

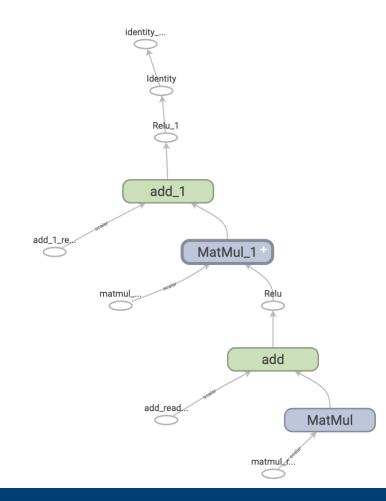
Equality Saturation For Tensor Graph Superoptimization

Authors: Yang, Y., Phothilimthana, P. M., Wang, Y. R., Willsey, M., Roy, S., and Pienaar, J. Year of Publication: 2021

Presenter: Hetong Shen CRSid: HS899

Department of Computer Science

R244



• Enumerate through potential substitutions of graphs and find the optimal one

• Term Rewriting $(a \cdot 2)/2 \rightarrow a$

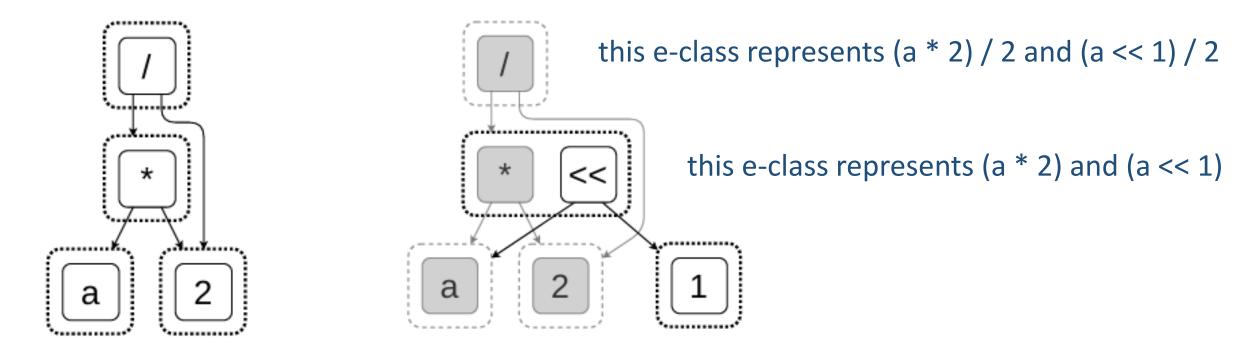
Useful Not useful $(x \cdot y)/z = x \cdot (y/z)$ $x \cdot 2 = x << 1$ x/x=1 $x \cdot y = y \cdot x$

 $(a\cdot 2)/2 \rightarrow a\cdot (2/2) \rightarrow a$

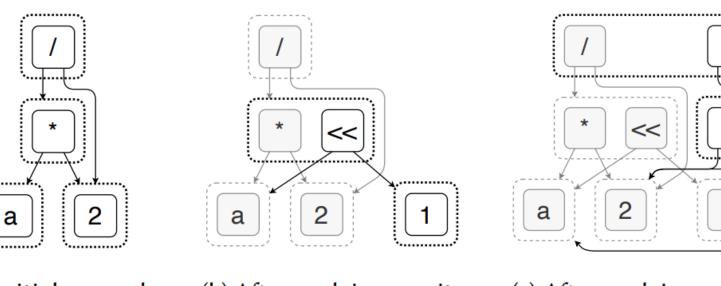
 $(a\cdot 2)/2 \rightarrow (a << 1)/2$

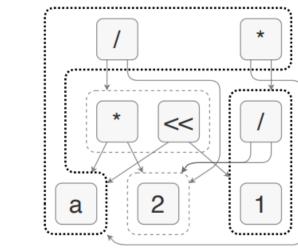
• E-graphs: $(a \cdot 2)/2$

• Term rewriting: $(a \cdot 2)/2 \rightarrow (a << 1)/2$



Grow a E-graph





(a) Initial e-graph contains $(a \times 2)/2$.

(b) After applying rewrite $x \times 2 \rightarrow x \ll 1.$

(c) After applying rewrite $(x \times y)/z \rightarrow x \times (y/z).$

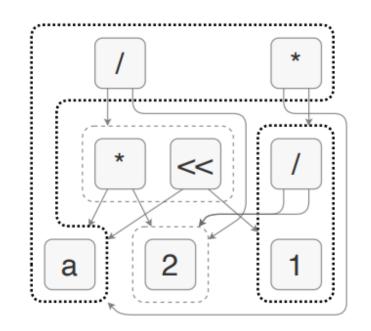
<<

2

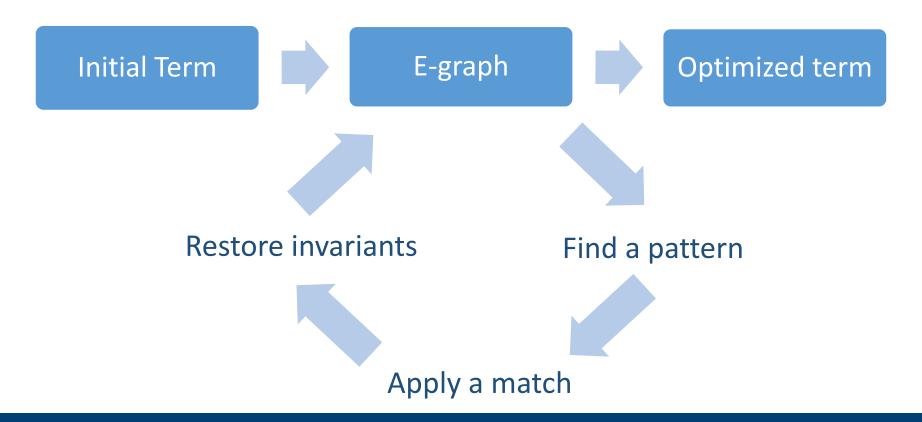
(d) After applying rewrites $x/x \rightarrow 1$ and $1 \times x \rightarrow x$.

• Equality Saturation

 $x \cdot 2 \rightarrow x << 1$ $(x \cdot y)/z \rightarrow x \cdot (y/z)$ $x/x \rightarrow 1$ $x \cdot 1 \rightarrow x$

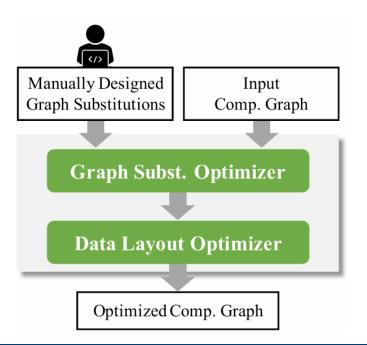


• Equality Saturation



Challenges

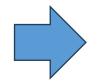
- When doing graph rewriting to determine the order of applying the rewrite rules :
 - manually curated set of rewrite rules.
 - heuristic.
- However, sequential substitution often leads to sub-optimal:
 - The non-comprehensive set of rewrite rules.
 - The sub-optimal graph substitution heuristic.
 - Rule choice problem



Sequential Substitution

Existing Works

- Graph Rewrite Optimizations
 - TASO
 - NeuRewriter
- Superoptimization
 - Short sequences of low-level instructions
 - Denali
- Equality Saturation Applications
 - Optimize in other fields: ML, CAD simplification, Numerical Accuracy.



TENSAT:

Re-implementation of the TASO compiler using equality saturation

TENSAT's Representations

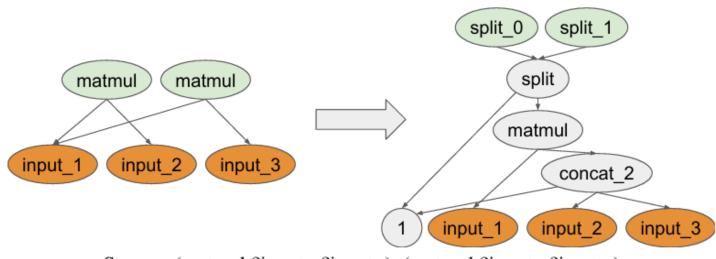
• Representing Tensor Computation Graphs

Operator	Description	Inputs	Type signature
ewadd	Element-wise addition	$input_1$, $input_2$	$(T, T) \rightarrow T$
ewmul	Element-wise multiplication	$input_1$, $input_2$	$(T, T) \rightarrow T$
matmul	Matrix multiplication	activation, input ₁ , input ₂	$(\mathrm{N},\mathrm{T},\mathrm{T})\to\mathrm{T}$
conv ^a	Grouped convolution	stride _{h} , stride _{w} , pad., act., input, weight	$(N, N, N, N, T, T) \rightarrow T$
relu	Relu activation	input	$T \rightarrow T$
tanh	Tanh activation	input	$T \rightarrow T$
sigmoid	Sigmoid activation	input	$\mathrm{T} ightarrow \mathrm{T}$
poolmax	Max pooling	input, kernel $_{\{h,w\}}$, stride $_{\{h,w\}}$, pad., act.	$(\mathrm{T},\mathrm{N},\mathrm{N},\mathrm{N},\mathrm{N},\mathrm{N},\mathrm{N})\to\mathrm{T}$
poolavg	Average pooling	input, kernel $\{h,w\}$, stride $\{h,w\}$, pad., act.	$(\mathrm{T},\mathrm{N},\mathrm{N},\mathrm{N},\mathrm{N},\mathrm{N},\mathrm{N})\to\mathrm{T}$
transpose ^b	Transpose	input, permutation	$(T, S) \rightarrow T$
enlarge ^c	Pad a convolution kernel with zeros	input, ref-input	$(T, T) \rightarrow T$
$\operatorname{concat}_n {}^d$	Concatenate	axis, input ₁ ,, input _n	$(N,T,\ldots,T)\to T$
split ^e	Split a tensor into two	axis, input	$(N, T) \rightarrow TT$
$split_0$	Get the first output from split	input	$TT \rightarrow T$
$split_1$	Get the second output from split	input	$\mathrm{TT} ightarrow \mathrm{T}$
merge ^f	Update weight to merge grouped conv	weight, count	$(\mathrm{T,N}) ightarrow \mathrm{T}$
reshape ^g	Reshape tensor	input, shape	$(T, S) \rightarrow T$
input	Input tensor	identifier ^h	$\mathrm{S} ightarrow \mathrm{T}$
weight	Weight tensor	identifier ^h	$\mathrm{S} ightarrow \mathrm{T}$
noop ⁱ	Combine the outputs of the graph	$input_1$, $input_2$	$(T,T)\to T$

_

TENSAT's Representations

- Representing Rewrite Rules
 - Single pattern rewrite rules
 - Multiple pattern rewrite rules



Source: (matmul ?input₁ ?input₂), (matmul ?input₁ ?input₃) Target: (split₀ (split 1 (matmul ?input₁ (concat₂ 1 ?input₂ ?input₃)))),

 $(split_1 \ (split \ 1 \ (matmul \ ?input_1 \ (concat_2 \ 1 \ ?input_2 \ ?input_3))))$

TENSAT

- Rule choice problem
 - Solution: first generates all rewritten terms, leaving the choice of which term to select to the extraction procedure
- Exploration Phase
- Extraction Phase

Exploration Phase

- Search for matches of all rewrite rules in the current e-graph, and add the target patterns and equivalence relations to the e-graph
 - Single pattern rewrite rules and Multiple pattern rewrite rules

Algorithm 1 Applying multi-pattern rewrite rules

```
Input: starting e-graph \mathcal{G}, set of multi-pattern rewrite rules \mathcal{R}_m.
Output: updated e-graph \mathcal{G}.
 1: canonicalized S-expr e_c = Set(\{\})
 2: for rule r \in \mathcal{R}_m do
         for i = 0, ..., |r| - 1 do
 3:
                                                 \triangleright |r|: #S-exprs in source pattern
 4:
              (e, \text{rename}_\text{map}) = \text{CANONICAL}(r.\text{source}[i])
 5:
              e_c.insert(e)
 6:
              r.map[i] = rename_map
 7:
          end for
 8: end for
 9: for iter = 0, \ldots, MAX_{ITER} do
          M = \text{SEARCH}(\mathcal{G}, e_c)
10:
                                              \triangleright all matches for all patterns
11:
          for rule r \in \mathcal{R}_m do
12:
               for i = 0, ..., |r| - 1 do
13:
                    canonical matches mc_i = M[r.source[i]]
14:
                    matches m_i = DECANONICAL(mc_i, r.map[i])
15:
               end for
16:
               for (\sigma_0, \ldots, \sigma_{|r|-1}) \in \mathbf{m}_0 \times \cdots \times \mathbf{m}_{|r|-1} do
17:
                    if COMPATIBLE((\sigma_0, \ldots, \sigma_{|r|-1})) then
18:
                        APPLY(\mathcal{G}, r, \sigma_0, \ldots, \sigma_{|r|-1})
19:
                    end if
20:
               end for
21:
          end for
22: end for
23: return G
```


Extraction Phase – 1st Approach Greedy

- Cost Model
- Greedy Extraction:
 - For each e-class, computes the total cost of the subtrees rooted on each of the e-nodes, and picks the e-node with the smallest subtree cost
 - Not guaranteed to extract the graph with the minimum cost

Extraction Phase – 2nd Approach ILP

- ILP Extraction:
 - Objective function and constraints

Minimize:
$$f(x) = \sum_{i} c_i x_i$$

Subject to:

$$x_{i} \in \{0, 1\},$$

$$\sum_{i \in e_{0}} x_{i} = 1,$$

$$\forall i, \forall m \in h_{i}, x_{i} \leq \sum_{j \in e_{m}} x_{j},$$

$$\forall i, \forall m \in h_{i}, t_{g(i)} - t_{m} - \epsilon + A(1 - x_{i}) \geq 0,$$

$$\forall m, 0 \leq t_{m} \leq 1.$$

$$(1)$$

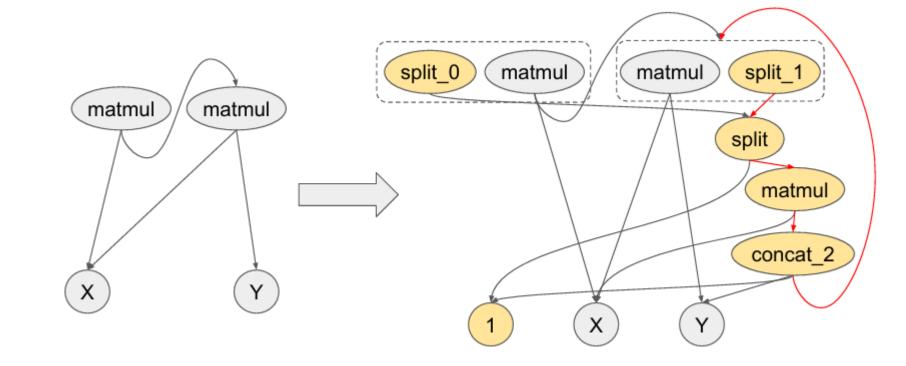
$$(2)$$

$$(3)$$

$$(3)$$

Extraction Phase – 2nd Approach ILP

- ILP Extraction:
 - Objective function and constraints
 - Cycles



Extraction Phase – 2nd Approach ILP

- ILP Extraction:
 - Objective function and constraints
 - Have cycles vs. no cycles

Minimize:
$$f(x) = \sum_{i} c_i x_i$$

Subject to:

$$x_i \in \{0, 1\},\tag{1}$$

$$\sum_{i \in e_0} x_i = 1,\tag{2}$$

$$\forall i, \forall m \in h_i, x_i \le \sum_{j \in e_m} x_j, \tag{3}$$

 $\forall i, \forall m \in h_i, t_{g(i)} - t_m - \epsilon + A(1 - x_i) \ge 0, \quad (4)$ $\forall m, 0 \le t_m \le 1, \quad (5)$

Extraction	$k_{\rm multi}$	With cycle		Without
time (s)		real	int	cycle
BERT	1	0.96	0.98	0.16
	2	>3600	>3600	510.3
NasRNN	1	1116	1137	0.32
	2	>3600	>3600	356.7
NasNet-A	1	424	438	1.81
	2	>3600	>3600	75.1

Table 5. Effect of whether or not to include cycle constraints in ILP on extraction time (in seconds), on BERT, NasRNN, and NasNet-A. For the cycle constraints, we compare both using real variables and using integer variables for the topological order variables t_m .

Extraction Phase – Comparison

- Greedy vs. ILP Extraction:
 - Greedy extraction is slow: it makes the choices on which node to pick separately and greedily, without considering the interdependencies between the choices.
 - ILP Guaranteed to give a valid graph (no cycles) with the lowest cost

Graph Runtime (ms)	Original	Greedy	ILP
BERT	1.88	1.88	1.73
NasRNN	1.85	1.15	1.10
NasNet-A	17.8	22.5	16.6

Bottle Neck and Cycle Filtering

- Vanilla cycle filtering:
- Efficient cycle filtering in exploration phase:
 - Pre-filtering
 - Post processing

Algorithm 2 Exploration phase with efficient cycle filtering **Input:** starting e-graph \mathcal{G} , set of rewrite rules \mathcal{R} . **Output:** updated e-graph \mathcal{G} , filter list l1: $l = \{\}$ 2: for iter = $0, \ldots, MAX_ITER$ do descendants map $d = \text{GETDESCENDANTS}(\mathcal{G}, l)$ 3: matches = SEARCH($\mathcal{G}, \mathcal{R}, l$) 4: 5: for match \in matches do 6: if not WILLCREATECYCLE(match, d) then 7: APPLY(\mathcal{G} , match) 8: end if 9: end for 10: while true do 11: cycles = DFSGETCYCLES(\mathcal{G}, l) 12: **if** len(cycles) == 0 **then** 13: break 14: end if 15: for cycle \in cycles do RESOLVECYCLE($\mathcal{G}, l, cycle$) 16:

- 17: **end for**
- 18: end while
- 19: **end for**
- 20: return \mathcal{G}, l

Bottle Neck and Cycle Filtering

• Vanilla cycle filtering vs. Efficient cycle filtering

Exploration time (s)	k_{multi}	Vanilla	Efficient
BERT	1	0.18	0.17
	2	32.9	0.89
NasRNN	1	1.30	0.08
	2	2932	1.47
NasNet-A	1	3.76	1.27
	2	>3600	8.62

Table 6. Comparison between vanilla cycle filtering and efficient cycle filtering, on the exploration phase time (in seconds) for BERT, NasRNN, and NasNet-A.

Evaluation – Set Up

- TENSAT Implementation:
 - Developed in Rust
 - Equality saturation library egg
- ILP solver:
 - Utilized SCIP

Evaluation – Set Up

The models evaluated:

- BERT (Devlin et al., 2019)
- ResNeXt-50 (Xie et al., 2017)
- NasNet-A (Zoph et al., 2018)
- NasRNN (Zoph & Le, 2017)
- Inception v3 (Szegedy et al., 2016)
- VGG-19 (Liu & Deng, 2015)
- SqueezeNet (landola et al., 2017)

- Limit the number of nodes in the e-graph Nmax = 50000
- Limit number of iterations for exploration kmax = 15

Evaluation – Speed Up

- TASO vs TENSAT
- Equality saturation covers a much larger space of equivalent graphs than sequential backtracking search.
- K: K multi
- Inception: Optimizer can achieve a better speedup given longer optimization time.

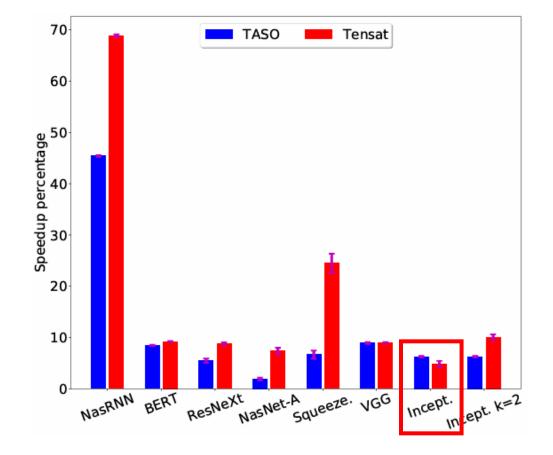


Figure 4. Speedup percentage of the optimized graph with respect to the original graph: TASO v.s. TENSAT. Each setting (optimizer \times benchmark) is run for five times, and we plot the mean and standard error for the measurements.

Evaluation – Optimization Time

- TASO vs TENSAT
- TENSAT can not only cover a much larger search space, but also in less time

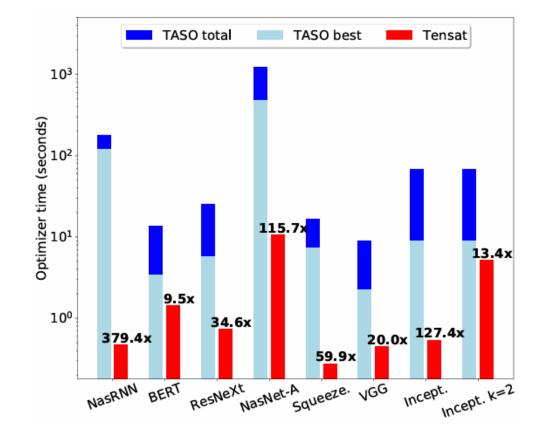
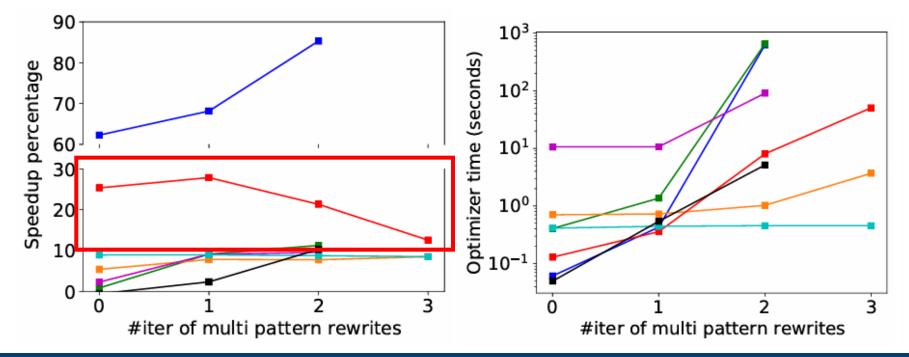


Figure 5. Optimization time (log scale): TASO v.s. TENSAT. "TASO total" is the total time of TASO search. "TASO best" indicates when TASO found its best result; achieving this time would require an oracle telling it when to stop.

Evaluation – Varying Iterations of Multi-Pattern Rewrites

- Effect of varying the number of iterations of multi-pattern rewrites *k*multi
- Squeeze-Net: discrepancy between the cost model and the real graph runtime.



Novelty

- Uses <u>e-graph</u> for tensor graph superoptimization
- Introduces multi pattern write rules
- Efficient cycle filtering in exploration phase

Downside

- Limitation in Scalability:
 - Multi-pattern rules for tensor graph: grow the e-graph extremely rapidly
 - Can only explore up to a certain number of iterations of multi-pattern rewrites.
 - E-graph becomes too large for the extraction phase
- Parallelism:
 - Uses cost model as TASO, which is suitable for GPU (one operator when executing graph)

Impact and Future directions

- Tackle Limitation in Scalability:
 - Selectively apply rules during exploration
 - Utilize ML techniques
- Achieve Parallelism:
 - Some hardware may execute multiple kernels in parallel
 - Needs a different cost model, such as a learned method to perform extractions
- Applications:
 - TENSAT's optimization time is small enough that can be integrated into a <u>default</u> compilation flow

