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Let’s get down to business
to process the data 

• Data analysts will just give you the linear algebra operations


• Library implementers will do the least amount of work to let you perform them


• If you’ve much of NumPy-like programming (e.g. PyTorch), you’ll know the joy 
of reducing everything to just the kernels you’ve got.

A = ttv(B, C, D) 

A = innerprod(B, C) 

A = mttkrp(B, {C, D, E}, F)
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The abstract hits the concrete wall

Aij = Bikl ⋅ Dlj ⋅ Ckj

A = ttv(B, C, D) 

A = innerprod(B, C) 

A = mttkrp(B, {C, D, E}, F)

A = Bijk ⋅ Cijk

Aij = Bijk ⋅ ck

(If an index is not on LHS, sum over it)

Aij = BikCkj ⇝ Aij = ∑
k

BikCkj

3



Sparsity is all you need
(sometimes)

• Data analysts should do linear algebra as they please


• But most data is empty - e.g. near-zero


•  sparse linear algebra⟹

Amazon Reviews

99.999999988%

Zero Non-zero
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Curse of trade-offs
Any colour, as long as it is black

Formats

Compressed 
Sparse 

Rows

Compressed 
Sparse 


Columns
Compressed 

Sparse 

Fibers

Compressed 
Sparse 

Blocks

…

Rank

0

1

2

…

Operation

Matrix-vector 
multiplication

Matricized 
tensor times 
Khatri-Rao 

product

Kronecker 
product

…
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You’ve got problems
We’ve got the solutions

•  Programmers need bespoke impl. suited to storage and operations 

•  A unified language for storage and operations


•  A universal compiler into efficient algorithm implementations

⟸

⟹

⟹
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Contributions
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• Tensor expressions inspired by 
Ricci calculus (Einstein summation)


• Graphic representation:     
iteration graphs

Expression language
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To store a sparse tensor
Compressed Sparse Fiber (CSF) crash course

⟹
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Storage language

(denseuser, densemovie)

(denseuser, sparsemovie) (sparseuser, densemovie)

CSR CSC

(sparseuser, sparsemovie)

CSF (row-major)

(sparsemovie, sparseuser)

CSF (column-major)
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API
DSL embedded in C++
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Sparse computation is just merge-sort
x + 0 = x x × 0 = 0

ai = (bi × ci) + di ⇝ ai = (bi ∧ ci) ∨ di
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Compiler

• The compiler constructs merge lattices for the given expressions


• Generates C code which reads data & writes result in given formats


• Most general code generation approach so far


• Parallelised by OpenMP
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Conclusions
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Results

• Consistently strong performance against many libraries. Concerns?


• Sparse tensors often overlooked


• Libraries often very general — ‘best-effort’?


• Benchmarking isn’t obvious:


• General: available operations limited in baselines


• Data sparsity operations!
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Limitations / Future Work

• Tensor expressions cannot transpose (e.g. )


• Other storage formats (e.g. Compressed Sparse Blocks, Dictionary of Keys)


• Non-CPU devices


• Scheduling / optimisations to match best-effort performance

A = BT ⇔ Aij = Bji
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Summary

• Design & implementation of (domain-specific) programming language


• Sparse tensors are important, but usually need to be hand-implemented


• Algorithmic insights often useful: 


• Iteration graphs and storage trees


• Two-way merge and merge lattices

Ai,j = ∑
k

Bi,kCk,j
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You need models! 

(but question them)
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Thank you!
Thoughts?
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