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Tensor Programs

* Program represented as DAG of computation nodes
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Graph Transformation

* To improve efficiency

* Most previous works: rule-based, fully equivalent transformations
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Partially Equivalent Transformations

* Not equal on all elements of output tensor
e Faster, but requires correction lalter
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(a) Input program. (b) A partially equivalent transformation. (c) Correcting results.



Mutant

P1 is a mutant of PO if:
same #input and #output, each input/output has same shape




PET In a systematic way

* Split a tensor program into sub-programs

* Mutate, correct, and evaluate each part iteratively, keeping the top K
programs
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Mutation from DFS target: conv(ly, I)
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At depth 4, accept all programs with agreeing shape of |10



Table 1: Multi-linear tensor operators used in PET.

Operator Description

add Element-wise addition

mul Element-wise multiplication

conv Convolution

groupconv Grouped convolution
dilatedconv  Dilated convolution

batchnorm Batch normalization

avgpool Average pooling

matmul Matrix multiplication
batchmatmul  Batch matrix multiplication
concat Concatenate multiple tensors
split Split a tensor into multiple tensors
transpose Transpose a tensor’s dimensions
reshape Decouple/combine a tensor’s dimensions




Program correction

e For original and mutated program, divide output region into boxes,
according to summation interval

* Verify equivalence of each intersection
* Only re-compute disagreeing intersections

“-| - 'Iﬂ

Tl

>/

-+ -+
>
—

(a) Input program F. (b) A potential mutant 7.




Summation Interval

Multi-linear tensor programs (MLTPs). We first define
multi-linear tensor operators. An operator op with n input
tensors I1,...,1I, is multi-linear if op is linear to all inputs I;:
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Correctness of an intersection?

Do we need to verify each output cell?

No. For each boy, if output is m-dimensional, only need to verify m+1
cells.

For each output cell, how to verify equivalence?

To verify a cell, just test on a few cases. The error is small and
controlled.




Then...

* If a box intersection is good, done

e Otherwise, re-compute the box
* (some optimization to reduce overhead...)



Evaluation - Speedup

* Up to 2.5x improvement

* Improvement even on heavily-optimized models
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Figure 8: End-to-end performance comparison between PET and existing frameworks. For each DNN, the numbers above the
PET bars show the speedups over the best baseline.



Evaluation — Search Time

* Under 3 minutes usually
*» ‘895, 88s,91s,and 165 s on Resnet-18, CSRNet, BERT, and Resnet3D-18,
respectively”
e 25 min for Inception-v3
* “due to the multiple branches in the Inception modules”



Impact

* Considering partially equivalent transformations opens up
optimization space

e Overhead well controlled
e Solid theoretical foundations



Criticism
* Complex system with unclear details
e e.g. how is the reshape params determined?

* Estimates performance based on cost model

* “Measures execution time of each tensor operator once for each configuration”
— costly, not counted in the 3 min | assume

* Only supports predefined operators
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* Analysis on #boxes missing
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Discussion

* Currently inference-only. Can be used for training as well?
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