
Jakub Bachurski (jkb55), 27 November 2024

TACO:
The Tensor Algebra Compiler
Kjolstad, Kamil, Chou, Lugato, Amarasinghe (2017)

1

Let’s get down to business
to process the data

• Data analysts will just give you the linear algebra operations

• Library implementers will do the least amount of work to let you perform them

• If you’ve much of NumPy-like programming (e.g. PyTorch), you’ll know the joy
of reducing everything to just the kernels you’ve got.

A = ttv(B, C, D)

A = innerprod(B, C)

A = mttkrp(B, {C, D, E}, F)

2

The abstract hits the concrete wall

Aij = Bikl ⋅ Dlj ⋅ Ckj

A = ttv(B, C, D)

A = innerprod(B, C)

A = mttkrp(B, {C, D, E}, F)

A = Bijk ⋅ Cijk

Aij = Bijk ⋅ ck

(If an index is not on LHS, sum over it)

Aij = BikCkj ⇝ Aij = ∑
k

BikCkj

3

Sparsity is all you need
(sometimes)

• Data analysts should do linear algebra as they please

• But most data is empty - e.g. near-zero

• sparse linear algebra⟹

Amazon Reviews

99.999999988%

Zero Non-zero

4

Curse of trade-offs
Any colour, as long as it is black

Formats

Compressed
Sparse

Rows

Compressed
Sparse

Columns
Compressed

Sparse

Fibers

Compressed
Sparse

Blocks

…

Rank

0

1

2

…

Operation

Matrix-vector
multiplication

Matricized
tensor times
Khatri-Rao

product

Kronecker
product

…

5

You’ve got problems
We’ve got the solutions

• Programmers need bespoke impl. suited to storage and operations

• A unified language for storage and operations

• A universal compiler into efficient algorithm implementations

⟸

⟹

⟹

6

Contributions

7

• Tensor expressions inspired by
Ricci calculus (Einstein summation)

• Graphic representation:
iteration graphs

Expression language

8

To store a sparse tensor
Compressed Sparse Fiber (CSF) crash course

⟹

9

Storage language

(denseuser, densemovie)

(denseuser, sparsemovie) (sparseuser, densemovie)

CSR CSC

(sparseuser, sparsemovie)

CSF (row-major)

(sparsemovie, sparseuser)

CSF (column-major)

10

API
DSL embedded in C++

11

Sparse computation is just merge-sort
x + 0 = x x × 0 = 0

ai = (bi × ci) + di ⇝ ai = (bi ∧ ci) ∨ di

12

Compiler

• The compiler constructs merge lattices for the given expressions

• Generates C code which reads data & writes result in given formats

• Most general code generation approach so far

• Parallelised by OpenMP

13

Conclusions

14

Results

• Consistently strong performance against many libraries. Concerns?

• Sparse tensors often overlooked

• Libraries often very general — ‘best-effort’?

• Benchmarking isn’t obvious:

• General: available operations limited in baselines

• Data sparsity operations!

15

Limitations / Future Work

• Tensor expressions cannot transpose (e.g.)

• Other storage formats (e.g. Compressed Sparse Blocks, Dictionary of Keys)

• Non-CPU devices

• Scheduling / optimisations to match best-effort performance

A = BT ⇔ Aij = Bji

16

Summary

• Design & implementation of (domain-specific) programming language

• Sparse tensors are important, but usually need to be hand-implemented

• Algorithmic insights often useful:

• Iteration graphs and storage trees

• Two-way merge and merge lattices

Ai,j = ∑
k

Bi,kCk,j

17

You need models!

(but question them)

18

Thank you!
Thoughts?

19

