on E-Graphs.

 Enumerate through potential substitutions of graphs and find the optimal one

#B> UNIVERSITY OF

i

“§ CAMBRIDGE

TENSAT, atensor graph superoptimization framework that
employs equality saturation on E-Graphs.

* Term Rewriting (a-2)/2-> a

Useful Not useful
(x-y)/z=x-(y/z) x-2=x<<1

x/x=1 X-Y=y-X

(a-2)/2 > a:(2/2) > a (a:2)/2 > (a<<1)/2

#B> UNIVERSITY OF

i

s jfj g5 CAMBRI DGE

TENSAT, atensor graph superoptimization framework that
employs equality saturation on E-Graphs.

* E-graphs: (a-2)/2 e Term rewriting: (a-2)/2 - (a<<1)/2
' ‘ / this e-class represents (a *2) /2 and (a<<1)/2

this e-class represents (a * 2) and (a << 1)

TENSAT, atensor graph superoptimization framework that
employs equality saturation on E-Graphs.

* Grow a E-graph

B =
)]
alii[2) (1]

(a) Initial e-graph (b) After applying rewrite (c) After applying rewrite (d) After applying rewrites
contains (a X 2)/2. XX2—->x<l. (x Xy)/z — x X (y/2). x/x > land1Xx — x.

TENSAT, a tensor graph superoptimization framework that
employs equality saturation on E-Graphs.

e Equality Saturation

(x-y)/z>x-(y/2) e o

X/x—>1 - |

#B> UNIVERSITY OF

i

s jfj g5 CAMBRI DGE

TENSAT, a tensor graph superoptimization framework that
employs equality saturation on E-Graphs.

e Equality Saturation

E-graph

Restore invariants Find a pattern

Initial Term

Apply a match

ol UNIVERSITY OF

‘iﬁi

"§* CAMBRIDGE

Challenges

* When doing graph rewriting to determine the order of applying the rewrite rules :
 manually curated set of rewrite rules. }

o Sequential Substitution
* heuristic.

 However, sequential substitution often leads to sub-optimal:
 The non-comprehensive set of rewrite rules.

: L . o
 The sub-optimal graph substitution heuristic. [<>]
. Manually Designed Input
¢ RU|e Ch0|ce prOblem Graph Substitutions Comp. Graph

Graph Subst. Optimizer

Data Layout Optimizer

Optimized Comp. Graph

UNIVERSITY OF

CAMBRIDGE

Existing Works

 Graph Rewrite Optimizations
* TASO
* NeuRewriter

TENSAT:

» Re-implementation
of the TASO
compiler using
equality saturation

* Superoptimization
* Short sequences of low-level instructions
e Denali

* Equality Saturation Applications
* Optimize in other fields: ML, CAD simplification, Numerical Accuracy.

» UNIVERSITY OF

CAMBRIDGE

TENSAT’s Representations

Representing Tensor Computation Graphs

Operator Description Inputs Type signature
ewadd Element-wise addition inputy, inputs (T, T)—T
ewmul Element-wise multiplication inputy, inputa (L T)—T
matmul Matrix multiplication activation, inputy, inputs (N,T,T) > T
conv ¢ Grouped convolution stridep,, stride,, pad., act., input, weight (N,N,NON, T, T)—T

relu Relu activation input T—T

tanh Tanh activation input T—T
sigmoid Sigmoid activation input T—T
poolmax Max pooling input, kernelyy, .}, strideg), pad., act. (T, N,N,N,N,N,N) - T
poolavg Average pooling input, kemel{ hyw}s stride{h:w}, pad.,act. (TLN,N,N,N,N,N) > T

transpose b Transpose input, permutation (T,S)—T

enlarge ° Pad a convolution kernel with zeros input, ref-input (T, T)—T

concat, d Concatenate axis, inputy, ..., Input, (N,T,...,.) =T
split Split a tensor into two axis, input (N,T) =TT
splito Get the first output from split input TT — T
splity Get the second output from split input TT — T

merge Update weight to merge grouped conv weight, count (TLN)—T

reshape ¢ Reshape tensor input, shape (T,S) =T
input Input tensor identifier S—T
weight Weight tensor identifier " S—T
noop ° Combine the outputs of the graph inputy, inputy (T,T)—T

UNIVERSITY OF

TENSAT’s Representations

* Representing Rewrite Rules
* Single pattern rewrite rules
* Multiple pattern rewrite rules

G G
o

Source: (matmul ?input; ?inputz), (matmul ?input; ?inputs)
Target: (splitg (split 1 (matmul 7input; (concats 1 ?inputs ?inputs)))),

(splity (split 1 (matmul ?inputy (concatp 1 ?inputs ?inputgz))))

UNIVERSITY OF

CAMBRIDGE

TENSAT

* Rule choice problem

* Solution: first generates all rewritten terms, leaving the choice of which term to
select to the extraction procedure

* Exploration Phase

e Extraction Phase

» UNIVERSITY OF

CAMBRIDGE

Exploration Phase

Search for matches of all rewrite rules in the
current e-graph, and add the target patterns
and equivalence relations to the e-graph

* Single pattern rewrite rules and
Multiple pattern rewrite rules

B> UNIVERSITY OF

- CAMBRIDGE

Algorithm 1 Applying multi-pattern rewrite rules

Input: starting e-graph G, set of multi-pattern rewrite rules R..
Output: updated e-graph G.

1: canonicalized S-expr e. = Set({ })

2: forruler € R, do

3 fori=0,...,|r]| —1 do [> |7|: #S-exprs in source pattern
4 (e, rename_map) = CANONICAL(r.sourcez])
5: e..1msert(e)
6: r.map[i] = rename_map
7 end for
8. end for
9: foriter=0, ..., MAX_ITER do
10: M =SEARCH(G, e.) > all matches for all patterns
11: forrulcr € R,, do
12: fori =0,...,[r| —1 do
13: canonical matches mc; = M|[r.source[1]]
14: matches m; = DECANONICAL(mc;, r.map[z])
15: end for
16: for (oo,..., 00, 1) €Emg X ---Xmy, ; do
17: if COMPATIBLE((00, ..., 0}-—1)) then
18: APPLY(G,7,00,..., 0+ -1)
19: end if
20: end for
21: end for
22: end for
23: return G

Extraction Phase — 15t Approach Greedy
* Cost Model

* Greedy Extraction:

* For each e-class, computes the total cost of the subtrees rooted on each of
the e-nodes, and picks the e-node with the smallest subtree cost

* Not guaranteed to extract the graph with the minimum cost

UNIVERSITY OF

™" CAMBRIDGE

Extraction Phase — 2"d Approach ILP

* |LP Extraction: Minimize: f(z) = me
e Objective function and constraints i
Subject to:
z; €{0,1}, (D
> m=1, (2)
1€eg
Vi,Vm € h;, x; < Z 2, (3)

") T

V@,Vm S hi;tg(i) —tm — €+ A(]. — “L‘z) > D,, (4)
Ym,0 <t,, <1, S)

» UNIVERSITY OF

CAMBRIDGE

Extraction Phase — 2"d Approach ILP

* |LP Extraction:
e Objective function and constraints
* Cycles

split_0) @E i

I
L}

N
¥ @“@
|I o S

—

UNIVERSITY OF

™" CAMBRIDGE

Extraction Phase — 2"d Approach ILP

ILP Extraction:
e Objective function and constraints
* Have cycles vs. no cycles

Minimize: f(z) = Z CiT;

i

Subject to:
x; € {0,1}, (1)
Y wi=1,)
1€eq
V@,Vm = hz,rz < Z Tj, 3)

JjE€Eem

Vi,Ym € hi,tyiy —tm — e+ Al —x;) >0, (4)
vm,0 <t,, <1, (5)

B> UNIVERSITY OF

- CAMBRIDGE

Extraction With cycle Without
. Kmulti -
time (s) real int cycle
1 0.96 0.98 0.16
BERT > 3600 3600 5103
1 1116 1137 0.32
NasRNN 2 >3600 >3600 356.7
1 424 438 1.81
NasNet-A 3600 >3600 75.1

Table 5. Effect of whether or not to include cycle constraints in ILP
on extraction time (in seconds), on BERT, NasRNN, and NasNet-
A. For the cycle constraints, we compare both using real variables
and using integer variables for the topological order variables ¢,,,.

Extraction Phase — Comparison

 Greedy vs. ILP Extraction:

* Greedy extraction is slow: it makes the choices on which node to pick

separately and greedily, without considering the interdependencies
between the choices.

e |LP Guaranteed to give a valid graph (no cycles) with the lowest cost

Graph Runtime (ms) Original Greedy ILP

BERT 1.88 1.88 1.73
NasRNN 1.85 1.15 1.10
NasNet-A 17.8 22.5 16.6

UNIVERSITY OF

™" CAMBRIDGE

Bottle Neck and Cycle Filtering

* Vanilla cycle filtering:

e FEfficient CYCIG filteri ng in exp loration D hase: Algorithm 2 Exploration phase with efficient cycle filtering
. . Input: starting e-graph G, set of rewrite rules R.
e P re_f | |te ring Out?ut:{ ;pdated e-graph G, filter list [
I: | =
e Post processing 2: foriter=0, ..., MAX_ITER do
- 3: descendants map d = GETDESCENDANTS(G, [)
4: matches = SEARCH(G, R, 1)
5: for match € matches do
- 6 if not WILLCREATECYCLE(match, d) then
7. APPLY (G, match)
8: end if
. O end for
- 10: while true do
11: cycles = DFSGETCYCLES(G, [)
12: if len(cycles) == 0 then
13: break
- 14: end if
15: for cycle € cycles do
16: RESOLVECYCLE(G, [, cycle)
17: end for
_18: end while
19: end for
20: return G, [

UNIVERSITY OF

> CAMBRIDGE

Bottle Neck and Cycle Filtering

* Vanilla cycle filtering vs. Efficient cycle filtering

Exploration time (s) Anuti Vanilla Efficient

1 0.18 0.17

BERT 2 32.9 0.89

1 1.30 0.08

NasRNN 2 2932 1.47
NasNet A 1 376 1.27

2 >3600 8.62

Table 6. Comparison between vanilla cycle filtering and efficient

cycle filtering, on the exploration phase time (in seconds) for BERT,
NasRNN, and NasNet-A.

UNIVERSITY OF

CAMBRIDGE

Evaluation — Set Up

 TENSAT Implementation:
 Developed in Rust
e Equality saturation library egg

e |LP solver:
e Utilized SCIP

UNIVERSITY OF

" CAMBRIDGE

Evaluation — Set Up

The models evaluated:

 BERT (Devlin et al., 2019)
 ResNeXt-50 (Xie et al., 2017)
 NasNet-A (Zoph et al., 2018)
 NasRNN (Zoph & Le, 2017)

* Inception v3 (Szegedy et al., 2016)
* VGG-19 (Liu & Deng, 2015)

e SqueezeNet (landola et al., 2017)

#B> UNIVERSITY OF

%" CAMBRIDGE

Limit the number of nodes in the
e-graph Nmax = 50000

Limit number of iterations for
exploration kmax = 15

Evaluation — Speed Up

TASO vs TENSAT

Equality saturation covers a much larger
space of equivalent graphs than sequential
backtracking search.

K: K multi

Inception: Optimizer can achieve a better
speedup given longer optimization time.

UNIVERSITY OF

-
o

EN TASO B Tensat

Speedup percentage
w S un o
o o = =

hJ
o

=
o

; ul
nN y X P e ol A =7
ﬂas?‘“ gl ?\eﬁﬂe‘f\“a N (ee? NG® |\ (ce® e LS

Figure 4. Speedup percentage of the optimized
graph with respect to the original graph: TASO v.s.
TENSAT. Each setting (optimizer X benchmark)
is run for five times, and we plot the mean and
standard error for the measurements.

CAMBRIDGE

EEl TASO total TASO best M Tensat
Evaluation — Optimization Time -
 TASO vs TENSAT 10: W
e TENSAT can not only cover a much larger E I I
search space, but also in less time .gml. I I 1Lz 74
= 13.4x
: i
9.5x
10°: 34.6x
379.4x 20.0x 127.4x
59.9x
il I
Nas?«““ g™ Resﬂe‘fi‘asﬂé"zaueﬂe' N \nce"'r‘t' ce?t.‘é""l

At

Figure 5. Optimization time (log scale): TASO
v.s. TENSAT. “TASO total” is the total time of
TASO search. “TASO best” indicates when TASO
found its best result; achieving this time would
require an oracle telling it when to stop.

i, UNIVERSITY OF

CAMBRIDGE

Evaluation — Varying Iterations of Multi-Pattern Rewrites

e Effect of varying the number of iterations of
multi-pattern rewrites kmulti

 Squeeze-Net: discrepancy between the cost
model and the real graph runtime.

90

103

%80_ § 102:

€ 70 S :
v ﬁ
- a

v 60- ' | . o 101
. =
a 30 1=
= -
0 N

& £
ahed

1 -:__:,.,/"” “| 107!

0_ = = T
0 1 2 3 0 1 2 3

#iter of multi pattern rewrites #iter of multi pattern rewrites

Novelty

e Uses e-graph for tensor graph superoptimization

* Introduces multi pattern write rules

* Efficient cycle filtering in exploration phase

Downside

e Limitation in Scalability:
 Multi-pattern rules for tensor graph: grow the e-graph extremely rapidly
 Can only explore up to a certain number of iterations of multi-pattern rewrites.
 E-graph becomes too large for the extraction phase

e Parallelism:

e Uses cost model as TASO, which is suitable for GPU (one operator when
executing graph)

» UNIVERSITY OF

CAMBRIDGE

Impact and Future directions

* Tackle Limitation in Scalability:
* Selectively apply rules during exploration
e Utilize ML techniques

e Achieve Parallelism:
* Some hardware may execute multiple kernels in parallel
* Needs a different cost model, such as a learned method to perform extractions

e Applications:

 TENSAT'’s optimization time is small enough that can be integrated into a default
compilation flow

UNIVERSITY OF

" CAMBRIDGE

	幻灯片 1: Equality Saturation For Tensor Graph Superoptimization
	幻灯片 2
	幻灯片 3
	幻灯片 4
	幻灯片 5
	幻灯片 6
	幻灯片 7
	幻灯片 8
	幻灯片 9
	幻灯片 10
	幻灯片 11
	幻灯片 12
	幻灯片 13
	幻灯片 14
	幻灯片 15
	幻灯片 16
	幻灯片 17
	幻灯片 18
	幻灯片 19
	幻灯片 20
	幻灯片 21
	幻灯片 22
	幻灯片 23
	幻灯片 24
	幻灯片 25
	幻灯片 26
	幻灯片 27
	幻灯片 28
	幻灯片 29

