TACO:
The Tensor Algebra Compiler

Jakub Bachurski (jkb55), 27 November 2024



Let’s get down to business

to process the data

 Data analysts will just give you the linear algebra operations

» Library implementers will do the least amount of work to let you perform them

A = ttv (B, C, D)

A = 1nnerprod (B, C)

A = mttkrp(B, {C, D, E}, F)

* |f you’ve much of NumPy-like programming (e.g. PyTorch), you’ll know the joy
of reducing everything to just the kernels you’ve got.



The abstract hits the concrete wall

A = ttv (B, C, D) A”:szk'ck
A = 1nnerprod (B, C) A = Bz]k C
A = mttkrp(B, {C, D, E}, F) Azj:Bikl'Dlj‘ ij

(If an index is not on LHS, sum over it)

Azj — Bikaj > Aij — Z Bikaj



Sparsity is all you need

(sometimes)
® Zero ¢ Non-zero

e Data analysts should do linear algebra as they please Amazon Reviews

 But most data is empty - e.g. near-zero

« —> sparse linear algebra

99.999999988%




Curse of trade-offs

Any colour, as long as it is black

Compressed
Sparse
Rows

Rank

Operation

Compressed
Sparse
Columns

Matrix-vector
multiplication

Compressed
Sparse
Fibers

Compressed
Sparse
Blocks

Matricized
tensor times
Khatri-Rao
product

Kronecker
product




You’ve got problems

We’ve got the solutions

* —— Programmers need bespoke impl. suited to and operations

« —> A unified language for and operations

« —> A universal compiler into efficient algorithm implementations



Contributions



EXxpression language

 Tensor expressions inspired by
Ricci calculus (Einstein summation)

A = einsum("1k,kj->13", B, C) P A ~ <

* (Graphic representation:

/ \
iteration graphs .
z k
N < _ B L / N - C _ /




To store a sparse tensor

Compressed Sparse Fiber (CSF) crash course

reviews

movie
s (0 (0
reviews = user
movie (1)(2) (0)(2
4 5 3 5 2

values

o W O
o O W
o O Ui
DN O O




language

(dense,..., dense . :.)
CSR CSC
(denseusep Sparsemovie) (Sparseuser’ densemovie)
CSF (row-major) CSF (column-major)
(Sp arSC ger, SPAL Semovie) (Sp AlSCoyies SPAl Seuser)

10



/] - storage -

Format csr({Dense,Sparse});

Tensor<double> A({64,42}, csr);
‘I\F)I Format csf({Sparse,Sparse,Sparse});
DSL embedded in C++ Tensor<doub1§> 5({64,42,512}, cst);

// - expressions -

IndexVar 1, j, k;

A(1,3) = B(1,3,k) * c(k);

11



Sparse computation is just merge-sort
Gdy x+0=x xX0=0 edo)

(bz X Ci) + dz %)

d3
(b4 X 64)




Compiler

 The compiler constructs merge lattices for the given expressions
* Generates C code which reads data & writes result in given
 Most general approach so far

» Parallelised by OpenMP

13



Conclusions




Results

* Consistently strong performance against many libraries. Concerns?

e Sparse tensors often overlooked

» Libraries often very general — ‘best-effort’?

 Benchmarking isn’t obvious:

 General: available operations limited in baselines

» Data sparsity operations!

15



Limitations / Future Work

. Tensor expressions cannot transpose (e.g. A = B! < A;; = B;)

* Other storage formats (e.g. Compressed Sparse Blocks, Dictionary of Keys)

e Non-CPU devices

 Scheduling / optimisations to match best-effort performance

16



Summary

 Design & implementation of (domain-specific) programming language
e Sparse tensors are important, but usually need to be hand-implemented

* Algorithmic insights often useful:

« Iteration graphs and storage trees Ai,j — Z i,ka,j
k

* [wo-way merge and merge lattices

17



You nheed models!

(but question them)



Thank you!

Thoughts?




