PET: Optimizing Tensor
Programs with Partially
Equivalent Transformations and
Automated Corrections

KH. Wang, J. Zhai, M. Gao, Z. Mg, S. Tang, L. Zheng, Y. Li, K. Rong, Y.
Chen, and Z. Jia

Reviewed by Andy (Wenyang) Zhou

Tensor Programs

* Program represented as DAG of computation nodes

DilatedConv-1 DilatedConv-2 DilatedConv-3
l1,512,14,14] ReLU11™ [1,512,14,141 | RO 21 (1,51,14,14) [T RELUS

Graph Transformation

* To improve efficiency

* Most previous works: rule-based, fully equivalent transformations

X
A

matmul

A\

matmul

/N
A B C

source graph: Ax (B x C)

X
A

matmul

e

matmul

7N
A B C

target graph: AxB)x C

X Y

[

matmul matmul
A B C

source graph

X Y
N Pak
split
X

matmul

W
///ﬁ concat
ol R

A

B
target graph

C

Partially Equivalent Transformations

* Not equal on all elements of output tensor
e Faster, but requires correction lalter

Ty ™)
)

v
reshape &
transpose

)

Tq) T,

(a) Input program. (b) A partially equivalent transformation. (c) Correcting results.

Mutant

P1 is a mutant of PO if:
same #input and #output, each input/output has same shape

PET In a systematic way

* Split a tensor program into sub-programs

* Mutate, correct, and evaluate each part iteratively, keeping the top K
programs

P'— 8]_——339_ —> 85-—9
Hmr? H: §PY

Round 1- mutate S1. Mutwuars M,’, ME > -
fvaluate eaclh P replace (Si, M1)
Leave top K in H: H= PP replace (S, Mi). - -~}

RQMMAQ. Muctte Sa.. Muatuwdts Mz Mz --
for each Plin H. feplace Sa wotth eachh M:. amd eveduate

Leave top K H U= {Prepace(S, M) replace (S2, M2

Mutation from DFS target: conv(ly, I)
L/I.PIZIS= L, 12.

//ﬁ\

I + I:. L *I). Conv(L. Izj LJ'QSMaPe,(2, 0)

/ \ {l \ 71\ 71\
(I.+LY)+I (L+LO)¥],
/1 '\ /| \

At depth 4, accept all programs with agreeing shape of |10

Table 1: Multi-linear tensor operators used in PET.

Operator Description

add Element-wise addition

mul Element-wise multiplication

conv Convolution

groupconv Grouped convolution
dilatedconv Dilated convolution

batchnorm Batch normalization

avgpool Average pooling

matmul Matrix multiplication
batchmatmul Batch matrix multiplication
concat Concatenate multiple tensors
split Split a tensor into multiple tensors
transpose Transpose a tensor’s dimensions
reshape Decouple/combine a tensor’s dimensions

Program correction

e For original and mutated program, divide output region into boxes,
according to summation interval

* Verify equivalence of each intersection
* Only re-compute disagreeing intersections

“-| - 'Iﬂ

Tl

>/

-+ -+
>
—

(a) Input program F. (b) A potential mutant 7.

Summation Interval

Multi-linear tensor programs (MLTPs). We first define
multi-linear tensor operators. An operator op with n input
tensors I1,...,1I, is multi-linear if op is linear to all inputs I;:

Op(ll,...,lk_l,X,...,In)—I-Op(ll,...,Ik_l,Y,...,In)
:Op(ll,...,Ik_l,X—I—Y,...,In)
()C-Op([l,...,lk_l,X,...,In) :Op(ll,...,Ik_l,(x-X,...,In)

Pl,....I,) V] =

) B EALF(CAD)

Input

T o w
nu n
S
vy 4+ 3
ﬁ—x:
Weight —x=0
— x=-1
conv
i
0<x<1 .| 0sxs<1
1<sys<1 1<y<0
1<x<1 ! -1sxs1
1<y<1 1<y<0
1<x<0 1<x<0
4——
l1<sy<1 1<y=<0

Correctness of an intersection?

Do we need to verify each output cell?

No. For each boy, if output is m-dimensional, only need to verify m+1
cells.

For each output cell, how to verify equivalence?

To verify a cell, just test on a few cases. The error is small and
controlled.

Then...

* If a box intersection is good, done

e Otherwise, re-compute the box
* (some optimization to reduce overhead...)

Evaluation - Speedup

* Up to 2.5x improvement

* Improvement even on heavily-optimized models

(A)TensorFlow (B)TensorFlow-XLA (C)TensorRT (D)TASO (E)PET
Resnet-18 CSRNet Inception-v3 Bert Resnet3D-18
5 3 20 125 20
4 | 15 101 15
3 2 1o 7.5 BT T —— 1.00x]
—_ | 1 | 1.40x |
T S — 1.04x| 1 2.21x S TS === - e
EEREEER T N 51 onn 00l e o L2ax) | 5
0 T T T T T D T T T T T 0 T T T T T 0 T T T T T 0 T T T T T
AN B C D E A B C D E A B C D E A B C D E A B C D E
£
= batch_size=1
8 15 8 60 150 200
3 101 61 401 100 150
1ot 4] NNl | e 1§ - 1.19x|100 1 B 1.28x]
51 ES= _EEE o === Bed & & § & SDoX1 204 L o] 1_4_4_)(. 50 1 50 -
0 0 . 0 . . . 0 . . T T . 0 . T . . .
AL B C D E A B C D E A C D E A B C D E A B C D E

B
batch_size=16

Figure 8: End-to-end performance comparison between PET and existing frameworks. For each DNN, the numbers above the
PET bars show the speedups over the best baseline.

Evaluation — Search Time

* Under 3 minutes usually
*» ‘895, 88s,91s,and 165 s on Resnet-18, CSRNet, BERT, and Resnet3D-18,
respectively”
e 25 min for Inception-v3
* “due to the multiple branches in the Inception modules”

Impact

* Considering partially equivalent transformations opens up
optimization space

e Overhead well controlled
e Solid theoretical foundations

Criticism
* Complex system with unclear details
e e.g. how is the reshape params determined?

* Estimates performance based on cost model

* “Measures execution time of each tensor operator once for each configuration”
— costly, not counted in the 3 min | assume

* Only supports predefined operators
IVL,Pﬁi'S= L, Il

* Analysis on #boxes missing
//@f\

L+, L*[, comv(I. L) L. reswape (2,10)

/ \ {t‘_ 71\ {I'\
(L'TL_)'*‘_L CL"’I?.)*I[
/ 1\ /1N

Discussion

* Currently inference-only. Can be used for training as well?

References

 https://www.yourgenome.org/theme/what-is-a-mutation/

	Slide 1: PET: Optimizing Tensor Programs with Partially Equivalent Transformations and Automated Corrections
	Slide 2: Tensor Programs
	Slide 3: Graph Transformation
	Slide 4: Partially Equivalent Transformations
	Slide 5: Mutant
	Slide 6: PET in a systematic way
	Slide 7
	Slide 8: Mutation from DFS
	Slide 9
	Slide 10: Program correction
	Slide 11: Summation Interval
	Slide 12: Correctness of an intersection?
	Slide 13: Then…
	Slide 14: Evaluation - Speedup
	Slide 15: Evaluation – Search Time
	Slide 16: Impact
	Slide 17: Criticism
	Slide 18: Discussion
	Slide 19: References

